Search tips
Search criteria

Results 1-25 (1264010)

Clipboard (0)

Related Articles

1.  Extracellular Nucleotides and Adenosine Independently Activate AMP-Activated Protein Kinase in Endothelial Cells. Involvement of P2 Receptors and Adenosine Transporters 
Circulation research  2006;98(5):e39-e47.
AMP-activated protein kinase (AMPK) plays a key role in the regulation of energy homeostasis and is activated in response to cellular stress, including hypoxia/ischemia and hyperglycemia. The stress events are accompanied by rapid release of extracellular nucleotides from damaged tissues or activated endothelial cells (EC) and platelets. We demonstrate that extracellular nucleotides (ATP, ADP and UTP, but not UDP) and adenosine independently induce phosphorylation and activation of AMPK in human umbilical vein EC (HUVEC) by the mechanism that is not linked to changes in AMP:ATP ratio. HUVEC express NTPDases, as well as 5′-nucleotidase, hence nucleotides can be metabolized to adenosine. However, inhibition of 5′- nucleotidase had no effect on ATP/ADP/UTP-induced phosphorylation of AMPK, indicating that AMPK activation occurred as a direct response to nucleotides. Nucleotide-evoked phosphorylation of AMPK in HUVEC was mediated by P2Y1, P2Y2 and/or P2Y4 receptors, while P2Y6, P2Y11 and P2X receptors were not involved. The nucleotide-induced phosphorylation of AMPK was affected by changes in the concentration of intracellular Ca2+ and by Ca2+/calmodulin-dependent kinase kinase (CaMKK), while most likely it was not dependent on LKB1 kinase. Adenosine-induced phosphorylation of AMPK was not mediated by P1 receptors but required adenosine uptake by equilibrative nucleoside transporters followed by its (intracellular) metabolism to AMP but not inosine. Moreover, adenosine effect was Ca2+- and CaMKK-independent while probably associated with upstream LKB1. We hypothesize that P2 receptors and adenosine transporters could be novel targets for the pharmacologic regulation of AMPK activity and its downstream effects on EC function.
PMCID: PMC2830086  PMID: 16497986
endothelial cells; AMP-activated protein kinase; P2 receptors; adenosine; CaMKK
2.  Effects of WY-14,643 on the phosphorylation and activation of AMP-dependent protein kinase 
AMP-dependent protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α facilitate fatty acid oxidation. We have shown that treatment of hepatoma cells with ethanol or feeding ethanol-containing diets to mice inhibited both PPARα and AMPK activity. Importantly, WY-14,643 reversed the development of fatty liver in alcohol-fed mice. Whether WY-14,643, a PPARα agonist, has any effects on AMPK is not known. The aim of this study was to investigate the effect of WY-14,643 on AMPK activity.
The effect of WY-14,643 on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3). The effect of WY-14,643 on upstream kinases of AMPK, PKC-ζ/LKB1, intracellular AMP:ATP ratio, oxidative stress, and AMPK gene expression were studied.
Treatment of the H4IIEC3 cells with WY-14,643 for 24 h led to 60% increase in the phosphorylation of AMPK. The effect of WY-14,643 on AMPK phosphorylation is PKC-ζ/LKB1 independent. WY-14,643 did not alter the levels of intracellular AMP:ATP ratio and it did not increase the levels of reactive oxygen species at 24-h of treatment. WY-14,643-induced AMPK α subunit expression by 2- to 2.5-fold, but there was no change in AMPKα subunit protein at 24 h. The effect of WY-14,643 on AMPK phosphorylation did not altered by the presence of an NADPH oxidase inhibitor.
WY-14,643 induced AMPKα subunit phosphorylation and the activity of the enzyme. This was associated with induction of AMPKα1 and α2 mRNA, but the mechanism for this activation is uncertain.
PMCID: PMC2692688  PMID: 19236843
WY-14,643; PPARα agonist; AMPKα
3.  Activation of an AMP-activated protein kinase is involved in post-diapause development of Artemia franciscana encysted embryos 
Cysts of Artemia can remain in a dormant state for long periods with a very low metabolic rate, and only resume their development with the approach of favorable conditions. The post-diapause development is a very complicated process involving a variety of metabolic and biochemical events. However, the intrinsic mechanisms that regulate this process are unclear.
Herein we report the specific activation of an AMP-activated protein kinase (AMPK) in the post-diapause developmental process of Artemia. Using a phospho-AMPKα antibody, AMPK was shown to be phosphorylated in the post-diapause developmental process. Results of kinase assay analysis showed that this phosphorylation is essential for AMPK activation. Using whole-mount immunohistochemistry, phosphorylated AMPK was shown to be predominantly located in the ectoderm of the early developed embryos in a ring shape; however, the location and shape of the activation region changed as development proceeded. Additionally, Western blotting analysis on different portions of the cyst extracts showed that phosphorylated AMPKα localized to the nuclei and this location was not affected by intracellular pH. Confocal microscopy analysis of immunofluorescent stained cyst nuclei further showed that AMPKα localized to the nuclei when activated. Moreover, cellular AMP, ADP, and ATP levels in developing cysts were determined by HPLC, and the results showed that the activation of Artemia AMPK may not be associated with cellular AMP:ATP ratios, suggesting other pathways for regulation of Artemia AMPK activity.
Together, we report evidence demonstrating the activation of AMPK in Artemia developing cysts and present an argument for its role in the development-related gene expression and energy control in certain cells during post-diapause development of Artemia.
PMCID: PMC2667496  PMID: 19284883
4.  Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-Mediated Activation of Calcium Release-Activated Calcium Channels ▿  
Molecular and Cellular Biology  2011;31(17):3531-3545.
AMP-activated protein kinase (AMPK) is an energy sensor activated by increases in [AMP] or by oxidant stress (reactive oxygen species [ROS]). Hypoxia increases cellular ROS signaling, but the pathways underlying subsequent AMPK activation are not known. We tested the hypothesis that hypoxia activates AMPK by ROS-mediated opening of calcium release-activated calcium (CRAC) channels. Hypoxia (1.5% O2) augments cellular ROS as detected by the redox-sensitive green fluorescent protein (roGFP) but does not increase the [AMP]/[ATP] ratio. Increases in intracellular calcium during hypoxia were detected with Fura2 and the calcium-calmodulin fluorescence resonance energy transfer (FRET) sensor YC2.3. Antioxidant treatment or removal of extracellular calcium abrogates hypoxia-induced calcium signaling and subsequent AMPK phosphorylation during hypoxia. Oxidant stress triggers relocation of stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca2+ sensor, to the plasma membrane. Knockdown of STIM1 by short interfering RNA (siRNA) attenuates the calcium responses to hypoxia and subsequent AMPK phosphorylation, while inhibition of L-type calcium channels has no effect. Knockdown of the AMPK upstream kinase LKB1 by siRNA does not prevent AMPK activation during hypoxia, but knockdown of CaMKKβ abolishes the AMPK response. These findings reveal that hypoxia can trigger AMPK activation in the apparent absence of increased [AMP] through ROS-dependent CRAC channel activation, leading to increases in cytosolic calcium that activate the AMPK upstream kinase CaMKKβ.
PMCID: PMC3165558  PMID: 21670147
British journal of pharmacology  2012;167(2):10.1111/j.1476-5381.2012.01993.x.
Background and purpose
Pulmonary transepithelial Na+ transport is reduced by hypoxia but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMP activated protein kinase (AMPK) and reactive oxygen species (ROS) in the hypoxic regulation of apical amiloride-sensitive Na+ channels and basolateral Na+K+ATPase activity.
Experimental approach
H441 human airway epithelial cells were used to examine the effects of hypoxia on Na+ transport, AMP:ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS.
Key results
AMPK was activated by exposure to 3% or 0.2% O2 for 60 minutes in cells grown in submerged culture or when fluid (−2) was added to the apical surface of cells grown at air-liquid-interface. Only exposure to 0.2% O2 activated AMPK in cells grown at air-liquid-interface. Activation of AMPK was associated with elevation of the cellular AMP:ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive Isc (Iouabain) and apical amiloride-sensitive Na+ conductance (GNa+). Modification of AMPK activity abrogated the effect of hypoxia on Iouabain (Na+K+ ATPase) but not apical GNa+. Scavenging of superoxide (O2−) and inhibition of NADPH oxidase prevented the effect of hypoxia on apical GNa+ (Epithelial Na+ channels, ENaC).
Conclusions and Implications
Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na+ channels and basolateral Na+K+ATPase activity to decrease transepithelial Na+ transport. The finding that luminal fluid potentiated the effect of hypoxia and activated AMPK could have important consequences in lung disease conditions.
PMCID: PMC3481044  PMID: 22509822
AMPK; ROS; airway; epithelium; Na+K+ATPase; ENaC
6.  Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1 
Recent studies indicate that the LKB1 is a key regulator of the AMP-activated protein kinase (AMPK), which plays a crucial role in protecting cardiac muscle from damage during ischemia. We have employed mice that lack LKB1 in cardiac and skeletal muscle and studied how this affected the activity of cardiac AMPKα1/α2 under normoxic, ischemic, and anoxic conditions. In the heart lacking cardiac muscle LKB1, the basal activity of AMPKα2 was vastly reduced and not increased by ischemia or anoxia. Phosphorylation of AMPKα2 at the site of LKB1 phosphorylation (Thr172) or phosphorylation of acetyl-CoA carboxylase-2, a downstream substrate of AMPK, was ablated in ischemic heart lacking cardiac LKB1. Ischemia was found to increase the ADP-to-ATP (ADP/ATP) and AMP-to-ATP ratios (AMP/ATP) to a greater extent in LKB1-deficient cardiac muscle than in LKB1-expressing muscle. In contrast to AMPKα2, significant basal activity of AMPKα1 was observed in the lysates from the hearts lacking cardiac muscle LKB1, as well as in cardiomyocytes that had been isolated from these hearts. In the heart lacking cardiac LKB1, ischemia or anoxia induced a marked activation and phosphorylation of AMPKα1, to a level that was only moderately lower than observed in LKB1-expressing heart. Echocardiographic and morphological analysis of the cardiac LKB1-deficient hearts indicated that these hearts were not overtly dysfunctional, despite possessing a reduced weight and enlarged atria. These findings indicate that LKB1 plays a crucial role in regulating AMPKα2 activation and acetyl-CoA carboxylase-2 phosphorylation and also regulating cellular energy levels in response to ischemia. They also provide genetic evidence that an alternative upstream kinase can activate AMPKα1 in cardiac muscle.
PMCID: PMC2128705  PMID: 16332922
cellular energy metabolism; hypoxia; cardiovascular physiology; AMP-activated protein kinase
7.  AMPK - Activated Protein Kinase and its Role in Energy Metabolism of the Heart 
Current Cardiology Reviews  2010;6(4):337-342.
Adenosine monophosphate – activated kinase (AMPK) plays a key role in the coordination of the heart’s anabolic and catabolic pathways. It induces a cellular cascade at the center of maintaining energy homeostasis in the cardiomyocytes.. The activated AMPK is a heterotrimeric protein, separated into a catalytic α - subunit (63kDa), a regulating β - subunit (38kDa) and a γ - subunit (38kDa), which is allosterically adjusted by adenosine triphosphate (ATP) and adenosine monophosphate (AMP). The actual binding of AMP to the γ – subunit is the step which activates AMPK.
AMPK serves also as a protein kinase in several metabolic pathways of the heart, including cellular energy sensoring or cardiovascular protection. The AMPK cascade represents a sensitive system, activated by cellular stresses that deplete ATP and acts as an indicator of intracellular ATP/AMP. In the context of cellular stressors (i.e. hypoxia, pressure overload, hypertrophy or ATP deficiency) the increasing levels of AMP promote allosteric activation and phosphorylation of AMPK. As the concentration of AMP begins to increase, ATP competitively inhibits further phosphorylation of AMPK. The increase of AMP may also be induced either from an iatrogenic emboli, percutaneous coronary intervention, or from atherosclerotic plaque rupture leading to an ischemia in the microcirculation. To modulate energy metabolism by phosphorylation and dephosphorylation is vital in terms of ATP usage, maintaining transmembrane transporters and preserving membrane potential.
In this article, we review AMPK and its role as an important regulatory enzyme during periods of myocardial stress, regulating energy metabolism, protein synthesis and cardiovascular protection.
PMCID: PMC3083815  PMID: 22043210
Adenosine monophosphate - activated protein kinase; AMPK; heart failure; cardiac energy metabolism.
8.  Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status 
Diabetologia  2011;54(12):3101-3110.
The glucose-lowering drug metformin has been shown to activate hepatic AMP-activated protein kinase (AMPK), a master kinase regulating cellular energy homeostasis. However, the underlying mechanisms remain controversial and have never been investigated in primary human hepatocytes.
Hepatocytes isolated from rat, mouse and human livers were treated with various concentrations of metformin. Isoform-specific AMPKα abundance and activity, as well as intracellular adenine nucleotide levels and mitochondrial oxygen consumption rates were determined at different time points.
Metformin dose- and time-dependently increased AMPK activity in rat and human hepatocytes, an effect associated with a significant rise in cellular AMP:ATP ratio. Surprisingly, we found that AMPKα2 activity was undetectable in human compared with rat hepatocytes, while AMPKα1 activities were comparable. Accordingly, metformin only increased AMPKα1 activity in human hepatocytes, although both AMPKα isoforms were activated in rat hepatocytes. Analysis of mRNA expression and protein levels confirmed that only AMPKα1 is present in human hepatocytes; it also showed that the distribution of β and γ regulatory subunits differed between species. Finally, we demonstrated that the increase in AMP:ATP ratio in hepatocytes from liver-specific Ampkα1/2 (also known as Prkaa1/2) knockout mice and humans is due to a similar and specific inhibition of the mitochondrial respiratory-chain complex 1 by metformin.
Activation of hepatic AMPK by metformin results from a decrease in cellular energy status owing to metformin’s AMPK-independent inhibition of the mitochondrial respiratory-chain complex 1. The unique profile of AMPK subunits found in human hepatocytes should be considered when developing new pharmacological agents to target the kinase.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-011-2311-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3210354  PMID: 21947382
AMP:ATP ratio; AMPK; Hepatocytes; Human; Metformin; Mitochondria; Respiratory-chain complex 1
9.  Activation of AMP-Activated Protein Kinase by Interleukin-6 in Rat Skeletal Muscle 
Diabetes  2009;58(9):1953-1960.
Interleukin-6 (IL-6) directly activates AMP-activated protein kinase (AMPK) in vivo and in vitro; however, the mechanism by which it does so is unknown.
We examined this question in skeletal muscle using an incubated rat extensor digitorum longus (EDL) muscle preparation as a tool.
AMPK activation by IL-6 coincided temporally with a nearly threefold increase in the AMP:ATP ratio in the EDL. The effects of IL-6 on both AMPK activity and energy state were inhibited by coincubation with propranolol, suggesting involvement of β-adrenergic signaling. In keeping with this notion, IL-6 concurrently induced a transient increase in cAMP, and its ability to activate AMPK was blocked by the adenyl cyclase inhibitor 2′5′-dideoxyadenosine. In addition, like other β-adrenergic stimuli, IL-6 increased glycogen breakdown and lipolysis in the EDL. Similar effects of IL-6 on AMPK, energy state, and cAMP content were observed in C2C12 myotubes and gastrocnemius muscle in vivo, indicating that they were not unique to the incubated EDL.
These studies demonstrate that IL-6 activates AMPK in skeletal muscle by increasing the concentration of cAMP and, secondarily, the AMP:ATP ratio. They also suggest that substantial increases in IL-6 concentrations, such as those that can result from its synthesis by muscles during exercise, may play a role in the mobilization of fuel stores within skeletal muscle as an added means of restoring energy balance.
PMCID: PMC2731526  PMID: 19502419
10.  Berberine Inhibits Doxorubicin-Triggered Cardiomyocyte Apoptosis via Attenuating Mitochondrial Dysfunction and Increasing Bcl-2 Expression 
PLoS ONE  2012;7(10):e47351.
Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy.
PMCID: PMC3471849  PMID: 23077597
11.  Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio 
Free radical biology & medicine  2009;46(10):1386-1391.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy status found in metazoans that is known to be activated by stimuli that increase the cellular AMP/ATP ratio. Full activation of AMPK requires specific phosphorylation within the activation loop of the catalytic domain of the α-subunit by upstream kinases such as the serine/threonine protein kinase LKB1. Here we show that hypoxia activates AMPK through LKB1 without an increase in the AMP/ATP ratio. Hypoxia increased reactive oxygen species (ROS) levels and the antioxidant EUK-134 abolished the hypoxic activation of AMPK. Cells deficient in mitochondrial DNA (ρ0 cells) failed to activate AMPK during hypoxia but are able to in the presence of exogenous H2O2. Furthermore, we provide genetic evidence that ROS generated within the mitochondrial electron transport chain and not oxidative phosphorylation is required for hypoxic activation of AMPK. Collectively, these data indicate that oxidative stress and not an increase in the AMP/ATP ratio is required for hypoxic activation of AMPK.
PMCID: PMC3326346  PMID: 19268526
AMP-activated kinase; Hypoxia; LKB1; Mitochondria; Reactive oxygen species; Free radicals
12.  Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury 
AMP-activated protein kinase (AMPK) is activated by increases in the intracellular AMP:ATP ratio and plays a central role in cellular responses to metabolic stress. While activation of AMPK has been shown to have anti-inflammatory effects, there is little information concerning the role that AMPK may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of pharmacological activators of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR) and barberine, on TLR4 induced neutrophil activation. AICAR and barberine dose dependently activated AMPK in murine bone marrow neutrophils. Exposure of LPS-stimulated neutrophils to AICAR or barberine inhibited release of TNF-α and IL-6, as well as degradation of IκBα and nuclear translocation of NF-κB, as compared to findings in neutrophil cultures that contained LPS without AICAR or barberine. Administration of AICAR to mice resulted in activation of AMPK in the lungs and was associated with decreased severity of LPS-induced lung injury, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-α and IL-6 in bronchoalveolar lavage fluid. These results suggest that AMPK activation reduces TLR4 induced neutrophil activation and diminishes the severity of neutrophil driven proinflammatory processes, including acute lung injury.
PMCID: PMC2536800  PMID: 18586954
AMPK; neutrophil; NF-κB; cytokine; acute lung injury
13.  HCMV Targets the Metabolic Stress Response through Activation of AMPK Whose Activity Is Important for Viral Replication 
PLoS Pathogens  2012;8(1):e1002502.
Human Cytomegalovirus (HCMV) infection induces several metabolic activities that have been found to be important for viral replication. The cellular AMP-activated protein kinase (AMPK) is a metabolic stress response kinase that regulates both energy-producing catabolic processes and energy-consuming anabolic processes. Here we explore the role AMPK plays in generating an environment conducive to HCMV replication. We find that HCMV infection induces AMPK activity, resulting in the phosphorylation and increased abundance of several targets downstream of activated AMPK. Pharmacological and RNA-based inhibition of AMPK blocked the glycolytic activation induced by HCMV-infection, but had little impact on the glycolytic pathway of uninfected cells. Furthermore, inhibition of AMPK severely attenuated HCMV replication suggesting that AMPK is an important cellular factor for HCMV replication. Inhibition of AMPK attenuated early and late gene expression as well as viral DNA synthesis, but had no detectable impact on immediate-early gene expression, suggesting that AMPK activity is important at the immediate early to early transition of viral gene expression. Lastly, we find that inhibition of the Ca2+-calmodulin-dependent kinase kinase (CaMKK), a kinase known to activate AMPK, blocks HCMV-mediated AMPK activation. The combined data suggest a model in which HCMV activates AMPK through CaMKK, and depends on their activation for high titer replication, likely through induction of a metabolic environment conducive to viral replication.
Author Summary
Human Cytomegalovirus (HCMV) is a ubiquitous human pathogen that is a major cause of birth defects. HCMV can also cause severe disease in immunocompromised individuals including transplant recipients, leukemia patients and those infected with HIV. It is clear that upon infection, HCMV takes control of numerous cellular processes that are important for the virus to generate the next round of infectious virions. We have previously found that upon infection, HCMV reprograms the metabolic activity of the host-cell. Here, we find that this metabolic reprogramming largely depends on the viral activation of a cellular protein called the AMP-activated protein kinase (AMPK). AMPK is a central regulator of cellular energy production that is typically only activated when cellular energy stores are very low. Our results indicate that HCMV-mediated activation of AMPK is necessary to flip the metabolic switch thereby driving host-cell metabolic activation and viral replication. As inhibition of AMPK blocked viral replication, and had little impact on uninfected host-cell metabolism, targeting AMPK could have therapeutic potential to treat HCMV-associated disease.
PMCID: PMC3266935  PMID: 22291597
14.  Beyond AICA Riboside: In Search of New Specific AMP-activated Protein Kinase Activators 
IUBMB life  2009;61(1):18-26.
5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICA riboside) has been extensively used in vitro and in vivo to activate the AMP-activated protein kinase (AMPK), a metabolic sensor involved in both cellular and whole body energy homeostasis. However, it has been recently highlighted that AICA riboside also exerts AMPK-independent effects, mainly on AMP-regulated enzymes and mitochondrial oxidative phosphorylation (OXPHOS), leading to the conclusion that new compounds with reduced off target effects are needed to specifically activate AMPK. Here, we review recent findings on newly discovered AMPK activators, notably on A-769662, a nonnucleoside compound from the thienopyridone family. We also report that A-769662 is able to activate AMPK and stimulate glucose uptake in both L6 cells and primary myotubes derived from human satellite cells. In addition, A-769662 increases AMPK activity and phosphorylation of its main downstream targets in primary cultured rat hepatocytes but, by contrast with AICA riboside, does neither affect mitochondrial OXPHOS nor change cellular AMP:ATP ratio. We conclude that A-769662 could be one of the new promising chemical agents to activate AMPK with limited AMPK-independent side effects.
PMCID: PMC2845387  PMID: 18798311
AMPK; AICA riboside; 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside; ZMP; A-769662; glucose uptake; hepatocytes; mitochondria
15.  Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade 
Journal of Biology  2003;2(4):28.
The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs) that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β.
We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1), but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from LKB1-knockout mouse embryos.
These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.
PMCID: PMC333410  PMID: 14511394
16.  AMP-Activated Protein Kinase Protects Cardiomyocytes against Hypoxic Injury through Attenuation of Endoplasmic Reticulum Stress 
Molecular and Cellular Biology  2005;25(21):9554-9575.
Oxygen deprivation leads to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), causing ER stress. Under conditions of ER stress, inhibition of protein synthesis and up-regulation of ER chaperone expression reduce the misfolded proteins in the ER. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in energy homeostasis during hypoxia. It has been shown that AMPK activation is associated with inhibition of protein synthesis via phosphorylation of elongation factor 2 (eEF2) in cardiomyocytes. We therefore examined whether AMPK attenuates hypoxia-induced ER stress in neonatal rat cardiomyocytes. We found that hypoxia induced ER stress, as assessed by the expression of CHOP and BiP and cleavage of caspase 12. Knockdown of CHOP or caspase 12 through small interfering RNA (siRNA) resulted in decreased expression of cleaved poly(ADP-ribose) polymerase following exposure to hypoxia. We also found that hypoxia-induced CHOP expression and cleavage of caspase 12 were significantly inhibited by pretreatment with 5-aminoimidazole-4-carboxyamide-1-β-d-ribofuranoside (AICAR), a pharmacological activator of AMPK. In parallel, adenovirus expressing dominant-negative AMPK significantly attenuated the cardioprotective effects of AICAR. Knockdown of eEF2 phosphorylation using eEF2 kinase siRNA abolished these cardioprotective effects of AICAR. Taken together, these findings demonstrate that activation of AMPK contributes to protection of the heart against hypoxic injury through attenuation of ER stress and that attenuation of protein synthesis via eEF2 inactivation may be the mechanism of cardioprotection by AMPK.
PMCID: PMC1265833  PMID: 16227605
17.  Iron deficiency causes a shift in AMP-activated protein kinase (AMPK) subunit composition in rat skeletal muscle 
As a cellular energy sensor, the 5’AMP-activated protein kinase (AMPK) is activated in response to energy stresses such as hypoxia and muscle contraction. To determine effects of iron deficiency on AMPK activation and signaling, as well as the AMPK subunit composition in skeletal muscle, rats were fed a control (C=50-58 mg/kg Fe) or iron deficient (ID=2-6 mg/kg Fe) diet for 6–8 wks.
Their respective hematocrits were 47.5% ± 1.0 and 16.5% ± 0.6. Iron deficiency resulted in 28.3% greater muscle fatigue (p<0.01) in response to 10 min of stimulation (1 twitch/sec) and was associated with a greater reduction in phosphocreatine (C: Resting 24.1 ± 0.9 μmol/g, Stim 13.1 ± 1.5 μmol/g; ID: Resting 22.7 ± 1.0 μmol/g, Stim 3.2 ± 0.7 μmol/g; p<0.01) and ATP levels (C: Resting 5.89 ± 0.48 μmol/g, Stim 6.03 ± 0.35 μmol/g; ID: Resting 5.51 ± 0.20 μmol/g, Stim 4.19 ± 0.47 μmol/g; p<0.05). AMPK activation increased with stimulation in muscles of C and ID animals. A reduction in Cytochrome c and other iron-dependent mitochondrial proteins was observed in ID animals (p<0.01). The AMPK catalytic subunit (α) was examined because both isoforms are known to play different roles in responding to energy challenges. In ID animals, AMPKα2 subunit protein content was reduced to 71.6% of C (p<0.05), however this did not result in a significant difference in resting AMPKα2 activity. AMPKα1 protein was unchanged, however an overall increase in AMPKα1 activity was observed (C: 0.91 pmol/mg/min; ID: 1.63 pmol/mg/min; p<0.05). Resting phospho Acetyl CoA Carboxylase (pACC) was unchanged. In addition, we observed significant reductions in the β2 and γ3 subunits of AMPK in response to iron deficiency.
This study indicates that chronic iron deficiency causes a shift in the expression of AMPKα, β, and γ subunit composition. Iron deficiency also causes chronic activation of AMPK as well as an increase in AMPKα1 activity in exercised skeletal muscle.
PMCID: PMC3575277  PMID: 23171474
AMPK; AMPK alpha; Iron deficiency; Anemia; Energy metabolism; Skeletal muscle
18.  Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes 
The Journal of Experimental Medicine  2006;203(7):1665-1670.
The adenosine monophosphate (AMP)–activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKα1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca2+ with Ca2+ ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca2+ stimulation of AMPK required the activity of Ca2+–calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca2+ signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it.
PMCID: PMC2118355  PMID: 16818670
19.  AMP-activated protein kinase and hypoxic pulmonary vasoconstriction 
European journal of pharmacology  2008;595(1-3):39-43.
Hypoxic pulmonary vasoconstriction is a vital homeostatic mechanism that aids ventilation-perfusion matching in the lung, for which the underlying mechanism(s) remains controversial. However, our most recent investigations strongly suggest that hypoxic pulmonary vasoconstriction is precipitated, at least in part, by the inhibition of mitochondrial oxidative phosphorylation by hypoxia, an increase in the AMP / ATP ratio and consequent activation of AMP-activated protein kinase (AMPK). Unfortunately, these studies lacked the definitive proof that can only be provided by selectively blocking AMPK-dependent signalling cascades. The aim of the present study was, therefore, to determine the effects of the AMPK inhibitor compound C upon: (1) phosphorylation in response to hypoxia of a classical AMPK substrate, acetyle CoA carboxylase, in rat pulmonary arterial smooth muscle and (2) hypoxic pulmonary vasoconstriction in rat isolated intrapulmonary arteries. Acetyl CoA carboxylase phosphorylation was increased approximately 3 fold in the presence of hypoxia (pO2 = 16-21 mm Hg, 1 h) and 5-aminoimidazole-4-carboxamide riboside (AICAR; 1 mM; 4 h) and in a manner that was significantly attenuated by the AMPK antagonist compound C (40 μM). Most importantly, pre-incubation of intrapulmonary arteries with compound C (40 μM) inhibited phase II, but not phase I, of hypoxic pulmonary vasoconstriction. Likewise, compound C (40 μM) inhibited constriction by AICAR (1 mM). The results of the present study are consistent with the activation of AMPK being a key event in the initiation of the contractile response of pulmonary arteries to acute hypoxia.
PMCID: PMC3119428  PMID: 18703047
AMP-activated protein kinase; hypoxic pulmonary vasoconstriction; compound C; AICAR
20.  Acute regulation of 5′-AMP-activated protein kinase by long-chain fatty acid, glucose and insulin in rat primary adipocytes 
Bioscience Reports  2012;33(1):e00007.
Palmitate increased AMPK (5′-AMP-activated protein kinase) activity, glucose utilization and 2-DOG (2-deoxyglucose) transport in rat adipocytes. All three effects were blocked by the AMPK inhibitor Compound C, leading to the conclusion that in response to an increase in long-chain NEFA (non-esterified fatty acid) concentration AMPK mediated an enhancement of adipocyte glucose transport, thereby providing increased glycerol 3-phosphate for FA (fatty acid) esterification to TAG (triacylglycerol). Activation of AMPK in response to palmitate was not due to an increase in the adipocyte AMP:ATP ratio. Glucose decreased AMPK activity and effects of palmitate and glucose on AMPK activity were antagonistic. While insulin had no effect on basal AMPK activity insulin did decrease AMPK activity in the presence of palmitate and also decreased the percentage effectiveness of palmitate to increase the transport of 2-DOG. It is suggested that activation of adipocyte AMPK by NEFA, as well as decreasing the activity of hormone-sensitive lipase, could modulate adipose tissue dynamics by increasing FA esterification and, under certain circumstances, FA synthesis.
PMCID: PMC3522478  PMID: 23095119
acute regulation; adipocyte; AMP kinase; fatty acid; glucose; insulin; ACC, acetyl-CoA carboxylase; AICAR, 5-amino-4-imidazolecarboxamide-1-β-D-ribofuranoside; AMPK, 5′-AMP-activated protein kinase; 2-DOG, 2-deoxyglucose; FA, fatty acid; GLUT4, glucose transporter 4; LPL, lipoprotein lipase; NEFA, non-esterified fatty acid; PDH, pyruvate dehydrogenase; PI3K, phosphoinositide 3-kinase; TAG, triacylglycerol
21.  Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for Phosphodiesterases, Protein kinase B, Protein kinase A, Epac and lipolysis 
Cellular signalling  2009;21(5):760-766.
AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status. In adipocytes, stimuli that increase intracellular cyclic AMP (cAMP) have also been shown to increase the activity of AMPK. The precise molecular mechanisms responsible for cAMP-induced AMPK activation are not clear. Phosphodiesterase 3B (PDE3B) is a critical regulator of cAMP signalling in adipocytes. Here we investigated the roles of PDE3B, PDE4, protein kinase B (PKB) and the exchange protein activated by cAMP 1 (Epac1), as well as lipolysis, in the regulation of AMPK in primary rat adipocytes. We demonstrate that the increase in phosphorylation of AMPK at T172 induced by the adrenergic agonist isoproterenol can be diminished by co-incubation with insulin. The diminishing effect of insulin on AMPK activation was reversed upon treatment with the PDE3B specific inhibitor OPC3911 but not with the PDE4 inhibitor Rolipram. Adenovirus-mediated overexpression of PDE3B and constitutively active PKB both resulted in greatly reduced isoproterenol-induced phosphorylation of AMPK at T172. Co-incubation of adipocytes with isoproterenol and the PKA inhibitor H89 resulted in a total ablation of lipolysis and a reduction in AMPK phosphorylation/activation. Stimulation of adipocytes with the Epac1 agonist 8-pCPT-2’O-Me-cAMP led to increased phosphorylation of AMPK at T172. The general lipase inhibitor Orlistat decreased isoproterenol-induced phosphorylation of AMPK at T172. This decrease corresponded to a reduction of lipolysis from adipocytes. Taken together, these data suggest that PDE3B and PDE4 regulate cAMP pools that affect the activation/phosphorylation state of AMPK and that the effects of cyclic AMP on AMPK involve Epac1, PKA and lipolysis.
PMCID: PMC3576575  PMID: 19167487
PDE3B; PDE4; Epac; AMPK; PKA; lipolysis; cAMP; adipocytes
22.  LKB1 and AMPK control of mTOR signalling and growth 
The AMP-activated serine/threonine protein kinase (AMPK) is a sensor of cellular energy status found in all eukaryotes that is activated under conditions of low intracellular ATP following stresses such as nutrient deprivation or hypoxia. In the past five years, work from a large number of laboratories has revealed that one of the major downstream signaling pathways regulated by AMPK is the mammalian target-of-rapamycin (mTOR pathway). Interestingly, like AMPK, the mTOR serine/threonine kinase plays key roles not only in growth control and cell proliferation but also in metabolism. Recent work has revealed that across eukaryotes mTOR orthologs are found in two biochemically distinct complexes and only one of those complexes (mTORC1 in mammals) is acutely sensitive to rapamycin and regulated by nutrients and AMPK. Many details of the molecular mechanism by which AMPK inhibits mTORC1 signaling have also been decoded in the past 5 years. AMPK directly phosphorylates at least two proteins to induce rapid suppression of mTORC1 activity, the TSC2 tumor suppressor and the critical mTORC1 binding subunit raptor. Here we explore the molecular connections between AMPK and mTOR signaling pathways and examine the physiological processes in which AMPK regulation of mTOR is critical for growth or metabolic control. The functional conservation of AMPK and TOR in all eukaryotes, and the sequence conservation around the AMPK phosphorylation sites in raptor across all eukaryotes examined suggest that this represents a fundamental cell growth module connecting nutrient status to the cell growth machinery. These findings have broad implications for the control of cell growth by nutrients in a number of cellular and organismal contexts.
PMCID: PMC2760308  PMID: 19245654
LKB1; AMPK; mTOR; raptor; TSC2; metabolism; checkpoint
23.  Altered Metabolism and Persistent Starvation Behaviors Caused by Reduced AMPK Function in Drosophila 
PLoS ONE  2010;5(9):e12799.
Organisms must utilize multiple mechanisms to maintain energetic homeostasis in the face of limited nutrient availability. One mechanism involves activation of the heterotrimeric AMP-activated protein kinase (AMPK), a cell-autonomous sensor to energetic changes regulated by ATP to AMP ratios. We examined the phenotypic consequences of reduced AMPK function, both through RNAi knockdown of the gamma subunit (AMPKγ) and through expression of a dominant negative alpha (AMPKα) variant in Drosophila melanogaster. Reduced AMPK signaling leads to hypersensitivity to starvation conditions as measured by lifespan and locomotor activity. Locomotor levels in flies with reduced AMPK function were lower during unstressed conditions, but starvation-induced hyperactivity, an adaptive response to encourage foraging, was significantly higher than in wild type. Unexpectedly, total dietary intake was greater in animals with reduced AMPK function yet total triglyceride levels were lower. AMPK mutant animals displayed starvation-like lipid accumulation patterns in metabolically key liver-like cells, oenocytes, even under fed conditions, consistent with a persistent starved state. Measurements of O2 consumption reveal that metabolic rates are greater in animals with reduced AMPK function. Lastly, rapamycin treatment tempers the starvation sensitivity and lethality associated with reduced AMPK function. Collectively, these results are consistent with models that AMPK shifts energy usage away from expenditures into a conservation mode during nutrient-limited conditions at a cellular level. The highly conserved AMPK subunits throughout the Metazoa, suggest such findings may provide significant insight for pharmaceutical strategies to manipulate AMPK function in humans.
PMCID: PMC2942814  PMID: 20862213
24.  Structure of Mammalian AMPK and its regulation by ADP 
Nature  2011;472(7342):230-233.
The heterotrimeric AMP-activated protein kinase (AMPK) plays a key role in regulating cellular energy metabolism; in response to a fall in intracellular ATP levels it activates energy producing pathways and inhibits energy consuming processes1. AMPK has been implicated in a number of diseases related to energy metabolism including type 2 diabetes, obesity and, most recently, cancer 2,3,4,5,6. AMPK is converted from an inactive to catalytically competent form by phosphorylation of the activation loop within the kinase domain7; AMP binding to the γ regulatory domain promotes phosphorylation by the upstream kinase8, protects the enzyme against dephosphorylation as well as causing allosteric activation9. We show here that ADP binding to just one of the two exchangeable AXP binding sites on the regulatory domain protects the enzyme from dephosphorylation, although it does not lead to allosteric activation. Our studies show that active AMPK displays significantly tighter binding to ADP than to Mg.ATP, explaining how the enzyme is regulated under physiological conditions where the concentration of Mg.ATP is higher than that of ADP and much higher than that of AMP. We have determined the crystal structure of an active AMPK complex. It shows how the activation loop of the kinase domain is stabilized by the regulatory domain and how the kinase linker region interacts with the regulatory nucleotide binding site that mediates protection against dephosphorylation. From our biochemical and structural data we develop a model for how the energy status of a cell regulates AMPK activity (Supplementary Fig. 1).
PMCID: PMC3078618  PMID: 21399626
25.  Age-related changes in AMP-activated protein kinase after stroke 
Age  2011;34(1):157-168.
Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionary conserved energy sensor sensitive to changes in cellular AMP/ATP ratio which is activated by phosphorylation (pAMPK). pAMPK levels decrease in peripheral tissues with age, but whether this also occurs in the aged brain, and how this contributes to the ability of the aged brain to cope with ischemic stress is unknown. This study investigated the activation of AMPK and the response to AMPK inhibition after induced stroke in both young and aged male mice. Baseline levels of phosphorylated AMPK were higher in aged brains compared to young mice. Stroke-induced a robust activation of AMPK in young mice, yet this response was muted in the aged brain. Young mice had larger infarct volumes compared with aged animals; however, more severe behavioral deficits and higher mortality were seen in aged mice after stroke. Inhibition of AMPK with Compound C decreased infarct size in young animals, but had no effect in aged mice. Compound C administration led to a reduction in brain ATP levels and induced hypothermia, which led to enhanced neuroprotection in young but not aged mice. This work demonstrates that aging increases baseline brain pAMPK levels; aged mice have a muted stroke-induced pAMPK response; and that AMPK inhibition and hypothermia are less efficacious neuroprotective agents in the aged brain. This has important translational relevance for the development of neuroprotective agents in preclinical models and our understanding of the enhanced metabolic stress experienced by the aged brain.
PMCID: PMC3260368  PMID: 21360073
Aging; AMPK; Compound C; Hypothermia; Ischemic stroke; Middle cerebral artery occlusion (MCAO)

Results 1-25 (1264010)