Search tips
Search criteria

Results 1-25 (1008794)

Clipboard (0)

Related Articles

1.  Rat Mesentery Angiogenesis Assay 
The adult rat mesentery window angiogenesis assay is biologically appropriate and is exceptionally well suited to the study of sprouting angiogenesis in vivo [see review papers], which is the dominating form of angiogenesis in human tumors and non-tumor tissues, as discussed in invited review papers1,2. Angiogenesis induced in the membranous mesenteric parts by intraperitoneal (i.p.) injection of a pro-angiogenic factor can be modulated by subcutaneous (s.c.), intravenous (i.v.) or oral (p.o.) treatment with modifying agents of choice. Each membranous part of the mesentery is translucent and framed by fatty tissue, giving it a window-like appearance.
The assay has the following advantageous features: (i) the test tissue is natively vascularized, albeit sparsely, and since it is extremely thin, the microvessel network is virtually two-dimensional, which allows the entire network to be assessed microscopically in situ; (ii) in adult rats the test tissue lacks significant physiologic angiogenesis, which characterizes most normal adult mammalian tissues; the degree of native vascularization is, however, correlated with age, as discussed in1; (iii) the negligible level of trauma-induced angiogenesis ensures high sensitivity; (iv) the assay replicates the clinical situation, as the angiogenesis-modulating test drugs are administered systemically and the responses observed reflect the net effect of all the metabolic, cellular, and molecular alterations induced by the treatment; (v) the assay allows assessments of objective, quantitative, unbiased variables of microvascular spatial extension, density, and network pattern formation, as well as of capillary sprouting, thereby enabling robust statistical analyses of the dose-effect and molecular structure-activity relationships; and (vi) the assay reveals with high sensitivity the toxic or harmful effects of treatments in terms of decreased rate of physiologic body-weight gain, as adult rats grow robustly.
Mast-cell-mediated angiogenesis was first demonstrated using this assay3,4. The model demonstrates a high level of discrimination regarding dosage-effect relationships and the measured effects of systemically administered chemically or functionally closely related drugs and proteins, including: (i) low-dosage, metronomically administered standard chemotherapeutics that yield diverse, drug-specific effects (i.e., angiogenesis-suppressive, neutral or angiogenesis-stimulating activities5); (ii) natural iron-unsaturated human lactoferrin, which stimulates VEGF-A-mediated angiogenesis6, and natural iron-unsaturated bovine lactoferrin, which inhibits VEGF-A-mediated angiogenesis7; and (iii) low-molecular-weight heparin fractions produced by various means8,9. Moreover, the assay is highly suited to studies of the combined effects on angiogenesis of agents that are administered systemically in a concurrent or sequential fashion.
The idea of making this video originated from the late Dr. Judah Folkman when he visited our laboratory and witnessed the methodology being demonstrated.
Review papers (invited) discussing and appraising the assay
Norrby, K. In vivo models of angiogenesis. J. Cell. Mol. Med. 10, 588-612 (2006).
Norrby, K. Drug testing with angiogenesis models. Expert Opin. Drug. Discov. 3, 533-549 (2008).
PMCID: PMC3121245  PMID: 21712799
Elevated blood pressure during hypertension has been associated with microvascular rarefaction defined by loss of microvessels. However, whether rarefaction is a result of impaired angiogenesis remains unclear. The objective of this study was to compare angiogenesis across the time course of mesenteric microvascular network remodeling in adult spontaneously hypertensive versus normotensive rats. Angiogenic responses in 15–16-week-old SHR and Wistar rats at 0, 3, 5, 10 or 25 days post 20 minute exteriorization of the mesentery were quantified. Consistent with the phenomenon of rarefaction, vascularized area in unstimulated SHR was decreased compared to Wistar. By 25 days, SHR vascular area had increased to the Wistar level and vascular length density and capillary sprouting were comparable. At 3 and 5 days, SHR and Wistar tissues displayed an increase in the capillary sprouting and vascular density relative to their unstimulated controls. At 10 days, capillary sprouting in the SHR remained elevated. The percent change in vascular density was elevated in the SHR compared to the Wistar group at 3 and 5 days and by 25 days the rate of change was more negative. Our results suggest that SHR networks undergo an increased rate of growth followed by an increased rate of pruning.
PMCID: PMC3176994  PMID: 21627712
Hypertension; Angiogenesis; Spontaneously Hypertensive Rat; Microcirculation; Mesentery
3.  Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor 
BMC Neuroscience  2005;6:20.
In mammals, the CNS vasculature is established during the postnatal period via active angiogenesis, providing different brain regions with capillary networks of various densities that locally supply adapted metabolic support to neurons. Thereafter this vasculature remains essentially quiescent excepted for specific pathologies. In the adult rat hypothalamus, a particularly dense network of capillary vessels is associated with the supraoptic (SON) and paraventricular (PVN) nuclei containing the magnocellular neurons secreting vasopressin and oxytocin, two neurohormones involved in the control of the body fluid homoeostasis. In the seventies, it was reported that proliferation of astrocytes and endothelial cells occurs within these hypothalamic nuclei when strong metabolic activation of the vasopressinergic and oxytocinergic neurons was induced by prolonged hyperosmotic stimulation. The aim of the present study was to determine whether such proliferative response to osmotic stimulus is related to local angiogenesis and to elucidate the cellular and molecular mechanisms involved.
Our results provide evidence that cell proliferation occurring within the SON of osmotically stimulated adult rats corresponds to local angiogenesis. We show that 1) a large majority of the SON proliferative cells is associated with capillary vessels, 2) this proliferative response correlates with a progressive increase in density of the capillary network within the nucleus, and 3) SON capillary vessels exhibit an increased expression of nestin and vimentin, two markers of newly formed vessels. Contrasting with most adult CNS neurons, hypothalamic magnocellular neurons were found to express vascular endothelial growth factor (VEGF), a potent angiogenic factor whose production was increased by osmotic stimulus. When VEGF was inhibited by dexamethasone treatment or by the local application of a blocking antibody, the angiogenic response was strongly inhibited within the hypothalamic magnocellular nuclei of hyperosmotically stimulated rats.
This study shows that the functional stimulation of hypothalamic magnocellular neurons of adult rats induces reversible angiogenesis via the local secretion of neuronal VEGF. Since many diseases are driven by unregulated angiogenesis, the hypothalamic magnocellular nuclei should provide an interesting model to study the cellular and molecular mechanisms involved in the regulation of angiogenesis processes within the adult CNS.
PMCID: PMC1079868  PMID: 15790414
4.  A Computational Model Predicting Disruption of Blood Vessel Development 
PLoS Computational Biology  2013;9(4):e1002996.
Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D ( modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS) dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic series of events and for the first time demonstrate the applicability of these models for predictive toxicology.
Author Summary
We built a novel computational model of vascular development that includes multiple cell types responding to growth factor signaling, inflammatory chemokine pathways and extracellular matrix interactions. This model represents the normal biology of capillary plexus formation, both in terms of morphology and emergent behaviors. Based on in vitro high-throughput screening data from EPA's ToxCast program, we can simulate chemical exposures that disrupt blood vessel formation. Simulated results of an anti-angiogenic thalidomide compound were highly comparable to results in an endothelial tube formation assay. This model demonstrates the utility of computational approaches for simulating developmental biology and predicting chemical toxicity.
PMCID: PMC3616981  PMID: 23592958
5.  VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis 
Cardiovascular research  2007;78(2):315-323.
Vascular endothelial growth factor-C (VEGF-C) has been shown to stimulate both angiogenesis and lymphangiogenesis in some but not all models where VEGF-C is over-expressed. Our aim was to investigate the interaction between lymphangiogenesis and angiogenesis in adult tissues regulated by VEGF-C and identify evidence of polarized growth of lymphatics driven by specialized cells at the tip of the growing sprout.
Methods and results
We used an adult model of lymphangiogenesis in the rat mesentery. The angiogenic effect of VEGF-C was markedly attenuated in the presence of a growing lymphatic network. Furthermore, we show that this growth of lymphatic vessels can occur both by recruitment of isolated lymphatic islands to a connected network and by filopodial sprouting. The latter is independent of polarized tip cell differentiation that can be generated all along lymphatic capillaries, independently of the proliferation status of the lymphatic endothelial cells.
These results both demonstrate a dependence of VEGF-C-mediated angiogenesis on lymphatic vascular networks and indicate that the mechanism of VEGF-C-mediated lymphangiogenesis is different from that of classical angiogenic mechanisms.
PMCID: PMC2613351  PMID: 18065770
Angiogenesis; Lymphangiogenesis; VEGF-C; Sprouting
6.  Distinct mechanisms of the inhibition of vasculogenesis by different species of ionizing particles 
Journal of Radiation Research  2014;55(Suppl 1):i44-i45.
The human vasculature includes a vast network of microcapillaries networking the body and is a major target for non-carcinogenic effects of space radiation in the body. The brain microvascular system is crucial to healthy functioning of the brain and its pathology is not only a primary event in a range of neurodegenerative diseases but also an important influencing factor in many others. The vasculature is maintained by angiogenesis regenerating vessels as they are needed, this is particularly relevant if the blood–brain barrier is damaged by agents such as space radiation, thereby creating the need for angiogenic regeneration. The resulting lack of vasculature due to the inhibition of re-growth of vessels can, in turn, lead to a negative feedback loop and further pathologies.
Using three-dimensional human vessel cultures with human umbilical vein and brain microvascular endothelial cells, we have developed assays that determine at what stage angiogenesis is inhibited by ionizing radiation. The relative biological effect of high linear energy transfer (LET) 1 GeV Fe ions compared with low LET 1 GeV protons is only one for developing vessels but greater than four for mature vessels. This action of low LET protons on developing vessels was surprisingly effective (50% inhibition with 40 cGy exposure) and together with the effect of high LET ions may represent a significant hazard in the space environment.
The morphology of developing vessels 5 days after exposure showed significant differences that suggest distinct mechanisms of inhibition. Cells exposed to protons failed to make connections with other cells. Conversely, cells exposed to Fe ions extended cellular processes and made connections to other cells but did not develop a central lumen. The microtubule and actin cytoskeletons showed differences indicating that motility at the extending tips of endothelial cells is inhibited by protons but not Fe ions. Actin-rich protrusive structures that contain bundled and dynamic microtubules showed a 65% decrease when exposed to high-energy protons but not with the same dose of high-energy Fe ions. Since protein kinase C (PKC) has long been known to stimulate angiogenesis, we hypothesized that rescue of the capillary phenotype after proton exposure would be possible by stimulating PKC before irradiation. One-day-old vessel cultures were treated with 30 and 60 nM phorbol ester (PMA) 15 min before irradiation. Stimulation of PKC restored capillary formation in proton-treated cultures but not in Fe ion-treated cultures. More specifically, stimulation of PKC by PMA was able to restore the tip motility that was inhibited by low LET ions [ 1].
Further studies with various charged particles showed that low LET ion particles (Proton and He ions) with an LET lower or equal to 1 keV/μm inhibit vasculogenesis in the same way as protons. Higher LET charged particles (Silicon 1GeV, Oxygen 250 MeV and 1 GeV and Carbon 290 MeV and 1 GeV) with an LET ≥8 keV/μm inhibit vasculogenesis in the same way as Fe ions.
In conclusion, we have shown that low and high LET ions inhibit the formation of brain capillaries by different mechanisms. For low LET ions, inhibition involves regulation of PKC-dependent motile tips leading to a failure of cellular processes to migrate through the matrix and meet up with other processes. For high LET ions, the cells fail to complete angiogenesis by not migrating and forming tubular structures. This complexity of response opens up possibilities of greater control over angiogenesis and the resulting pathologies during coincident exposure or therapy. For exposure in space, knowledge of these mechanisms will enable more precise risk assessment and mitigation strategies. For radiotherapy, treatment could be manipulated to utilize the radiation effectively.
PMCID: PMC3941500
angiogenesis; vasculogenesis; radiation; charged particles
7.  Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration 
Vascular Cell  2014;6:10.
Chronic wounds are associated with a number of deficiencies in critical wound healing processes, including growth factor signaling and neovascularization. Human-derived placental tissues are rich in regenerative cytokines and have been shown in randomized clinical trials to be effective for healing chronic wounds. In this study, PURION® Processed (MiMedx Group, Marietta, GA) dehydrated human amnion/chorion membrane tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for properties to support wound angiogenesis.
Angiogenic growth factors were identified in dHACM tissues using enzyme-linked immunosorbent assays (ELISAs), and the effects of dHACM extract on human microvascular endothelial cell (HMVEC) proliferation and production of angiogenic growth factors was determined in vitro. Chemotactic migration of human umbilical vein endothelial cells (HUVECs) toward pieces of dHACM tissue was determined using a standard in vitro transwell assay. Neovascularization of dHACM in vivo was determined utilizing a murine subcutaneous implant model.
Quantifiable levels of the angiogenic cytokines angiogenin, angiopoietin-2 (ANG-2), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), heparin binding epidermal growth factor (HB-EGF), hepatocyte growth factor (HGF), platelet derived growth factor BB (PDGF-BB), placental growth factor (PlGF), and vascular endothelial growth factor (VEGF) were measured in dHACM. Soluble cues promoted HMVEC proliferation in vitro and increased endogenous production of over 30 angiogenic factors by HMVECs, including granulocyte macrophage colony-stimulating factor (GM-CSF), angiogenin, transforming growth factor β3 (TGF-β3), and HB-EGF. 6.0 mm disks of dHACM tissue were also found to recruit migration of HUVECs in vitro. Moreover, subcutaneous dHACM implants displayed a steady increase in microvessels over a period of 4 weeks, indicative of a dynamic intra-implant neovascular process.
Taken together, these results demonstrate that dHACM grafts: 1) contain angiogenic growth factors retaining biological activity; 2) promote amplification of angiogenic cues by inducing endothelial cell proliferation and migration and by upregulating production of endogenous angiogenic growth factors by endothelial cells; and 3) support the formation of blood vessels in vivo. dHACM grafts are a promising wound care therapy with the potential to promote revascularization and tissue healing within poorly vascularized, non-healing wounds.
PMCID: PMC4016655  PMID: 24817999
Amnion; Chorion; Amnion/chorion grafts; dHACM; Angiogenesis; Growth factors; VEGF; Endothelial cells; Soft tissue regeneration; Wound healing; Chronic wounds
8.  In Vitro Imaging of Angiogenesis Using Embryonic Stem Cell-Derived Endothelial Cells 
Stem Cells and Development  2011;21(2):331-342.
Angiogenesis is an important event during developmental processes, and it plays a key role in neovascularization. The development of an in vitro model that can be used for live imaging of vessel growth will facilitate the study of molecular and cellular mechanisms for the growth of blood vessels. Embryonic stem cells (ESCs) are considered to be a novel renewable source for the derivation of genetically manipulable endothelial cells (ECs). To derive green fluorescence protein (GFP)-expressing ECs, we used a transgenic ESC line in which a GFP reporter was driven by the endothelial-specific promoter fetal liver kinase 1. ESC-ECs were isolated from 11-day embryoid bodies by fluorescence-activated cell sorting. Embedding the aggregated ESC-ECs in a 3-dimensional collagen gel matrix resulted in ESC-EC migration out of the aggregates and coalescence into a capillary network. Time-lapse microscopy revealed EC migration, proliferation, lumen formation, and anastomosis to other capillary vessels during this process, which were reminiscent of angiogenic processes. Vascular endothelial growth factor plays major roles in the induction of ESC-EC angiogenesis in vitro. Blockage of the β1 integrin subunit severely impaired ESC-EC survival and migration. We demonstrate that our in vitro ESC-EC angiogenesis model represents a high-resolution dynamic video-image system for observing the cellular events underlying angiogenic cascades. We also consider this model as an image screening tool for the identification of pro-angiogenic and anti-angiogenic molecules.
PMCID: PMC3196834  PMID: 21385073
9.  In Vitro Imaging of Angiogenesis Using Embryonic Stem Cell-Derived Endothelial Cells 
Stem Cells and Development  2011;21(2):331-342.
Angiogenesis is an important event during developmental processes, and it plays a key role in neovascularization. The development of an in vitro model that can be used for live imaging of vessel growth will facilitate the study of molecular and cellular mechanisms for the growth of blood vessels. Embryonic stem cells (ESCs) are considered to be a novel renewable source for the derivation of genetically manipulable endothelial cells (ECs). To derive green fluorescence protein (GFP)-expressing ECs, we used a transgenic ESC line in which a GFP reporter was driven by the endothelial-specific promoter fetal liver kinase 1. ESC-ECs were isolated from 11-day embryoid bodies by fluorescence-activated cell sorting. Embedding the aggregated ESC-ECs in a 3-dimensional collagen gel matrix resulted in ESC-EC migration out of the aggregates and coalescence into a capillary network. Time-lapse microscopy revealed EC migration, proliferation, lumen formation, and anastomosis to other capillary vessels during this process, which were reminiscent of angiogenic processes. Vascular endothelial growth factor plays major roles in the induction of ESC-EC angiogenesis in vitro. Blockage of the β1 integrin subunit severely impaired ESC-EC survival and migration. We demonstrate that our in vitro ESC-EC angiogenesis model represents a high-resolution dynamic video-image system for observing the cellular events underlying angiogenic cascades. We also consider this model as an image screening tool for the identification of pro-angiogenic and anti-angiogenic molecules.
PMCID: PMC3196834  PMID: 21385073
10.  Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering 
Organogenesis  2008;4(4):203-214.
Angiogenesis represents the outgrowth of new blood vessels from existing ones, a physiologic process that is vital to supply nourishment to newly forming tissues during development and tissue remodeling and repair (wound healing). Regulation of angiogenesis in the healthy body occurs through a fine balance of angiogenesis-stimulating factors and angiogenesis inhibitors. When this balance is disturbed, excessive or deficient angiogenesis can result and contribute to development of a wide variety of pathological conditions. The therapeutic stimulation or suppression of angiogenesis could be the key to abrogating these diseases. In recent years, tissue engineering has emerged as a promising technology for regenerating tissues or organs that are diseased beyond repair. Among the critical challenges that deter the practical realization of the vision of regenerating functional tissues for clinical implantation, is how tissues of finite size can be regenerated and maintained viable in the long-term. Since the diffusion of nutrients and essential gases to cells, and removal of metabolic wastes is typically limited to a depth of 150–250 µm from a capillary (3–10 cells thick), tissue constructs must mandatorily permit in-growth of a blood capillary network to nourish and sustain the viability of cells within. The purpose of this article is to provide an overview of the role and significance of hyaluronan (HA), a glycosaminoglycan (GAG) component of connective tissues, in physiologic and pathological angiogenesis, its applicability as a therapeutic to stimulate or suppress angiogenesis in situ within necrotic tissues in vivo, and the factors determining its potential utility as a pro-angiogenic stimulus that will enable tissue engineering of neo-vascularized and functional tissue constructs for clinical use.
PMCID: PMC2634325  PMID: 19337400
angiogenesis; hyaluronan; oligosaccharides; neo-vascularization; tissue engineering; regenerative medicine
11.  Enhancing Microvascular Formation And Vessel Maturation Through Temporal Control Over Multiple Pro-Angiogenic And Pro-Maturation Factors 
Biomaterials  2013;34(36):10.1016/j.biomaterials.2013.08.007.
Therapeutic stimulation of angiogenesis to re-establish blood flow in ischemic tissues offers great promise as a treatment for patients suffering from cardiovascular disease or trauma. Since angiogenesis is a complex, multi-step process, different signals may need to be delivered at appropriate times in order to promote a robust and mature vasculature. The effects of temporally regulated presentation of pro-angiogenic and pro-maturation factors were investigated in vitro and in vivo in this study. Pro-angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) cooperatively promoted endothelial sprouting and pericyte detachment in a three-dimensional in vitro EC-pericyte co-culture model. Pro-maturation factors platelet-derived growth factor B (PDGF) and angiopoietin 1 (Ang1) inhibited the early stages of VEGF- and Ang2-mediated angiogenesis if present simultaneously with VEGF and Ang2, but promoted these behaviors if added subsequently to the pro-angiogenesis factors. VEGF and Ang2 were also found to additively enhance microvessel density in a subcutaneous model of blood vessel formation, while simultaneously administered PDGF/Ang1 inhibited microvessel formation. However, a temporally controlled scaffold that released PDGF and Ang1 at a delay relative to VEGF/Ang2 promoted both vessel maturation and vascular remodeling without inhibiting sprouting angiogenesis. Our results demonstrate the importance of temporal control over signaling in promoting vascular growth, vessel maturation and vascular remodeling. Delivering multiple growth factors in combination and sequence could aid in creating tissue engineered constructs and therapies aimed at promoting healing after acute wounds and in chronic conditions such as diabetic ulcers and peripheral artery disease.
PMCID: PMC3811005  PMID: 23972477
12.  Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*  
Molecular & Cellular Proteomics : MCP  2013;12(12):3704-3718.
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment.
PMCID: PMC3861718  PMID: 24023389
13.  In-Vitro and Ex-Vivo Investigations of the Microtubule Binding Drug Targetin on Angiogenesis 
Intervention aimed at disrupting or inhibiting newly formed vascular network is highly desired to attenuate the progression of angiogenesis-dependent diseases. In cancer, this is tightly associated with the generation of VEGF by hypoxia inducible factor-1α following its activation by hypoxia. In light of the multiple cellular roles played by microtubules and their involvement in the processing of the hypoxia inducible factor-1α transcript, modulation of microtubule dynamics is emerging as a logical approach to suppress tumor reliance on angiogenesis. Targetin is a novel noscapinoid that interferes with microtubule dynamicity and inhibits the growth of cell lines from many types of cancers.
Methods and Results
Utilizing in-vitro and ex-vivo angiogenic models, we discovered the vascular disrupting and anti-angiogenic properties of Targetin. Targetin disrupted pre-assembled capillary-like networks of human endothelial cells by severing cell-cell junctions, inhibiting endothelial cell proliferation and metabolic activity in the presence and absence of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Furthermore, we show that Targetin significantly inhibits the formation of neovasculature network sprouting from rat aortic explants stimulated with proangiogenic stimuli, namely VEGF or bFGF.
We conclude that Targetin is a potential clinically promising anti-angiogenic agent for the treatment of many diseases including cancers.
PMCID: PMC3991473  PMID: 24749126
Drug discovery; angiogenesis; microtubule; opioid
14.  Dynamic Regulation of Integrin α6β4 During Angiogenesis: Potential Implications for Pathogenic Wound Healing 
Advances in Wound Care  2013;2(8):401-409.
Angiogenesis is an essential component of normal cutaneous wound repair, but is altered in pathogenic forms of wound healing, such as chronic wounds and fibrosis. We previously reported that endothelial expression of integrin α6β4 is developmentally regulated, with α6β4 expression correlating with tissue maturation and further showed that endothelial α6β4 is downregulated in explant angiogenesis assays. These data support the hypothesis that dynamic regulation of α6β4 may play an important role during new vessel formation in healing wounds.
To test this hypothesis, we examined the endothelial expression of α6β4 using a murine model of cutaneous wound healing and in vitro cultures of primary human dermal microvascular endothelial cells (HDMECs).
Expression of α6β4 is downregulated during early stages of wound healing; angiogenic vessels in day 7 wounds do not express α6β4. Endothelial expression of α6β4 is resumed in day 14 wounds. Moreover, explanted HDMECs do not express α6β4, but expression is induced by treatment with histone deacetylase inhibitors.
We provide in vivo data supporting a role for the dynamic regulation of α6β4 during vessel formation and remodeling during cutaneous wound repair and in vitro findings that suggest endothelial β4 expression is regulated transcriptionally, providing an important foundation for future studies to understand the transcriptional mechanisms involved in endothelial cell maturation during normal wound repair.
Our data indicate that α6β4 is dynamically regulated during angiogenesis and vessel maturation and suggest that disruption of this regulation may contribute to defective angiogenesis associated with diabetic wounds or cutaneous fibrosis.
PMCID: PMC3797448  PMID: 24527356
15.  Blood vessel remodeling in pig ovarian follicles during the periovulatory period: an immunohistochemistry and SEM-corrosion casting study 
The present research aims to describe the process of vascular readjustment occurring in pig ovary during the periovulatory phase (from LH surge to ovulation) that drives the transformation of the follicle, a limited blood supplied structure, into the corpus luteum, a highly vascularised endocrine gland required to maintain high levels of progesterone in pregnancy. The swine model was chosen because it is characterized by a long periovulatory window (about 40–44 hrs-similar to human) that permits to recover follicles at a precise endocrinological timing.
By validated hormonal protocol (eCG+hCG), able to mimic the physiologic gonadotropin stimulation, preovulatory follicles (PreOFs, 60 h-eCG), follicles in the middle (early periovulatory follicles, EPerOFs, 18 h-hCG) or late (LPerOFs, 36 h-hCG) periovulatory phase were isolated from prepubertal gilts. To understand the angiogenic process, morphological/morphometrical analyses were performed by combining immunohistochemistry (IHC) and SEM of vascular corrosion casts (VCC) techniques.
PreOFs showed a vascular plexus with proliferating endothelial cells (EPI). This plexus was characterized by a dense inner capillary network, with angiogenic figures, connected to the outer network by anastomotic vessels (arterioles and venules of the middle network). EPerOFs decreased their EPI, blood vessel extension in the outer network, and evidenced a reduced compactness of blood vessels. In LPerOFs, a rapid neovascularization was associated to an intensive tissue remodeling: the follicle acquired an undulated aspect presenting arterioles/venules near the basal membrane, increased vascular extension by EPI, sprouting and non-sprouting angiogenesis.
The analysis of vascular geometric relations and branching angles evidenced similar values at all stages.
These data allow us to hypothesize that EPerOFs are in a quiescent status. LPerOFs represent the "metamorphic" follicles that rapidly turn-on angiogenesis to sustain a successful corpus luteum formation. Particularly, it is interesting to underlie that the non-sprouting angiogenesis, typical of structures in rapid neovascularization, occurred only in the LPerOFs. Moreover, vascular geometric relations showed as blood vessel remodeling occurs with the "maximum output and the minimum energetic expense".
This knowledge will allow to better understand the mechanisms regulating the reproductive success and to clarify the complex physiological angiogenic process in adult tissues.
PMCID: PMC2720392  PMID: 19607713
16.  Formation of Microvascular Networks: Role of Stromal Interactions Directing Angiogenic Growth 
In the adult, angiogenesis leads to an expanded microvascular network as new vessel segments are added to an existing microcirculation. Necessarily, growing neovessels must navigate through tissue stroma as they locate and grow toward other vessel elements. We have a growing body of evidence demonstrating that angiogenic neovessels reciprocally interact with the interstitial matrix of the stroma resulting in directed neovascular growth during angiogenesis. Given the compliance and the viscoelastic properties of collagen, neovessel guidance by the stroma is likely due to compressive strain transverse to the direction of primary tensile forces present during active tissue deformation. Similar stromal strains control the final network topology of the new microcirculation, including the distribution of arterioles, capillaries, and venules. In this case, stromal-derived stimuli must be present during the post-angiogenesis remodeling and maturation phases of neovascularization to have this effect. Interestingly, the preexisting organization of vessels prior to the start of angiogenesis has no lasting influence on the final, new network architecture. Combined, the evidence describes interplay between angiogenic neovessels and stroma that is important in directed neovessel growth and invasion. This dynamic is also likely a mechanism by which global tissue forces influence vascular form and function.
PMCID: PMC4032604  PMID: 24447042
angiogenesis; stroma; matrix; neovessel; remodeling
17.  Type IV collagen-derived Angiogenesis Inhibitors 
Microvascular research  2007;74(0):85-89.
The concept of anti-angiogenesis therapy was introduced by Judah Folkman in 1972 and since then, a plethora of pro- and anti-angiogenic factors have been identified. In the recent years it has become clear that angiogenesis, the formation of new capillaries from a pre-existing capillary network, is highly regulated by the action of pro- and anti-angiogenic factors. In the healthy adult organisms the “angiogenic-switch” is likely turned “Off”, i. e. anti-angiogenic factors are likely counteracting the pro-angiogenic factors resulting in a non-angiogenic state. Angiogenesis is encountered during wound healing processes, the female menstrual cycle and endometrial remodeling, as well as during embryonic development and organ growth. In the pathological setting, angiogenesis plays an important role in different diseases like rheumatoid arthritis, psoriasis, macular degeneration, diabetic retinopathy, and tumor growth. In this regard, recent studies have described several endogenous inhibitors of angiogenesis, with a subset derived from extra cellular matrix (ECM) proteins. This review will particularly focus on the type IV collagen-derived angiogenesis inhibitors Arresten, Canstatin and Tumstatin.
PMCID: PMC3998721  PMID: 17602710
ECM; angiogenesis inhibitor; type IV collagen NC1; tumor
18.  Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro 
Cancers  2013;5(3):762-785.
Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity in vivo since it inhibits ECs in vitro with a morphology resembling that obtained with antibodies to VEGF.
PMCID: PMC3795364  PMID: 24202320
angiogenesis; inhibitor; endothelial cell; morphology; in vitro; proliferation; signaling pathway; levamisole
19.  Limitations of the dorsal skinfold window chamber model in evaluating anti-angiogenic therapy during early phase of angiogenesis 
Vascular Cell  2014;6:17.
Angiogenesis is an essential process during tumor development and growth. The murine dorsal skinfold window chamber model has been used for the study of both tumor microvasculature and other vascular diseases, including the study of anti-angiogenic agents in cancer therapy. Hyperspectral imaging of oxygen status of the microvasculature has not been widely used to evaluate response to inhibition of angiogenesis in early tumor cell induced vascular development. This study demonstrates the use of two different classes of anti-angiogenic agents, one targeting the Vascular Endothelial Growth Factor (VEGF) pathway involved with vessel sprouting and the other targeting the Angiopoietin/Tie2 pathway involved in vascular destabilization. Studies evaluated the tumor microvascular response to anti-angiogenic inhibitors in the highly angiogenic renal cell carcinoma induced angiogenesis model.
Human renal cell carcinoma, Caki-2 cells, were implanted in the murine skinfold window chamber. Mice were treated with either VEGF pathway targeted small molecule inhibitor Sunitinib (100 mg/kg) or with an anti-Ang-2 monoclonal antibody (10 mg/kg) beginning the day of window chamber surgery and tumor cell implantation. Hyperspectral imaging of hemoglobin saturation was used to evaluate both the development and oxygenation of the tumor microvasculature. Tumor volume over time was also assessed over an 11-day period post surgery.
The window chamber model was useful to demonstrate the inhibition of angiogenesis using the VEGF pathway targeted agent Sunitinib. Results show impairment of tumor microvascular development, reduced oxygenation of tumor-associated vasculature and impairment of tumor volume growth compared to control. On the other hand, this model failed to demonstrate the anti-angiogenic effect of the Ang-2 targeted agent. Follow up experiments suggest that the initial surgery of the window chamber model may interfere with such an agent thus skewing the actual effects on angiogenesis.
Results show that this model has great potential to evaluate anti-VEGF, or comparable, targeted agents; however the mere protocol of the window chamber model interferes with proper evaluation of Ang-2 targeted agents. The limitations of this in vivo model in evaluating the response of tumor vasculature to anti-angiogenic agents are discussed.
PMCID: PMC4123308  PMID: 25101168
Angiogenesis; Angiopoietin-2; Anti-angiogenic therapy; Dorsal skinfold window chamber model; Vascular endothelial growth factor
20.  MOSAIC: A Multiscale Model of Osteogenesis and Sprouting Angiogenesis with Lateral Inhibition of Endothelial Cells 
PLoS Computational Biology  2012;8(10):e1002724.
The healing of a fracture depends largely on the development of a new blood vessel network (angiogenesis) in the callus. During angiogenesis tip cells lead the developing sprout in response to extracellular signals, amongst which vascular endothelial growth factor (VEGF) is critical. In order to ensure a correct development of the vasculature, the balance between stalk and tip cell phenotypes must be tightly controlled, which is primarily achieved by the Dll4-Notch1 signaling pathway. This study presents a novel multiscale model of osteogenesis and sprouting angiogenesis, incorporating lateral inhibition of endothelial cells (further denoted MOSAIC model) through Dll4-Notch1 signaling, and applies it to fracture healing. The MOSAIC model correctly predicted the bone regeneration process and recapitulated many experimentally observed aspects of tip cell selection: the salt and pepper pattern seen for cell fates, an increased tip cell density due to the loss of Dll4 and an excessive number of tip cells in high VEGF environments. When VEGF concentration was even further increased, the MOSAIC model predicted the absence of a vascular network and fracture healing, thereby leading to a non-union, which is a direct consequence of the mutual inhibition of neighboring cells through Dll4-Notch1 signaling. This result was not retrieved for a more phenomenological model that only considers extracellular signals for tip cell migration, which illustrates the importance of implementing the actual signaling pathway rather than phenomenological rules. Finally, the MOSAIC model demonstrated the importance of a proper criterion for tip cell selection and the need for experimental data to further explore this. In conclusion, this study demonstrates that the MOSAIC model creates enhanced capabilities for investigating the influence of molecular mechanisms on angiogenesis and its relation to bone formation in a more mechanistic way and across different time and spatial scales.
Author Summary
The healing of a fracture largely depends on the development of a new blood vessel network (angiogenesis), which can be investigated and simulated with mathematical models. The current mathematical models of angiogenesis during fracture healing do not, however, implement all relevant biological scales (e.g. a tissue, cellular and intracellular level) rigorously in a multiscale framework. This study established a novel multiscale platform of angiogenesis during fracture healing (called MOSAIC) which allowed us to investigate the interactions of several influential factors across the different biological scales. We focused on the biological process of tip cell selection, during which a specific cell of a blood vessel, the “tip cell”, is selected to migrate away from the original vessel and lead the new branch. After showing that the MOSAIC model is able to correctly predict the bone regeneration process as well as many experimentally observed aspects of tip cell selection, we have used the model to investigate the influence of stimulating signals on the development of the vasculature and the progression of healing. These results raised an important biological question concerning the criterion for tip cell selection. This study demonstrates the potential of multiscale modeling to contribute to the understanding of biological processes like angiogenesis.
PMCID: PMC3469420  PMID: 23071433
21.  Vascular islands during microvascular regression and regrowth in adult networks 
Objective: Angiogenesis is the growth of new vessels from pre-existing vessels and commonly associated with two modes: capillary sprouting and capillary splitting. Previous work by our laboratory suggests vascular island incorporation might be another endothelial cell dynamic involved in microvascular remodeling. Vascular islands are defined as endothelial cell segments disconnected from nearby networks, but their origin remains unclear. The objective of this study was to determine whether vascular islands associated with microvascular regression are involved in network regrowth.
Methods: Mesenteric tissues were harvested from adult male Wistar rats according to the experimental groups: unstimulated, post stimulation (10 and 70 days), and 70 days post stimulation + restimulation (3 and 10 days). Stimulation was induced by mast cell degranulation via intraperitoneal injections of compound 48/80. Tissues were immunolabeled for PECAM (endothelial cells), neuron-glial antigen 2 (NG2) (pericytes), collagen IV (basement membrane), and BrdU (proliferation).
Results: Percent vascular area per tissue area and length density increased by day 10 post stimulation compared to the unstimulated group. At day 70, vascular area and length density were then decreased, indicating vascular regression compared to the day 10 levels. The number of vascular islands at day 10 post stimulation was dramatically reduced compared to the unstimulated group. During regression at day 70, the number of islands increased. The disconnected endothelial cells were commonly bridged to surrounding networks by collagen IV labeling. NG2-positive pericytes were observed both along the islands and the collagen IV tracks. At 3 days post restimulation, vascular islands contained BrdU-positive cells. By day 10 post restimulation, when vascular area and length density were again increased, and the number of vascular islands was dramatically reduced.
Conclusion: The results suggest that vascular islands originating during microvascular regression are capable of undergoing proliferation and incorporation into nearby networks during network regrowth.
PMCID: PMC3655287  PMID: 23720632
angiogenesis; microcirculation; mesentery; proliferation; endothelial cell; disconnected segment; vascular island
22.  Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth 
PLoS Computational Biology  2008;4(9):e1000163.
Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier–Graner–Hogeweg model (also called Cellular Potts Model) simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller–Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin–mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface–normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell–cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.
Author Summary
A better understanding of the mechanisms by which endothelial cells (the cells lining the inner walls of blood vessels) organize into blood vessels is crucial if we need to enhance or suppress blood vessel growth under pathological conditions, including diabetes, wound healing, and tumor growth. During embryonic development, endothelial cells initially self-organize into a network of solid cords via blood vessel growth. The vascular network expands by splitting of existing blood vessels and by sprouting. Using computer simulations, we have captured a small set of biologically plausible cell behaviors that can reproduce the initial self-organization of endothelial cells, the sprouting of existing vessels, and the immediately subsequent remodeling of the resulting networks. In this model, endothelial cells both secrete diffusible chemoattractants and move up gradients of those chemicals by extending and retracting small pseudopods. By itself, this behavior causes simulated cells to accumulate to aggregate into large, round clusters. We propose that endothelial cells stop extending pseudopods along a given section of cell membrane as soon as the membrane touches the membrane of another endothelial cell (contact inhibition). Adding such contact-inhibition to our simulations allows vascular cords to form sprouts under a wide range of conditions.
PMCID: PMC2528254  PMID: 18802455
23.  RAIN-Droplet: A Novel 3-D in vitro Angiogenesis Model 
Angiogenesis is fundamentally required for the initialization, development and metastatic spread of cancer. A rapidly expanding number of new experimental, chemical modulators of endothelial cell function have been described for the therapeutic inhibition of angiogenesis in cancer. Despite this expansion there has been very limited parallel growth of in vitro angiogenesis models or experimental tools. Here we present the Responsive Angiogenic Implanted Network (RAIN)-Droplet model and novel angiogenesis assay using an endothelial cell culture model of microvascular endothelial cells encapsulated in a spontaneously self-assembling, toroidal hydrogel droplet uniquely yielding discrete, pre-formed, angiogenic networks that may be embedded in 3-D matrices. On embedding, radial growth of capillary-like sprouts and cell invasion was observed. The sprouts formed as both outgrowths from endothelial cells on the surface of the droplets but also, uniquely, from the pre-formed network structures within the droplet. We demonstrate proof-of-principle for the utility of the model showing significant inhibition of sprout formation (p<0.001) in the presence of bevacizumab, an anti-angiogenic antibody. Using the RAIN-Droplet assay we also demonstrate a novel dose dependent pro-angiogenic function for the characteristically anti-angiogenic multi-kinase inhibitor sorafenib. Exposure of endothelial cells in 3-D culture to low, non-lethal doses (<1 μM) of sorafenib after initiation of sprouting resulted in the formation of significantly (p<0.05) more endothelial sprouts compared to controls over a 48-hour period. Higher doses of sorafenib (5 μM) resulted in a significant (p<0.05) reduction of sprouting over the same time period. The RAIN-Droplet model is a highly versatile and simply constructed 3-D focal sprouting approach well suited for the study of vascular morphogenesis and for preclinical testing of drugs. Furthermore, the RAIN-Droplet model has facilitated the discovery of a novel pro-angiogenic capacity for sorafenib which may impact the clinical application and dosing regimen of that drug.
PMCID: PMC4043634  PMID: 22565576
Endothelial; microvascular; puramatrix; 3-D cell-culture; drug screen; capillary formation assay; sorafenib; bevacizumab
24.  Gas6 Stimulates Angiogenesis of Human Retinal Endothelial Cells and of Zebrafish Embryos via ERK1/2 Signaling 
PLoS ONE  2014;9(1):e83901.
To determine if growth arrest-specific 6 (Gas6) plays an important role in the regulation of angiogenesis in human retinal microvascular endothelial cells (HRMECs) and in vessel development of zebrafish.
Proliferation, wound-healing cell migration, and tube formation were measured in HRMECs treated with recombinant human Gas6 (rhGas6). Sprague-Dawley rat aortas in Matrigels were treated with rhGas6, and microvessel sprouting emanating from arterial rings was analyzed. Transgenic zebrafish embryos (flk:GFP) were microinjected with rhGas6 at 50 hours post-fertilization (hpf), and ectopic sprouting of subintestinal vessels (SIVs) was observed under a confocal microscope. Morpholino oligonucleotides (MOs) were microinjected to knockdown gas6 in zebrafish embryos, and intersegmental vessel impairment was observed. The effect of the extracellular signal-regulated kinase (ERK1/2) inhibitor on the migration of HRMECs and on vessel development in zebrafish embryos was tested.
rhGas6 stimulated proliferation, migration, and tube formation in HRMECs in a dose-dependent manner. In rat aortas, rhGas6 induced vessel outgrowth, and the sprouting length was longer than that of controls. The rhGas6-microinjected zebrafish embryos had significantly increased vessel outgrowth in the SIVs. Recombinant human vascular endothelial growth factor (rhVEGF) served as a positive control. Knockdown of gas6 inhibited angiogenesis in the developing vessels of zebrafish. The ERK1/2 inhibitor inhibited HRMEC migration and intersegmental vessel formation in zebrafish embryos.
These data suggest that Gas6 plays a pivotal role in proliferation, migration, and sprouting of angiogenic endothelial cells in the retina and in zebrafish embryos. Furthermore, Gas6 induced angiogenic processes are induced via phosphorylation of ERK1/2.
PMCID: PMC3883657  PMID: 24409287
25.  Disruption of Nrf2 Signaling Impairs Angiogenic Capacity of Endothelial Cells: Implications for Microvascular Aging 
The redox-sensitive transcription factor NF-E2–related factor 2 (Nrf2) plays a key role in preserving a healthy endothelial phenotype and maintaining the functional integrity of the vasculature. Previous studies demonstrated that aging is associated with Nrf2 dysfunction in endothelial cells, which alters redox signaling and likely promotes the development of large vessel disease. Much less is known about the consequences of Nrf2 dysfunction at the level of the microcirculation. To test the hypothesis that Nrf2 regulates angiogenic capacity of endothelial cells, we determined whether disruption of Nrf2 signaling (by siRNA knockdown of Nrf2 and overexpression of Keap1, the cytosolic repressor of Nrf2) impairs angiogenic processes in cultured human coronary arterial endothelial cells stimulated with vascular endothelial growth factor and insulin-like growth factor-1. In the absence of functional Nrf2, coronary arterial endothelial cells exhibited impaired proliferation and adhesion to vitronectin and collagen. Disruption of Nrf2 signaling also reduced cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology) and impaired the ability of coronary arterial endothelial cells to form capillary-like structures. Collectively, we find that Nrf2 is essential for normal endothelial angiogenic processes, suggesting that Nrf2 dysfunction may be a potential mechanism underlying impaired angiogenesis and microvascular rarefaction in aging.
PMCID: PMC3403863  PMID: 22219515
Vascular aging; Microcirculation; Capillary density; Angiogenesis; Heart

Results 1-25 (1008794)