Search tips
Search criteria

Results 1-25 (1012473)

Clipboard (0)

Related Articles

1.  Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling 
The Journal of Cell Biology  2007;177(1):115-125.
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.
PMCID: PMC2064116  PMID: 17420293
2.  SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signaling receptors 
Nature cell biology  2011;13(6):715-721.
Endocytic sorting of signaling receptors between recycling and degradative pathways is a key cellular process controlling the surface complement of receptors and, accordingly, the cell’s ability to respond to specific extracellular stimuli. The beta-2 adrenergic receptor (β2AR) is a prototypical seven-transmembrane signaling receptor that recycles rapidly and efficiently to the plasma membrane after ligand-induced endocytosis. β2AR recycling is dependent on the receptor’s C-terminal PDZ ligand and Rab41,2. This active sorting process is required for functional resensitization of β2AR-mediated signaling3,4. Here we show that sequence-directed sorting occurs at the level of entry into retromer tubules and that retromer tubules are associated with Rab4. Further, we show that sorting nexin 27 (SNX27) serves as an essential adapter protein linking β2ARs to the retromer tubule. SNX27 does not appear to directly interact with the retromer core complex, but does interact with the retromer associated Wiskott-Aldrich Syndrome Protein and SCAR Homolog (WASH) complex. The present results identify a role for retromer in endocytic trafficking of signaling receptors, in regulating a receptor-linked signaling pathway, and in mediating direct endosome-to-plasma membrane traffic.
PMCID: PMC3113693  PMID: 21602791
3.  SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane 
The Journal of Cell Biology  2010;190(4):565-574.
G protein–coupled receptors rely on the PDZ domain of SNX27 for endosomal recycling.
Postsynaptic density 95/discs large/zonus occludens-1 (PDZ) domain–interacting motifs, in addition to their well-established roles in protein scaffolding at the cell surface, are proposed to act as cis-acting determinants directing the molecular sorting of transmembrane cargo from endosomes to the plasma membrane. This hypothesis requires the existence of a specific trans-acting PDZ protein that mediates the proposed sorting operation in the endosome membrane. Here, we show that sorting nexin 27 (SNX27) is required for efficient PDZ-directed recycling of the β2-adrenoreceptor (β2AR) from early endosomes. SNX27 mediates this sorting function when expressed at endogenous levels, and its recycling activity requires both PDZ domain–dependent recognition of the β2AR cytoplasmic tail and Phox homology (PX) domain–dependent association with the endosome membrane. These results identify a discrete role of SNX27 in PDZ-directed recycling of a physiologically important signaling receptor, and extend the concept of cargo-specific molecular sorting in the recycling pathway.
PMCID: PMC2928020  PMID: 20733053
4.  Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi 
Traffic (Copenhagen, Denmark)  2012;13(8):1140-1159.
Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB.
PMCID: PMC3396774  PMID: 22540229
Cation-independent Mannose 6-phosphate receptor; Membrane Traffic; EHD1; SNX1; BSC-1; Endosomes; Endocytosis; Retrograde Traffic; Retromer; Shiga Toxin; Shiga B; Recycling Endosome; Early Endosome; VPS26
5.  PX-FERM proteins 
Small GTPases  2011;2(5):259-263.
Endosomes are the primary organelle where decisions are made as to whether endocytosed proteins will be sorted into degradative trafficking pathways or recycled back to the plasma membrane. This balance between cellular uptake and recycling regulates the plasma membrane composition and is therefore critical for many cellular processes such as nutrient uptake, neuronal transmission and cell migration.1 In addition to its well-known role in membrane trafficking, the endosome is increasingly being recognized as a critical cellular domain for regulated cell signaling. We recently showed that several proteins that regulate endosomal recycling, SNX17, SNX27 and SNX31 are structurally and functionally related.2 These proteins use an unusual FERM domain to bind specific endosomal cargo molecules, and most interestingly, we also found that these proteins use the same FERM domain to associate with the activated Ras small GTPase. Here we speculate on the potential dual role of the PX-FERM proteins in endosomal transport and as scaffolds that may be involved in endosomal Ras signaling processes.
PMCID: PMC3265816  PMID: 22292128
Ras; sorting nexin; PX domain; endosome; FERM domain
6.  Opposing Activities of the Snx3-Retromer Complex and ESCRT Proteins Mediate Regulated Cargo Sorting at a Common Endosome 
Molecular Biology of the Cell  2008;19(11):4694-4706.
Endocytosed proteins are either delivered to the lysosome to be degraded or are exported from the endosomal system and delivered to other organelles. Sorting of the Saccharomyces cerevisiae reductive iron transporter, composed of the Fet3 and Ftr1 proteins, in the endosomal system is regulated by available iron; in iron-starved cells, Fet3-Ftr1 is sorted by Snx3/Grd19 and retromer into a recycling pathway that delivers it back to the plasma membrane, but when starved cells are exposed to iron, Fet3-Ftr1 is targeted to the lysosome-like vacuole and is degraded. We report that iron-induced endocytosis of Fet3-Ftr1 is independent of Fet3-Ftr1 ubiquitylation, and after endocytosis, degradation of Fet3-Ftr1 is mediated by the multivesicular body (MVB) sorting pathway. In mutant cells lacking any component of the ESCRT protein-dependent MVB sorting machinery, the Rsp5 ubiquitin ligase, or in wild-type cells expressing Fet3-Ftr1 lacking cytosolic lysyl ubiquitin acceptor sites, Fet3-Ftr1 is constitutively sorted into the recycling pathway independent of iron status. In the presence and absence of iron, Fet3-Ftr1 transits an endosomal compartment where a subunit of the MVB sorting receptor (Vps27), Snx3/Grd19, and retromer proteins colocalize. We propose that this endosome is where Rsp5 ubiquitylates Fet3-Ftr1 and where the recycling and degradative pathways diverge.
PMCID: PMC2575174  PMID: 18768754
7.  β1-Adrenergic Receptor Recycles Via a Membranous Organelle, Recycling Endosome, by Binding with Sorting Nexin27 
The Journal of Membrane Biology  2013;246(7):571-579.
In cardiomyocytes, β1-adrenergic receptor (β1-AR) plays an important role in regulating cardiac functions. Upon continuous ligand stimulation, β1-AR is internalized and mostly recycled back to the plasma membrane (PM). The recycling endosome (RE) is one of the membranous organelles involved in the protein recycling pathway. To determine whether RE is involved in the internalization of β1-AR upon ligand stimulation, we evaluated the localization of β1-AR after stimulation with a β-agonist, isoproterenol (Iso), in β1-AR-transfected COS-1 cells. After 30 min of Iso treatment and cell surface labeling with the appropriate antibodies, β1-AR was internalized from PM and translocated into the perinuclear region, the same location as the transferrin receptor, an RE marker. We then evaluated whether sorting nexin 27 (SNX27) participated in the β1-AR recycling pathway. When β1-AR and SNX27 were coexpressed, β1-AR coimmunoprecipitated with SNX27. In addition, shRNA-mediated silencing of SNX27 compromised β1-AR recycling and enhanced its delivery into lysosome. Overall, β1-AR on PM was internalized into RE upon Iso stimulation and recycled by RE through binding with SNX27 in COS-1 cells.
PMCID: PMC3695668  PMID: 23780416
β1-Adrenergic receptor; Desensitization; Recycling endosome; SNX27
8.  The Retromer Coat Complex Coordinates Endosomal Sorting and Dynein-Mediated Transport, with Carrier Recognition by the trans-Golgi Network 
Developmental Cell  2009;17(1):110-122.
Early endosome-to-trans-Golgi network (TGN) transport is organized by the retromer complex. Consisting of cargo-selective and membrane-bound subcomplexes, retromer coordinates sorting with membrane deformation and carrier formation. Here, we describe four mammalian retromers whose membrane-bound subcomplexes contain specific combinations of the sorting nexins (SNX), SNX1, SNX2, SNX5, and SNX6. We establish that retromer requires a dynamic spatial organization of the endosomal network, which is regulated through association of SNX5/SNX6 with the p150glued component of dynactin, an activator of the minus-end directed microtubule motor dynein; an association further defined through genetic studies in C. elegans. Finally, we also establish that the spatial organization of the retromer pathway is mediated through the association of SNX1 with the proposed TGN-localized tether Rab6-interacting protein-1. These interactions describe fundamental steps in retromer-mediated transport and establish that the spatial organization of the retromer network is a critical element required for efficient retromer-mediated sorting.
PMCID: PMC2714578  PMID: 19619496
9.  Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains 
Cell  2010;143(5):761-773.
The functional consequences of signaling receptor endocytosis are determined by the endosomal sorting of receptors between degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting of a prototypical sequence-dependent recycling receptor, the beta-2 adrenergic receptor, from bulk recycling proteins and the degrading delta-opioid receptor. Our results reveal a remarkable diversity in recycling routes at the level of individual endosomes, and indicate that sequence-dependent recycling is an active process mediated by distinct endosomal sub-domains distinct from those mediating bulk recycling. We identify a specialized subset of tubular microdomains on endosomes, stabilized by a highly localized but dynamic actin machinery, that mediate this sorting, and provide evidence that these actin-stabilized domains provide the physical basis for a two-step kinetic and affinity-based model for protein sorting into the sequence-dependent recycling pathway.
PMCID: PMC3058345  PMID: 21111236
10.  Interchangeable but Essential Functions of SNX1 and SNX2 in the Association of Retromer with Endosomes and the Trafficking of Mannose 6-Phosphate Receptors▿ †  
Molecular and Cellular Biology  2006;27(3):1112-1124.
The retromer is a cytosolic/peripheral membrane protein complex that mediates the retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network (TGN) in mammalian cells. Previous studies showed that the mammalian retromer comprises three proteins, named Vps26, Vps29, and Vps35, plus the sorting nexin, SNX1. There is conflicting evidence, however, as to whether a homologous sorting nexin, SNX2, is truly a component of the retromer. In addition, the nature of the subunit interactions and assembly of the mammalian retromer complex are poorly understood. We have addressed these issues by performing biochemical and functional analyses of endogenous retromers in the human cell line HeLa. We found that the mammalian retromer complex consists of two autonomously assembling subcomplexes, namely, a Vps26-Vps29-Vps35 obligate heterotrimer and a SNX1/2 alternative heterodimer or homodimer. The association of Vps26-Vps29-Vps35 with endosomes requires the presence of either SNX1 or SNX2, whereas SNX1/2 can be recruited to endosomes independently of Vps26-Vps29-Vps35. We also found that the presence of either SNX1 or SNX2 is essential for the retrieval of the cation-independent mannose 6-phosphate receptor to the TGN. These observations indicate that the mammalian retromer complex assembles by sequential association of SNX1/2 and Vps26-Vps29-Vps35 subcomplexes on endosomal membranes and that SNX1 and SNX2 play interchangeable but essential roles in retromer structure and function.
PMCID: PMC1800681  PMID: 17101778
11.  Control of Ste6 Recycling by Ubiquitination in the Early Endocytic Pathway in Yeast 
Molecular Biology of the Cell  2005;16(6):2809-2821.
We present evidence that ubiquitination controls sorting of the ABC-transporter Ste6 in the early endocytic pathway. The intracellular distribution of Ste6 variants with reduced ubiquitination was examined. In contrast to wild-type Ste6, which was mainly localized to internal structures, these variants accumulated at the cell surface in a polar manner. When endocytic recycling was blocked by Ypt6 inactivation, the ubiquitination deficient variants were trapped inside the cell. This indicates that the polar distribution is maintained dynamically through endocytic recycling and localized exocytosis (“kinetic polarization”). Ste6 does not appear to recycle through late endosomes, because recycling was not blocked in class E vps (vacuolar protein sorting) mutants (Δvps4, Δvps27), which are affected in late endosome function and in the retromer mutant Δvps35. Instead, recycling was partially affected in the sorting nexin mutant Δsnx4, which serves as an indication that Ste6 recycles through early endosomes. Enhanced recycling of wild-type Ste6 was observed in class D vps mutants (Δpep12, Δvps8, and Δvps21). The identification of putative recycling signals in Ste6 suggests that recycling is a signal-mediated process. Endocytic recycling and localized exocytosis could be important for Ste6 polarization during the mating process.
PMCID: PMC1142426  PMID: 15800066
12.  Retromer maintains basolateral distribution of the type II TGF-β receptor via the recycling endosome 
Molecular Biology of the Cell  2013;24(14):2285-2298.
After basolateral (BL) cell surface delivery, retromer promotes type II TGF-β receptor exit and recycling to the BL plasma membrane. In the absence of retromer, however, type II receptors aberrantly sort and are mislocalized such that both BL and apical expression is observed independent of the Rab11-positive apical recycling endosome.
Transforming growth factor β (TGF-β) is critical for the development and maintenance of epithelial structures. Because receptor localization and trafficking affect the cellular and organismal response to TGF-β, the present study was designed to address how such homeostatic control is regulated. To that end, we identify a new role for the mammalian retromer complex in maintaining basolateral plasma membrane expression of the type II TGF-β receptor (TβRII). Retromer and TβRII associate in the presence or absence of TGF-β ligand. After retromer knockdown, although TβRII internalization and trafficking to a Rab5-positive compartment occur as in wild-type cells, receptor recycling is inhibited. This results in TβRII mislocalization from the basolateral to both the basolateral and apical plasma membranes independent of Golgi transit and the Rab11-positive apical recycling endosome. The data support a model in which, after initial basolateral TβRII delivery, steady-state polarized TβRII expression is maintained by retromer/TβRII binding and delivery to the common recycling endosome.
PMCID: PMC3708733  PMID: 23720763
13.  Snx3 regulates recycling of the transferrin receptor and iron assimilation 
Cell metabolism  2013;17(3):343-352.
Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc), and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism.
PMCID: PMC3595351  PMID: 23416069
14.  Rab22a Regulates the Recycling of Membrane Proteins Internalized Independently of ClathrinV⃞ 
Molecular Biology of the Cell  2004;15(8):3758-3770.
Plasma membrane proteins that are internalized independently of clathrin, such as major histocompatibility complex class I (MHCI), are internalized in vesicles that fuse with the early endosomes containing clathrin-derived cargo. From there, MHCI is either transported to the late endosome for degradation or is recycled back to the plasma membrane via tubular structures that lack clathrin-dependent recycling cargo, e.g., transferrin. Here, we show that the small GTPase Rab22a is associated with these tubular recycling intermediates containing MHCI. Expression of a dominant negative mutant of Rab22a or small interfering RNA-mediated depletion of Rab22a inhibited both formation of the recycling tubules and MHCI recycling. By contrast, cells expressing the constitutively active mutant of Rab22a exhibited prominent recycling tubules and accumulated vesicles at the periphery, but MHCI recycling was still blocked. These results suggest that Rab22a activation is required for tubule formation and Rab22a inactivation for final fusion of recycling membranes with the surface. The trafficking of transferrin was only modestly affected by these treatments. Dominant negative mutant of Rab11a also inhibited recycling of MHCI but not the formation of recycling tubules, suggesting that Rab22a and Rab11a might coordinate different steps of MHCI recycling.
PMCID: PMC491835  PMID: 15181155
15.  Association of Rab25 and Rab11a with the Apical Recycling System of Polarized Madin–Darby Canine Kidney Cells 
Molecular Biology of the Cell  1999;10(1):47-61.
Recent evidence suggests that apical and basolateral endocytic pathways in epithelia converge in an apically located, pericentriolar endosomal compartment termed the apical recycling endosome. In this compartment, apically and basolaterally internalized membrane constituents are thought to be sorted for recycling back to their site of origin or for transcytosis to the opposite plasma membrane domain. We report here that in the epithelial cell line Madin–Darby Canine Kidney (MDCK), antibodies to Rab11a label an apical pericentriolar endosomal compartment that is dependent on intact microtubules for its integrity. Furthermore, this compartment is accessible to a membrane-bound marker (dimeric immunoglobulin A [IgA]) internalized from either the apical or basolateral pole, functionally defining it as the apical recycling endosome. We have also examined the role of a closely related epithelial-specific Rab, Rab25, in the regulation of membrane recycling and transcytosis in MDCK cells. When cDNA encoding Rab25 was transfected into MDCK cells, the protein colocalized with Rab11a in subapical vesicles. Rab25 transfection also altered the distribution of Rab11a, causing the coalescence of immunoreactivity into multiple denser vesicular structures not associated with the centrosome. Nevertheless, nocodazole still dispersed these vesicles, and dimeric IgA internalized from either the apical or basolateral membrane was detected in endosomes labeled with antibodies to both Rab11a and Rab25. Overexpression of Rab25 decreased the rate of IgA transcytosis and of apical, but not basolateral, recycling of internalized ligand. Conversely, expression of the dominant-negative Rab25T26N did not alter either apical recycling or transcytosis. These results indicate that both Rab11a and Rab25 associate with the apical recycling system of epithelial cells and suggest that Rab25 may selectively regulate the apical recycling and/or transcytotic pathways.
PMCID: PMC25153  PMID: 9880326
16.  Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules 
The EMBO Journal  2012;31(23):4466-4480.
A systematic analysis of the dimerization, membrane remodelling and higher order assembly properties of all 12 human SNX-BAR sorting nexins reveals how different SNX-BAR combinations allow the formation of distinct tubular subdomains from the same endosomal vacuole during cargo sorting.
Sorting nexins (SNXs) are regulators of endosomal sorting. For the SNX-BAR subgroup, a Bin/Amphiphysin/Rvs (BAR) domain is vital for formation/stabilization of tubular subdomains that mediate cargo recycling. Here, by analysing the in vitro membrane remodelling properties of all 12 human SNX-BARs, we report that some, but not all, can elicit the formation of tubules with diameters that resemble sorting tubules observed in cells. We reveal that SNX-BARs display a restricted pattern of BAR domain-mediated dimerization, and by resolving a 2.8 Å structure of a SNX1-BAR domain homodimer, establish that dimerization is achieved in part through neutralization of charged residues in the hydrophobic BAR-dimerization interface. Membrane remodelling also requires functional amphipathic helices, predicted to be present in all SNX-BARs, and the formation of high order SNX-BAR oligomers through selective ‘tip–loop' interactions. Overall, the restricted and selective nature of these interactions provide a molecular explanation for how distinct SNX-BAR-decorated tubules are nucleated from the same endosomal vacuole, as observed in living cells. Our data provide insight into the molecular mechanism that generates and organizes the tubular endosomal network.
PMCID: PMC3512392  PMID: 23085988
BAR domain; phosphoinositide; retromer; sorting nexin; VPS35
17.  The role of intracellular trafficking and the VPS10d receptors in Alzheimer's disease 
Future neurology  2012;7(4):423-431.
In Alzheimer's disease, the key pathological culprit is the amyloid-β protein, which is generated through β- and γ-secretase cleavage of the amyloid-β precursor protein (APP). Both the secretases and amyloid-β precursor protein are transmembrane proteins that are sorted via the trans-Golgi network and the endosome through multiple membranous compartments of the cell. The coat complex clathrin controls the sorting from the cell surface and the trans-Golgi network to the endosome. Instead, the retromer controls the reverse transport from the endosome to the trans-Golgi network. The retromer contains two subprotein complexes: the cargo-selective subcomplex consisting of VPS35, VPS29 and VPS26 and the membrane deformation subcomplex consisting of Vps5p, Vps17p, SNX 1/2 and possibly SNX 5/6 or SNX 32 in mammals. Cargo molecules of the retromer include the VPS10 receptor proteins SORL1, SORT1, SORCS1, SORCS2 and SORCS3. There is increasing evidence through cell biology and animal and genetic studies that components of the retromer and the VPS10d receptor family play a role in the etiology of Alzheimer's disease. This article reviews and summarizes this current evidence.
PMCID: PMC3524993  PMID: 23264752
Alzheimer's disease; amyloid; APP processing; intracellular trafficking; retromer; VPS10d receptors
18.  Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7 
The Journal of Cell Biology  2008;183(3):513-526.
The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes.
PMCID: PMC2575791  PMID: 18981234
19.  Negative regulation of dopamine transporter endocytosis by membrane-proximal amino-terminal residues 
The plasma membrane dopamine transporter (DAT) takes extracellular dopamine back up into dopaminergic neurons. Although the number of DATs at the cell surface is regulated by endocytosis and recycling, the molecular mechanisms that control this endocytic trafficking of DAT are not defined. To map the sequence motifs that are involved in constitutive DAT endocytosis, mutagenesis of human DAT tagged with yellow fluorescent protein (YFP) and an extracellular HA epitope was performed. Removal of the entire amino-terminus of DAT resulted in accumulation of the resulting DAT mutant (YFP-HA-ΔN-DAT) in early and recycling endosomes in HeLa and PAE cells, and in primary rat mesencephalic-striatal neuronal co-cultures. This endosomal accumulation was due to rapid constitutive internalization of YFP-HA-ΔN-DAT by the clathrin-dependent pathway. Small deletions and multi-alanine substitutions in the amino-terminus revealed two molecular determinants within the membrane proximal residues 60–65 that are important for preventing rapid internalization of DAT. First, mutations of Arg60 or Trp63, leading to disruption of the “outward facing” DAT conformation, correlated with an increased pool of mobile DATs in the plasma membrane and accelerated constitutive internalization of the DAT mutants. Second, mutation of Lys65 also correlated with elevated endocytosis. While none of these mutations alone recapitulated the marked endocytic phenotype of YFP-HA-ΔN-DAT, simultaneous elimination of both the outward conformation of DAT and Lys65 resulted in DAT mutants that were rapidly internalized. Thus, our studies reveal a new link between DAT endocytosis and conformation-dependent uptake activity that represents a novel mode for regulating DAT function.
PMCID: PMC2745124  PMID: 19193883
Dopamine transporter; endocytosis; recycling; dopaminergic neurons; amphetamine; clathrin; fluorescence microscopy
20.  Rab15 Effector Protein: A Novel Protein for Receptor Recycling from the Endocytic Recycling CompartmentD⃞ 
Molecular Biology of the Cell  2005;16(12):5699-5709.
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.
PMCID: PMC1289414  PMID: 16195351
21.  Retromer 
Current opinion in cell biology  2008;20(4):427-436.
The retromer is a heteropentameric complex that associates with the cytosolic face of endosomes and mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network. The mammalian retromer complex comprises a sorting nexin dimer composed of a still undefined combination of SNX1, SNX2, SNX5 and SNX6, and a cargo-recognition trimer composed of Vps26, Vps29 and Vps35. The SNX subunits contain PX and BAR domains that allow binding to PI(3)P enriched, highly curved membranes of endosomal vesicles and tubules, while Vps26, Vps29 and Vps35 have arrestin, phosphoesterase and α-solenoid folds, respectively. Recent studies have implicated retromer in a broad range of physiological, developmental and pathological processes, underscoring the critical nature of retrograde transport mediated by this complex.
PMCID: PMC2833274  PMID: 18472259
22.  α-Taxilin Interacts with Sorting Nexin 4 and Participates in the Recycling Pathway of Transferrin Receptor 
PLoS ONE  2014;9(4):e93509.
Membrane traffic plays a crucial role in delivering proteins and lipids to their intracellular destinations. We previously identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. α-Taxilin is overexpressed in tumor tissues and interacts with polymerized tubulin, but the precise function of α-taxilin remains unclear. Receptor proteins on the plasma membrane are internalized, delivered to early endosomes and then either sorted to the lysosome for degradation or recycled back to the plasma membrane. In this study, we found that knockdown of α-taxilin induced the lysosomal degradation of transferrin receptor (TfnR), a well-known receptor which is generally recycled back to the plasma membrane after internalization, and impeded the recycling of transferrin. α-Taxilin was immunoprecipitated with sorting nexin 4 (SNX4), which is involved in the recycling of TfnR. Furthermore, knockdown of α-taxilin decreased the number and length of SNX4-positive tubular structures. We report for the first time that α-taxilin interacts with SNX4 and plays a role in the recycling pathway of TfnR.
PMCID: PMC3972091  PMID: 24690921
23.  Palmitoylation Controls Recycling in Lysosomal Sorting and Trafficking 
Traffic (Copenhagen, Denmark)  2008;9(11):1984-1997.
For the efficient trafficking of lysosomal proteins, the cationic-dependent and -independent mannose 6-phosphate receptors and sortilin must bind cargo in the Golgi apparatus, be packaged into clathrin-coated trafficking vesicles and traffic to the endosomes. Once in the endosomes, the receptors release their cargo into the endosomal lumen and recycle back to the Golgi for another round of trafficking, a process that requires retromer. In this study, we demonstrate that palmitoylation is required for the efficient retrograde trafficking of sortilin, and the cationic-independent mannose 6-phosphate as palmitoylation-deficient receptors remain trapped in the endosomes. Importantly, we also show that palmitoylation is required for receptor interaction with retromer as nonpalmitoylated receptor did not interact with retromer. In addition, we have identified DHHC-15 as the palmitoyltransferase responsible for this modification. In summary, we have shown the functional significance of palmitoylation in lysosomal receptor sorting and trafficking.
PMCID: PMC3500849  PMID: 18817523
24.  Role of Rabex-5 in the sorting of ubiquitinated cargo at an early stage in the endocytic pathway 
The covalent modification of transmembrane receptors by ubiquitin (Ub) is a key biological mechanism controlling their internalization and endocytic sorting to recycling and degradative pathways to attenuate their signaling potential. In this Ub-dependent endocytic trafficking pathway, Ub-binding proteins (UBPs) play a critical role in the sorting of these ubiquitinated transmembrane proteins at the plasma membrane, early endosomes, and multivesicular bodies. We recently reported that Rabex-5, a UBP and guanine nucleotide exchange factor for Rab5, is translocated to the plasma membrane in an extracellular ligand-dependent manner to regulate the internalization of ligand-induced ubiquitinated transmembrane proteins upon stimulation with extracellular ligands. Here, we show that Rabex-5 predominantly localizes on Rab5- and syntaxin 13-positive endosomes, but not on Rab11-positive recycling endosomes before stimulation with extracellular ligands. We further discuss the significance of Rabex-5-mediated sorting of ubiquitinated transmembrane proteins as cargo at an early stage of the endocytic pathway.
PMCID: PMC3737748  PMID: 23986801
endocytosis; ubiquitin; Rab5; Rabex-5; ubiquitin-binding protein
25.  Important relationships between Rab and MICAL proteins in endocytic trafficking 
The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes), where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs) and GTP exchange factors (GEFs). Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD) proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport.
PMCID: PMC3083971  PMID: 21537482
Rab; MICAL; Eps15 homology; Endosomes; Endocytosis; Trafficking; Cytoskeleton

Results 1-25 (1012473)