Search tips
Search criteria

Results 1-25 (1614542)

Clipboard (0)

Related Articles

1.  Cryopreservation of Human Wharton’s Jelly-derived Mesenchymal Stem Cells Following Controlled Rate Freezing Protocol Using Different Cryoprotectants; A Comparative Study 
To compare the effect of three different cryoprotectants on basic stem cell characteristics for the possibility of using well defined, dimethyl sulfoxide (DMSO) and serum free freezing solutions to cryopreserve human Wharton’s jelly-derived mesenchymal stem cells (WJMSCs) following controlled rate freezing protocol.
The mesenchymal stem cells isolated from human Wharton’s jelly were cryopreserved using 10% DMSO, 10% polyvinylpyrrolidone (PVP) and a cocktail solution comprising of 0.05 M glucose, 0.05 M sucrose and 1.5 M ethylene glycol following controlled rate freezing protocol. We investigated the post-thaw cell viability, morphology, proliferation capacity, basic stem cell characteristics, in vitro differentiation potential and apoptosis-related gene expression profile before and after cryopreservation.
The cryoprotectant 10% DMSO has shown higher post-thaw cell viability of 81.2±0.58% whereas 10% PVP and cocktail solution have shown 62.87±0.35% and 72.2±0.23%, respectively at 0 h immediately thawing. The cell viability was further reduced in all the cryopreserved groups at 24 h later post-thaw culture. Further, the complete elimination of FBS in cryoprotectants has resulted in drastic reduction in cell viability. Cryopreservation did not alter the basic stem cell characteristics, plasticity and multipotency except proliferation rate. The expression of pro-apoptotic BAX and p53 genes were higher whilst p21 was lower in all the cryopreserved groups when compare to the control group of WJMSCs.
Although 10% DMSO has shown higher post-thaw cell viability compare to 10% PVP and cocktail solution, the present study indicates the feasibility of developing a well-defined DMSO free cryosolution which can improve storage and future broad range applications of WJMSCs in regenerative medicine without losing their basic stem cell characteristics.
PMCID: PMC4651280  PMID: 26634064
Apoptosis; Cocktail solution; Controlled rate freezing; Cryopreservation; Wharton’s jelly mesenchymal stem cells
2.  DMSO‐ and Serum‐Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord 
Journal of Cellular Biochemistry  2016;117(10):2397-2412.
The facile nature of mesenchymal stem cell (MSC) acquisition in relatively large numbers has made Wharton's jelly (WJ) tissue an alternative source of MSCs for regenerative medicine. However, freezing of such tissue using dimethyl sulfoxide (DMSO) for future use impedes its clinical utility. In this study, we compared the effect of two different cryoprotectants (DMSO and cocktail solution) on post‐thaw cell behavior upon freezing of WJ tissue following two different freezing protocols (Conventional [−1°C/min] and programmed). The programmed method showed higher cell survival rate compared to conventional method of freezing. Further, cocktail solution showed better cryoprotection than DMSO. Post‐thaw growth characteristics and stem cell behavior of Wharton's jelly mesenchymal stem cells (WJMSCs) from WJ tissue cryopreserved with a cocktail solution in conjunction with programmed method (Prog‐Cock) were comparable with WJMSCs from fresh WJ tissue. They preserved their expression of surface markers, pluripotent factors, and successfully differentiated in vitro into osteocytes, adipocytes, chondrocytes, and hepatocytes. They also produced lesser annexin‐V‐positive cells compared to cells from WJ tissue stored using cocktail solution in conjunction with the conventional method (Conv‐Cock). Real‐time PCR and Western blot analysis of post‐thaw WJMSCs from Conv‐Cock group showed significantly increased expression of pro‐apoptotic factors (BAX, p53, and p21) and reduced expression of anti‐apoptotic factor (BCL2) compared to WJMSCs from the fresh and Prog‐Cock group. Therefore, we conclude that freezing of fresh WJ tissue using cocktail solution in conjunction with programmed freezing method allows for an efficient WJ tissue banking for future MSC‐based regenerative therapies. J. Cell. Biochem. 117: 2397–2412, 2016. © 2016 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
PMCID: PMC5094545  PMID: 27038129
3.  Cryopreservation of stromal vascular fraction of adipose tissue in a serum-free freezing medium 
Developing effective techniques for the cryopreservation of human adipose-derived adult stem cells could increase the usefulness of these cells in tissue engineering and regenerative medicine. Unfortunately, the use of serum and a commonly used cryoprotectant chemical, dimethyl sulphoxide (DMSO), during cryopreservation storage restricts the direct translation of adult stem cells to in vivo applications. The objective of this study was to test the hypothesis that the stromal vascular fraction (SVF) of adipose tissue can be effectively cryopreserved and stored in liquid nitrogen, using a freezing medium containing high molecular weight polymers, such as methylcellulose (MC) and/or polyvinylpyrollidone (PVP), as the cryoprotective agent (CPA) instead of DMSO. To this end, we investigated the post-freeze/thaw viability and apoptotic behaviour of SVF of adipose tissue frozen in 16 different media: (a) the traditional medium containing Dulbecco’s modified Eagle’s medium (DMEM) with 80% fetal calf serum (FCS) and 10% DMSO; (b) DMEM with 80% human serum (HS) and 10% DMSO; (c) DMEM with 0%, 2%, 4%, 6%, 8% or 10% DMSO; (d) DMEM with 1% MC and 10% of either HS or FCS or DMSO; (e) DMEM with 10% PVP and varying concentrations of FCS (0%, 10%, 40% or 80%); (f) DMEM with 10% PVP and 10% HS. Approximately 1 ml (106 cells/ml) of SVF cells were frozen overnight in a −80 °C freezer and stored in liquid nitrogen for 2 weeks before being rapidly thawed in a 37 °C water bath (1–2 min agitation), resuspended in culture medium and seeded in separate wells of a six-well plate for a 24 h incubation period at 37 °C. After 24 h, the thawed samples were analysed by brightfield microscopy and flow cytometry. The results suggest that the absence of DMSO (and the presence of MC) significantly increases the fraction of apoptotic and/or necrotic SVF cells. However, the percentage of viable cells obtained with 10% PVP and DMEM was comparable with that obtained in freezing medium with DMSO and serum (HS or FCS), i.e. ~54 ± 14% and ~63 ± 10%, respectively. Adipogenic and osteogenic differentiation behaviour of the frozen thawed cells was also assessed, using histochemical staining. Our results suggest that post-thaw SVF cell viability and adipogenic and osteogenic differentiability can be maintained even when they are frozen in the absence of serum and DMSO but with 10% PVP in DMEM.
PMCID: PMC4381661  PMID: 19967746
cryopreservation; cryoprotective agents; human subcutaneous adipose tissue; stromal vascular fraction cells; adipogenesis; ostoegenesis; necrosis; apoptosis
4.  Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells 
PLoS ONE  2016;11(10):e0165466.
The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer’s disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells.
Methodology/Principle findings
CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them.
Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability.
PMCID: PMC5079553  PMID: 27780236
5.  Phenotypic and Functional Characterization of Long-Term Cryopreserved Human Adipose-derived Stem Cells 
Scientific Reports  2015;5:9596.
Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, including 1) 0.25 M trehalose; 2) 5% dimethylsulfoxide (DMSO); 3) 10% DMSO; 4) 5% DMSO + 20% fetal bovine serum (FBS); 5) 10% DMSO + 20% FBS; 6) 10% DMSO + 90% FBS. Interestingly, even with a reduction of DMSO to 5% and without FBS, cryopreserved ASCs maintained high cell viability comparable with standard cryomedium (10% DMSO + 90% FBS), with normal cell phenotype and proliferation rate. Cryopreserved ASCs also maintained their differentiation capability (e.g., to adipocytes, osteocytes and chondrocytes) and showed an enhanced expression level of stemness markers (e.g., NANOG, OCT-4, SOX-2 and REX-1). Our findings suggest that 5% DMSO without FBS may be an ideal CPA for an efficient long-term cryopreservation of human ASCs. These results aid in establishing standardized xeno-free long-term cryopreservation of human ASCs for clinical applications.
PMCID: PMC4397835  PMID: 25872464
6.  Cryoprotective Effect of Disaccharides on Cord Blood Stem Cells with Minimal Use of DMSO 
Umbilical cord blood (UCB) is an extremely attractive source of stem cells for the treatment of various benign and malignant hematological and non-hematological disorders. To facilitate the preservation of these stem cells, 10 % dimethylsulfoxide (DMSO) is widely used as cryoprotectant in cord blood banks. But it is found to be toxic at this concentration with the result of serious side effects in recipients after infusion of DMSO-cryopreserved cells. Evaluation of viability and functionality of cryopreserved hematopoietic stem cells is needed with either inclusion of nontoxic additives alone or with reduced DMSO concentration. We assessed the post thawing viability of UCB stem cells in the freezing medium containing disaccharides (sucrose or trehalose) alone and in combination with reduced amount i.e. 2 % DMSO by trypan blue staining. The functionally active progenitor cells content of the optimized media was then evaluated and compared with 5% DMSO by a colony forming unit assay using methylcellulose based media. The freezing solution containing 0.2 M trehalose with 2 % DMSO came out to be superior in the evaluation of viability and generation of hematopoietic colonies of erythroid and myeloid lineage than 5 % DMSO alone. While the percentage of viability was lower than 2 % DMSO, as observed in the medium containing 0.2 M trehalose or sucrose alone, with poor outcome of generation of myeloid lineage based colonies. Our study results suggest that trehalose (0.2M) with the inclusion of reduced concentration of DMSO(2%) can better replace 5%DMSO rather than complete removal of DMSO from the freezing medium.
PMCID: PMC4375150  PMID: 25825559
Sucrose; Trehalose; Cryoprotective medium; Viability; Hematopoietic colonies
7.  Comparison of viability and antioxidant capacity between canine adipose-derived mesenchymal stem cells and heme oxygenase-1-overexpressed cells after freeze-thawing 
Allogenic adipose-derived mesenchymal stem cells (Ad-MSCs) are an alternative source for cytotherapy owing to their antioxidant and anti-inflammatory effects. Frozen-thawed allogenic Ad-MSCs can be used instantly for this purpose. However, the viability and function of frozen-thawed Ad-MSCs have not been clearly evaluated. The purpose of this study was to compare the viability and function of Ad-MSCs and heme oxygenase-1 (HO-1)-overexpressed Ad-MSCs in vitro after freeze-thawing. The viability, proliferation, antioxidant capacity and mRNA gene expression of growth factors were evaluated. Frozen-thawed cells showed significantly lower viability than fresh cells (77% for Ad-MSCs and 71% for HO-1 Ad-MSCs, P<0.01). However, the proliferation rate of frozen-thawed Ad-MSCs increased and did not differ from that of fresh Ad-MSCs after 3 days of culture. In contrast, the proliferation rate of HO-1-overexpressed Ad-MSCs was lower than that of Ad-MSCs. The mRNA expression levels of TGF-β, HGF and VEGF did not differ between fresh and frozen-thawed Ad-MSCs, but COX-2 and IL-6 had significantly higher mRNA expression in frozen cells than fresh cells (P<0.05). Fresh Ad-MSCs exhibited higher HO-1 mRNA expression than frozen-thawed Ad-MSCs, and fresh HO-1-overexpressed Ad-MSCs exhibited higher than fresh Ad-MSCs (P<0.05). However, there was no significant difference between fresh and frozen HO-1-overexpressed Ad-MSCs. The antioxidant capacity of HO-1-overexpressed Ad-MSCs was significantly higher than that of Ad-MSCs. Cryopreservation of Ad-MSCs negatively affects viability and antioxidant capacity, and HO-1-overexpressed Ad-MSCs might be useful to maximize the effect of Ad-MSCs for cytotherapy.
PMCID: PMC4873853  PMID: 26725542
canine; cryopreservation; heme oxygenase-1; mesenchymal stromal cell
8.  Cryopreservation of human mesenchymal stromal cells expressing TRAIL for human anti-cancer therapy 
Cytotherapy  2016;18(7):860-869.
Background aims
Mesenchymal stromal cells (MSCs) are being extensively researched for cell therapy and tissue engineering. We have engineered MSCs to express the pro-apoptotic protein tumor necrosis factor–related apoptosis inducing ligand (TRAIL) and are currently preparing this genetically modified cell therapy for a phase 1/2a clinical trial in patients with metastatic lung cancer. To do this, we need to prepare a cryopreserved allogeneic MSCTRAIL cell bank for further expansion before patient delivery. The effects of cryopreservation on a genetically modified cell therapy product have not been clearly determined.
We tested different concentrations of dimethyl sulfoxide (DMSO) added to the human serum albumin ZENALB 4.5 and measured post-thaw cell viability, proliferation ability and differentiation characteristics. In addition, we examined the homing ability, TRAIL expression and cancer cell–killing capacities of cryopreserved genetically modified MSCs compared with fresh, continually cultured cells.
We demonstrated that the post-thaw viability of MSCs in 5% DMSO (v/v) with 95% ZENALB 4.5 (v/v) is 85.7 ± 0.4%, which is comparable to that in conventional freezing media. We show that cryopreservation does not affect the long-term expression of TRAIL and that cryopreserved TRAIL-expressing MSCs exhibit similar levels of homing and, importantly, retain their potency in triggering cancer cell death.
This study shows that cryopreservation is unlikely to affect the therapeutic properties of MSCTRAIL and supports the generation of a cryopreserved master cell bank.
PMCID: PMC4906234  PMID: 27260207
apoptosis; chemokine; cryopreservation; DMSO; MSC; ZENALB 4.5
9.  Improved cryopreservation of human hepatocytes using a new xeno free cryoprotectant solution 
World Journal of Hepatology  2012;4(5):176-183.
AIM: To optimize a xeno-free cryopreservation protocol for primary human hepatocytes.
METHODS: The demand for cryopreserved hepatocytes is increasing for both clinical and research purposes. Despite several hepatocyte cryopreservation protocols being available, improvements are urgently needed. We first compared controlled rate freezing to polystyrene box freezing and did not find any significant change between the groups. Using the polystyrene box freezing, we compared two xeno-free freezing solutions for freezing of primary human hepatocytes: a new medium (STEM-CELLBANKER, CB), which contains dimethylsulphoxide (DMSO) and anhydrous dextrose, both permeating and non-permeating cryoprotectants, and the frequently used DMSO - University of Wisconsin (DMSO-UW) medium. The viability of the hepatocytes was assessed by the trypan blue exclusion method as well as a calcein-esterase based live-dead assay before and after cryopreservation. The function of the hepatocytes was evaluated before and after cryopreservation by assessing enzymatic activity of 6 major cytochrome P450 isoforms (CYPs): CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A7.
RESULTS: The new cryoprotectant combination preserved hepatocyte viability significantly better than the standard DMSO-UW protocol (P < 0.01). There was no significant difference in viability estimation between both the trypan blue (TB) and the Live-Dead Assay methods. There was a correlation between viability of fresh hepatocytes and the difference in cell viability between CB and DMSO protocols (r2 = 0.69) using the TB method. However, due to high within-group variability in the activities of the major CYPs, any statistical between-group differences were precluded. Cryopreservation of human hepatocytes using the cryoprotectant combination was a simple and xeno-free procedure yielding better hepatocyte viability. Thus, it may be a better alternative to the standard DMSO-UW protocol. Estimating CYP activities did not seem to be a relevant way to compare hepatocyte function between different groups due to high normal variability between different liver samples.
CONCLUSION: The cryoprotectant combination may be a better alternative to the standard DMSO-UW protocol in primary human hepatocyte cryopreservation.
PMCID: PMC3365437  PMID: 22662286
Human hepatocytes; Viability; Cytochrome P540; Dimethylsulphoxide; Cryoprotectant; Cryopreservation
10.  Cryopreservation of equine mesenchymal stem cells in 95 % autologous serum and 5 % DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95 % and DMSO at 10 or 5 % 
Equine superficial digital flexor tendon injury is a well-accepted model of human tendon injury and is routinely treated with local injections of autologous mesenchymal stem cells (MSCs). Identification of a clinically safe medium for short-term cryopreservation of MSCs prior to cell implantation would streamline laboratory and clinical procedures for autologous regenerative therapies. Veterinary experience with short-term (MSCs prepared after the injury has occurred) cryopreserved MSCs in naturally occurring injury in the horse will be of value to human practitioners.
Equine bone marrow derived MSCs were cryopreserved in 6 different solutions consisting of 20 % serum, 10 % DMSO and 70 % media or 95 % serum and 5 % DMSO. Serum was autologous serum, commercially available pooled equine serum or fetal bovine serum (FBS). Cell survival, morphology and growth kinetics were assessed by total cell number, measurement of growth kinetics, colony-forming-unit-assay and morphology of MSCs after monolayer culture post-thaw.
There were no significant differences in post-thaw viability, total cell number, morphology scores or growth kinetics among the 6 solutions. Post thaw viabilities from each group ranged from 80-90 %. In all solutions, there were significantly fewer MSCs and the majority (99 %) of MSCs remained in the original generation 24 hours post-thaw. Seventy two hours post-thaw, the majority of MSCs (50 %) were proliferating in the fourth generation. Mean colony count in the CFU-F assay ranged from 72 to 115 colonies.
Each of the serum sources could be used for short-term cryopreservation of equine bone marrow derived MSCs. Prior to clinical use, clinicians may prefer autologous serum and a lower concentration of DMSO.
Electronic supplementary material
The online version of this article (doi:10.1186/s13287-015-0230-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4661990  PMID: 26611913
Mesenchymal stem cell; Cryopreservation; Fetal bovine serum; Serum; Equine
11.  Conditioned umbilical cord tissue provides a natural three-dimensional storage compartment as in vitro stem cell niche for human mesenchymal stroma/stem cells 
The use of large amounts of human multipotent mesenchymal stroma/stem cells (MSC) for cell therapies represents a desirable property in tissue engineering and banking in the field of regenerative medicine.
Methods and results
Whereas cryo-storage of umbilical cord (UC) tissue pieces in liquid nitrogen without ingredients was associated with predominant appearance of apoptotic cells after thawing and re-culture, progressive growth of MSC was observed following use of cryo-medium. Moreover, conditioning of UC tissue pieces by initial explant culture and subsequent cryo-storage with cryo-medium accelerated a further MSC culture after thawing. These findings suggested that conditioning of UC tissue pieces provides an in vitro stem cell niche by maintenance of a 3-dimensional natural microenvironment for continuous MSC outgrowth and expansion. Indeed, culture of GFP-labeled UC tissue pieces was accompanied by increased outgrowth of GFP-labeled cells which was accelerated in conditioned UC tissue after cryo-storage. Moreover, cryopreserved conditioned UC tissue pieces in cryo-medium after thawing and explant culture could be cryopreserved again demonstrating renewed MSC outgrowth after repeated thawing with similar population doublings compared to the initial explant culture. Flow cytometry analysis of outgrowing cells revealed expression of the typical MSC markers CD73, CD90, and CD105. Furthermore, these cells demonstrated little if any senescence and cultures revealed stem cell-like characteristics by differentiation along the adipogenic, chondrogenic and osteogenic lineages.
Expression of MSC markers was maintained for at least 10 freeze/thaw/explant culture cycles demonstrating that repeated cryopreservation of conditioned UC tissue pieces provided a reproducible and enriched stem cell source.
PMCID: PMC4751714  PMID: 26869167
Mesenchymal stroma/stem cells; Tissue conditioning; Umbilical cord tissue; Cryopreservation; Tissue engineering; Three-dimensional long-term culture
12.  Evaluation of Methylcellulose and Dimethyl Sulfoxide as the Cryoprotectants in a Serum-Free Freezing Media for Cryopreservation of Adipose-Derived Adult Stem Cells 
Stem Cells and Development  2010;19(4):513-522.
Developing effective techniques for the cryopreservation of human adipose-derived adult stem cells (ASCs) could increase the usefulness of these cells in tissue engineering and regenerative medicine. To this end, we investigated the post-freeze/thaw viability and apoptotic behavior of Passage 1 (P1) adult stem cells (ASCs) in 11 different media: (i) the traditional media containing Dulbecco’s modified Eagle’s medium (DMEM) with 80% fetal calf serum (FCS) and 10% dimethyl sulfoxide (DMSO), (ii) DMEM with 80% human serum (HS) and 10% DMSO, (iii) DMEM with 1% methyl cellulose (MC) and 10% of either HS or FCS or DMSO, and (iv) DMEM with 0%, 2%, 4%, 6%, 8%, or 10% DMSO. Approximately 1 mL (106 cells/mL) of P1 ASCs were frozen overnight in a −80°C freezer and stored in liquid nitrogen for 2 weeks before being rapidly thawed in a 37°C water bath (1–2 min of agitation), resuspended in culture media, and seeded in separate wells of a 6-well plate for a 24-h incubation period at 37°C. After 24 h, the thawed samples were analyzed by bright-field microscopy and flow cytometry. The results suggest that the absence of DMSO (and the presence of MC) significantly increases the fraction of apoptotic and/or necrotic ASCs. However, the percentage of viable cells obtained with 2% DMSO and DMEM was comparable with that obtained in freezing media with 10% DMSO and 80% serum (HS or FCS), that is, ∼84% ± 5% and ∼84% ± 8%, respectively. Adipogenic and osteogenic differentiation behavior of the frozen thawed cells was also assessed using histochemical staining. Our results suggest that post-thaw ASC viability, adipogenic and osteogenic differentiability can be maintained even when they are frozen in the absence of serum but with a minimal concentration of 2% DMSO in DMEM.
PMCID: PMC3139530  PMID: 19788372
13.  Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data 
Standardization of mesenchymal stromal cells (MSCs) manufacturing is urgently needed to enable translational activities and ultimately facilitate comparison of clinical trial results. In this work we describe the adaptation of a proprietary method for isolation of a specific umbilical cord tissue-derived population of MSCs, herein designated by its registered trademark as UCX®, towards the production of an advanced therapy medicinal product (ATMP).
The adaptation focused on different stages of production, from cell isolation steps to cell culturing and cryopreservation. The origin and quality of materials and reagents were considered and steps for avoiding microbiological and endotoxin contamination of the final cell product were implemented. Cell isolation efficiency, MSCs surface markers and genetic profiles, originating from the use of different medium supplements, were compared. The ATMP-compliant UCX® product was also cryopreserved avoiding the use of dimethyl sulfoxide, an added benefit for the use of these cells as an ATMP. Cells were analyzed for expansion capacity and longevity. The final cell product was further characterized by flow cytometry, differentiation potential, and tested for contaminants at various passages. Finally, genetic stability and immune properties were also analyzed.
The isolation efficiency of UCX® was not affected by the introduction of clinical grade enzymes. Furthermore, isolation efficiencies and phenotype analyses revealed advantages in the use of human serum in cell culture as opposed to human platelet lysate. Initial decontamination of the tissue followed by the use of mycoplasma- and endotoxin-free materials and reagents in cell isolation and subsequent culture, enabled the removal of antibiotics during cell expansion. UCX®-ATMP maintained a significant expansion potential of 2.5 population doublings per week up to passage 15 (P15). They were also efficiently cryopreserved in a DMSO-free cryoprotectant medium with approximately 100% recovery and 98% viability post-thaw. Additionally, UCX®-ATMP were genetically stable upon expansion (up to P15) and maintained their immunomodulatory properties.
We have successfully adapted a method to consistently isolate, expand and cryopreserve a well-characterized population of human umbilical cord tissue-derived MSCs (UCX®), in order to obtain a cell product that is compliant with cell therapy. Here, we present quality and safety data that support the use of the UCX® as an ATMP, according to existing international guidelines.
PMCID: PMC4055140  PMID: 24438697
14.  Cryopreservation of Adipose-Derived Mesenchymal Stem Cells 
Cell Medicine  2015;8(1-2):3-7.
Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs.
PMCID: PMC4733906  PMID: 26858903
Adipose-derived mesenchymal stem cells (ASCs); Cryopreservation; Dimethyl sulfoxide (DMSO); Cell banker series; Polyvinylpyrrolidone (PVP)
15.  A Simple and Highly Effective Method for Slow-Freezing Human Pluripotent Stem Cells Using Dimethyl Sulfoxide, Hydroxyethyl Starch and Ethylene Glycol 
PLoS ONE  2014;9(2):e88696.
Vitrification and slow-freezing methods have been used for the cryopreservation of human pluripotent stem cells (hPSCs). Vitrification requires considerable skill and post-thaw recovery is low. Furthermore, it is not suitable for cryopreservation of large numbers of hPSCs. While slow-freezing methods for hPSCs are easy to perform, they are usually preceded by a complicated cell dissociation process that yields poor post-thaw survival. To develop a robust and easy slow-freezing method for hPSCs, several different cryopreservation cocktails were prepared by modifying a commercially available freezing medium (CP-1™) containing hydroxyethyl starch (HES), and dimethyl sulfoxide (DMSO) in saline. The new freezing media were examined for their cryopreservation efficacy in combination with several different cell detachment methods. hPSCs in cryopreservation medium were slowly cooled in a conventional −80°C freezer and thawed rapidly. hPSC colonies were dissociated with several proteases. Ten percent of the colonies were passaged without cryopreservation and another 10% were cryopreserved, and then the recovery ratio was determined by comparing the number of Alkaline Phosphatase-positive colonies after thawing at day 5 with those passaged without cryopreservation at day 5. We found that cell detachment with Pronase/EDTA followed by cryopreservation using 6% HES, 5% DMSO, and 5% ethylene glycol (EG) in saline (termed CP-5E) achieved post-thaw recoveries over 80%. In summary, we have developed a new cryopreservation medium free of animal products for slow-freezing. This easy and robust cryopreservation method could be used widely for basic research and for clinical application.
PMCID: PMC3922972  PMID: 24533137
16.  Robust, Efficient, and Practical Electrogene Transfer Method for Human Mesenchymal Stem Cells Using Square Electric Pulses 
Human Gene Therapy Methods  2013;24(5):289-297.
Mesenchymal stem cells (MSCs) are multipotent nonhematopoietic cells with the ability to differentiate into various specific cell types, thus holding great promise for regenerative medicine. Early clinical trials have proven that MSC-based therapy is safe, with possible efficacy in various diseased states. Moreover, genetic modification of MSCs to improve their function can be safely achieved using electrogene transfer. We previously achieved transfection efficiencies of up to 32% with preserved viability in rat MSCs. In this study, we further improved the transfection efficiency and transgene expression in human MSCs (hMSCs), while preserving the cells viability and ability to differentiate into osteoblasts and adipocytes by increasing the plasmid concentration and altering the osmotic pressure of the electrotransfer buffer. Using a square-wave electric pulse generator, we achieved a transfection efficiency of more than 80%, with around 70% viability and a detectable transgene expression of up to 30 days. Moreover, we demonstrated that this transfection efficiency can be reproduced reliably on two different sources of hMSCs: the bone marrow and adipose tissue. We also showed that there was no significant donor variability in terms of their transfection efficiency and viability. The cell confluency before electrotransfer had no significant effect on the transfection efficiency and viability. Cryopreservation of transfected cells maintained their transgene expression and viability upon thawing. In summary, we are reporting a robust, safe, and efficient protocol of electrotransfer for hMSCs with several practical suggestions for an optimal use of genetically engineered hMSCs for clinical application.
Liew and colleagues employ square-wave electric pulses to achieve efficient gene transfer in human mesenchymal stem cells (hMSCs). Robust gene transfer is reproducible across donors and with both bone marrow- and adipose-derived hMSCs. Transfected cells exhibit high viability, normal differentiation capacity, and durable transgene expression.
PMCID: PMC3798228  PMID: 23931158
17.  Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles 
BMC Cell Biology  2010;11:22.
For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed.
Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under osteogenic differentiation as detected by qRT-PCR. Moreover, microarray analyses revealed that exposition of labeled MSCs to magnetic fields led to an up regulation of CD93 mRNA and cadherin 7 mRNA and to a down regulation of Zinc finger FYVE domain mRNA. Exposition of unlabeled MSCs to magnetic fields led to an up regulation of CD93 mRNA, lipocalin 6 mRNA, sialic acid acetylesterase mRNA, and olfactory receptor mRNA and to a down regulation of ubiquilin 1 mRNA. No influence of the exposition to magnetic fields could be observed on the migration capacity, the viability, the proliferation rate and the chondrogenic differentiation capacity of labeled or unlabeled MSCs.
In our study an innovative labeling protocol for tracking MSCs by MRI using SPIO in combination with magnetic fields was established. Both, SPIO and the static magnetic field were identified as independent factors which affect the functional biology of human MSCs. Further in vivo investigations are needed to elucidate the molecular mechanisms of the interaction of magnetic fields with stem cell biology.
PMCID: PMC2871263  PMID: 20370915
18.  Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses 
PeerJ  2016;4:e1773.
Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs.
Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates.
Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low (<40%) for all freezing protocols at −20 °C or −80 °C, particularly with bone marrow supernatant or plasma and DMSO. In part III, various cell concentrations also had no significant influence on any of the evaluated parameters. Chondrogenic differentiation showed a trend towards being decreased for all transport conditions, compared to control cells.
Discussion. In this study, transport conditions were not found to impact viability, proliferation or ability for trilineage differentiation of MSCs, most likely due to the small sample size and large number of comparisons. The unusual low viability after all freezing protocols is in contrast to previous equine studies. Potential causes are differences in the freezing, but also in thawing method. Also, the selected container (glass syringe) may have impacted viability. Future research may be warranted into the possibly negative effect of transport on chondrogenic differentiation.
PMCID: PMC4806605  PMID: 27019778
Horse; Mesenchymal stromal cells (MSCs); Transport; Viability
19.  Thermomechanical analysis of freezing-induced cell-fluid-matrix interactions in engineered tissues 
Successful cryopreservation of functional engineered tissues (ETs) is significant to tissue engineering and regenerative medicine, but it is extremely challenging to develop a successful protocol because the effects of cryopreservation parameters on the post-thaw functionality of ETs are not well understood. Particularly, the effects on the microstructure of their extracellular matrix (ECM) have not been well studied, which determines many functional properties of the ETs. In this study, we investigated the effects of two key cryopreservation parameters – i) freezing temperature and corresponding cooling rate; and ii) the concentration of cryoprotective agent (CPA) on the ECM microstructure as well as the cellular viability. Using dermal equivalent as a model ET and DMSO as a model CPA, freezing-induced spatiotemporal deformation and post-thaw ECM microstructure of ETs was characterized while varying the freezing temperature and DMSO concentrations. The spatial distribution of cellular viability and the cellular actin cytoskeleton was also examined. The results showed that the tissue dilatation increased significantly with reduced freezing temperature (i.e., rapid freezing). A maximum limit of tissue deformation was observed for preservation of ECM microstructure, cell viability and cell-matrix adhesion. The dilatation decreased with the use of DMSO, and a freezing temperature dependent threshold concentration of DMSO was observed. The threshold DMSO concentration increased with lowering freezing temperature. In addition, an analysis was performed to delineate thermodynamic and mechanical components of freezing-induced tissue deformation. The results are discussed to establish a mechanistic understanding of freezing-induced cell-fluid-matrix interaction and phase change behavior within ETs in order to improve cryopreservation of ETs.
PMCID: PMC3586257  PMID: 23246556
Cryopreservation; Tissue microstructure; Extracellular matrix; Cell image deformetry; Differential scanning calorimetry; Cryoprotective agents
20.  Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia 
A combination of gene and cell therapies has the potential to significantly enhance the therapeutic value of mesenchymal stem cells (MSCs). The development of efficient gene delivery methods is essential if MSCs are to be of benefit using such an approach. Achieving high levels of transgene expression for the required period of time, without adversely affecting cell viability and differentiation capacity, is crucial. In the present study, we investigate lentiviral vector-mediated genetic modification of rat bone-marrow derived MSCs and examine any functional effect of such genetic modification in an in vitro model of ischaemia.
Transduction efficiency and transgene persistence of second and third generation rHIV-1 based lentiviral vectors were tested using reporter gene constructs. Use of the rHIV-pWPT-EF1-α-GFP-W vector was optimised in terms of dose, toxicity, cell species, and storage. The in vivo condition of ischaemia was modelled in vitro by separation into its associated constituent parts i.e. hypoxia, serum and glucose deprivation, in which the effect of therapeutic gene over-expression on MSC survival was investigated.
The second generation lentiviral vector rHIV-pWPT-EF1-α-GFP-W, was the most efficient and provided the most durable transgene expression of the vectors tested. Transduction with this vector did not adversely affect MSC morphology, viability or differentiation potential, and transgene expression levels were unaffected by cryopreservation of transduced cells. Over-expression of HSP70 resulted in enhanced MSC survival and increased resistance to apoptosis in conditions of hypoxia and ischaemia. MSC differentiation capacity was significantly reduced after oxygen deprivation, but was preserved with HSP70 over-expression.
Collectively, these data validate the use of lentiviral vectors for efficient in vitro gene delivery to MSCs and suggest that lentiviral vector transduction can facilitate sustained therapeutic gene expression, providing an efficient tool for ex vivo MSC modification. Furthermore, lentiviral mediated over-expression of therapeutic genes in MSCs may provide protection in an ischaemic environment and enable MSCs to function in a regenerative manner, in part through maintaining the ability to differentiate. This finding may have considerable significance in improving the efficacy of MSC-based therapies.
PMCID: PMC3226283  PMID: 21385372
21.  Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach 
Scientific Reports  2016;6:34393.
Cryopreservation of human umbilical vein endothelial cells (HUVECs) facilitated their commercial availability for use in vascular biology, tissue engineering and drug delivery research; however, the key variables in HUVEC cryopreservation have not been comprehensively studied. HUVECs are typically cryopreserved by cooling at 1 °C/min in the presence of 10% dimethyl sulfoxide (DMSO). We applied interrupted slow cooling (graded freezing) and interrupted rapid cooling with a hold time (two-step freezing) to identify where in the cooling process cryoinjury to HUVECs occurs. We found that linear cooling at 1 °C/min resulted in higher membrane integrities than linear cooling at 0.2 °C/min or nonlinear two-step freezing. DMSO addition procedures and compositions were also investigated. By combining hydroxyethyl starch with DMSO, HUVEC viability after cryopreservation was improved compared to measured viabilities of commercially available cryopreserved HUVECs and viabilities for HUVEC cryopreservation studies reported in the literature. Furthermore, HUVECs cryopreserved using our improved procedure showed high tube forming capability in a post-thaw angiogenesis assay, a standard indicator of endothelial cell function. As well as presenting superior cryopreservation procedures for HUVECs, the methods developed here can serve as a model to optimize the cryopreservation of other cells.
PMCID: PMC5052637  PMID: 27708349
22.  Cryopreservation in Trehalose Preserves Functional Capacity of Murine Spermatogonial Stem Cells 
PLoS ONE  2013;8(1):e54889.
Development of techniques to isolate, culture, and transplant human spermatogonial stem cells (SSCs) has the future potential to treat male infertility. To maximize the efficiency of these techniques, methods for SSC cryopreservation need to be developed to bank SSCs for extended periods of time. Although, it has been demonstrated that SSCs can reinitiate spermatogenesis after freezing, optimal cryopreservation protocols that maximize SSC proliferative capacity post-thaw have not been identified. The objective of this study was to develop an efficient cryopreservation technique for preservation of SSCs. To identify efficient cryopreservation methods for long-term preservation of SSCs, isolated testis cells enriched for SSCs were placed in medium containing dimethyl sulfoxide (DMSO) or DMSO and trehalose (50 mM, 100 mM, or 200 mM), and frozen in liquid nitrogen for 1 week, 1 month, or 3 months. Freezing in 50 mM trehalose resulted in significantly higher cell viability compared to DMSO at all thawing times and a higher proliferation rate compared to DMSO for the 1 week freezing period. Freezing in 200 mM trehalose did not result in increased cell viability; however, proliferation activity was significantly higher and percentage of apoptotic cells was significantly lower compared to DMSO after freezing for 1 and 3 months. To confirm the functionality of SSCs frozen in 200 mM trehalose, SSC transplantation was performed. Donor SSCs formed spermatogenic colonies and sperm capable of generating normal progeny. Collectively, these results indicate that freezing in DMSO with 200 mM trehalose serves as an efficient method for the cryopreservation of SSCs.
PMCID: PMC3551902  PMID: 23349986
23.  Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells 
Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC.
PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation.
PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL.
The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures.
PMCID: PMC3918216  PMID: 24467837
Blood component preparations; Cellular therapy; Mesenchymal stem cells; Platelet lysate
24.  Improved Post-Thaw Recovery of Peripheral Blood Stem/Progenitor Cells Using a Novel Intracellular-like Cryopreservation Solution 
Cytotherapy  2009;11(4):472-479.
Peripheral blood stem cells (PBSC) have become the preferred stem cell source for autologous hematopoietic transplantation. A critical aspect of this treatment modality is cryopreservation of the stem cell products, which permits temporal separation of the PBSC mobilization/collection phase from the subsequent high-dose therapy. While controlled rate freezing and liquid nitrogen storage have become “routine” practice in many cell processing facilities, there is clearly room for improvement, as current cryopreservation media formulations still result in significant loss and damage to the stem/progenitor cell populations essential for engraftment, and can also expose the patients to relatively undefined serum components and larger volumes of DMSO that can contribute to the morbidity and mortality of the transplant therapy.
This study compared cryopreservation of PBSC in a novel intracellular-like, fully defined, serum- and protein-free preservation solution, CryoStor™ (BioLife Solutions, Inc.), with a standard formulation used by the Fred Hutchinson Cancer Research Center (FHCRC). Briefly, human PBSC apheresis specimens were collected and 5 × 107 cells/1 ml sample vial were prepared for cryopreservation in the following solutions: 1) FHCRC standard – Normosol-R, 5% HSA, 10% DMSO, and 2) CryoStor™ CS10 (final diluted conc. of 5% DMSO). A standard controlled-rate freezing program was employed, and frozen vials were stored in the vapor phase of a liquid nitrogen freezer for a minimum of one week. Vials were then thawed and evaluated for TNC, Viability, CD34, and granulocytes by flow cytometry, along with colony-forming activity in methylcellulose.
The PBSC samples frozen in CryoStor™ CS10 yielded significantly improved post-thaw recoveries for total viable CD34+, CFU, and viable granulocytes. Specifically, relative to the FHCRC standard formulation, cryopreservation with CS10 resulted in an average 1.8 fold increased recovery of viable CD34+ cells (P = 0.005), a 1.5 fold increase in CFU-GM numbers (P = 0.030), and a 2.3 fold increase in granulocyte recovery (P = 0.045).
This study indicates that use of CryoStor™ for cryopreservation can yield significantly improved recovery and in vitro functionality of the stem/progenitor cells in PBSC products. In addition, it is important to note that these improved recoveries were obtained while also not introducing any extra serum or serum-derived proteins, and reducing the final concentration/volume of DMSO by half. Further in vitro and in vivo studies are clearly necessary, however these findings imply use of CryoStor™ for cryopreservation might ultimately result in improved engraftment for those patients with lower content of CD34+ cells in their PBSC collections, along with reducing the requirement for additional apheresis collections, and decreasing the risk of adverse infusion reactions associated with higher exposure to DMSO.
PMCID: PMC3021966  PMID: 19499402
Cryopreservation; CryoStor; CD34+; CFU-GM; PBSC
25.  Evaluation of Sericin as a Fetal Bovine Serum-Replacing Cryoprotectant During Freezing of Human Mesenchymal Stromal Cells and Human Osteoblast-Like Cells 
Biopreservation and Biobanking  2014;12(2):99-105.
A reliable, cryoprotective, xeno-free medium suitable for different cell types is highly desirable in regenerative medicine. There is danger of infection or allergic reaction with the use of fetal bovine serum (FBS), making it problematic for medical applications. The aim of the present study was to develop an FBS-free cryoprotective medium for human mesenchymal stromal cells (hMSCs; primary cells) and immortalized human osteoblasts (SAOS-2 cell line). Furthermore, we endeavored to eliminate or reduce the presence of dimethyl sulfoxide (DMSO) in the medium. Sericin, a sticky protein derived from the silkworm cocoon, was investigated as a substitute for FBS and DMSO in the freezing medium. Cell viability (24 hours after thawing, both hMSC and SAOS-2) and colony-forming ability (2 weeks after thawing, only for hMSCs) were both determined. The FBS-free medium with 1% sericin in 10% DMSO was found to be a suitable freezing medium for primary hMSCs, in contrast to immortalized human osteoblasts. Surprisingly, the storage of hMSCs in a cultivation medium with only 10% DMSO also provided satisfactory results. Any drop in DMSO concentration led to significantly worse survival of cells, with little improvement in hMSC survival in the presence of sericin. Thus, sericin may substitute for FBS in the freezing medium for primary hMSCs, but cannot substitute for DMSO.
PMCID: PMC3995509  PMID: 24749876

Results 1-25 (1614542)