Search tips
Search criteria

Results 1-25 (1147625)

Clipboard (0)

Related Articles

1.  MIR846 and MIR842 comprise a cistronic MIRNA pair that is regulated by abscisic acid by alternative splicing in roots of Arabidopsis 
Plant molecular biology  2013;81(4-5):447-460.
MicroRNAs (miRNAs) are ~21-nucleotide long endogenous small RNAs that regulate gene expression through post-transcriptional or transcriptional gene silencing (PTGS/TGS) and/or translational inhibition. miRNAs can arise from the “exon” of a MIRNA gene, from an intron (e.g. mirtrons in animals), or from the antisense strand of a protein coding gene (natural antisense microRNAs, nat-miRNAs). Here we demonstrate that two functionally related miRNAs, miR842 and miR846, arise from the same transcription unit but from alternate splicing isoforms. miR846 is expressed only from Isoform1 while in Isoforms2 and -3, a part of pre-miR846 containing the miRNA* sequence is included in the intron. The splicing of the intron truncates the pre-MIRNA and disrupts the expression of the mature miR846.. We name this novel phenomenon splicing-regulated miRNA. Abscisic acid (ABA) is shown to mediate the alternative splicing event by reducing the functional Isoform1 and increasing the non-functional Isoform3, thus repressing the expression of miR846 concomitant with accumulation of an ABA-inducible target jacalin At5g28520 mRNA, whose cleavage was shown by modified 5′-RACE. This regulation shows the functional importance of splicing-regulated miRNA and suggests possible mechanisms for altered ABA response phenotypes of miRNA biogenesis mutants. A. lyrata-MIR842 and Aly-MIR846 have conserved genomic arrangements with A. thaliana and candidate target jacalins, similar primary transcript structures and intron processing, and better miRNA-miRNA* pairings, suggesting that the interactions between ABA, MIR842, MIR846 and jacalins are similar in A. lyrata. Together, splicing-regulated miRNAs, nat-miRNAs/inc-miRNAs and mirtrons illustrate the complexity of MIRNA genes, the importance of introns in the biogenesis and regulation of miRNAs, and raise questions about the processes and molecular mechanisms that drive MIRNA evolution.
PMCID: PMC3581712  PMID: 23341152
alternative splicing; microRNA; root; abscisic acid; plant development; pri-miRNA
2.  Inter- and intra-combinatorial regulation by transcription factors and microRNAs 
BMC Genomics  2007;8:396.
MicroRNAs (miRNAs) are a novel class of non-coding small RNAs. In mammalian cells, miRNAs repress the translation of messenger RNAs (mRNAs) or degrade mRNAs. miRNAs play important roles in development and differentiation, and they are also implicated in aging, and oncogenesis. Predictions of targets of miRNAs suggest that they may regulate more than one-third of all genes. The overall functions of mammalian miRNAs remain unclear. Combinatorial regulation by transcription factors alone or miRNAs alone offers a wide range of regulatory programs. However, joining transcriptional and post-transcriptional regulatory mechanisms enables higher complexity regulatory programs that in turn could give cells evolutionary advantages. Investigating coordinated regulation of genes by miRNAs and transcription factors (TFs) from a statistical standpoint is a first step that may elucidate some of their roles in various biological processes.
Here, we studied the nature and scope of coordination among regulators from the transcriptional and miRNA regulatory layers in the human genome. Our findings are based on genome wide statistical assessment of regulatory associations ("interactions") among the sets of predicted targets of miRNAs and sets of putative targets of transcription factors. We found that combinatorial regulation by transcription factor pairs and miRNA pairs is much more abundant than the combinatorial regulation by TF-miRNA pairs. In addition, many of the strongly interacting TF-miRNA pairs involve a subset of master TF regulators that co-regulate genes in coordination with almost any miRNA. Application of standard measures for evaluating the degree of interaction between pairs of regulators show that strongly interacting TF-miRNA, TF-TF or miRNA-miRNA pairs tend to include TFs or miRNAs that regulate very large numbers of genes. To correct for this potential bias we introduced an additional Bayesian measure that incorporates not only how significant an interaction is but also how strong it is. Putative pairs of regulators selected by this procedure are more likely to have biological coordination. Importantly, we found that the probability of a TF-miRNA pair forming feed forward loops with its common target genes (where the miRNA simultaneously suppresses the TF and many of its targets) is increased for strongly interacting TF-miRNA pairs.
Genes are more likely to be co-regulated by pairs of TFs or pairs of miRNAs than by pairs of TF-miRNA, perhaps due to higher probability of evolutionary duplication events of shorter DNA sequences. Nevertheless, many gene sets are reciprocally regulated by strongly interacting pairs of TF-miRNA, which suggests an effective mechanism to suppress functionally related proteins. Moreover, the particular type of feed forward loop (with two opposing modes where the TF activates its target genes or the miRNA simultaneously suppresses this TF and the TF-miRNA joint target genes) is more prevalent among strongly interacting TF-miRNA pairs. This may be attributed to a process that prevents waste of cellular resources or a mechanism to accelerate mRNA degradation.
PMCID: PMC2206040  PMID: 17971223
3.  Feed-Forward Microprocessing and Splicing Activities at a MicroRNA–Containing Intron 
PLoS Genetics  2011;7(10):e1002330.
The majority of mammalian microRNA (miRNA) genes reside within introns of protein-encoding and non-coding genes, yet the mechanisms coordinating primary transcript processing into both mature miRNA and spliced mRNA are poorly understood. Analysis of melanoma invasion suppressor miR-211 expressed from intron 6 of melastatin revealed that microprocessing of miR-211 promotes splicing of the exon 6–exon 7 junction of melastatin by a mechanism requiring the RNase III activity of Drosha. Additionally, mutations in the 5′ splice site (5′SS), but not in the 3′SS, branch point, or polypyrimidine tract of intron 6 reduced miR-211 biogenesis and Drosha recruitment to intron 6, indicating that 5′SS recognition by the spliceosome promotes microprocessing of miR-211. Globally, knockdown of U1 splicing factors reduced intronic miRNA expression. Our data demonstrate novel mutually-cooperative microprocessing and splicing activities at an intronic miRNA locus and suggest that the initiation of spliceosome assembly may promote microprocessing of intronic miRNAs.
Author Summary
MicroRNA (miRNA) genes are transcribed as long primary RNAs containing local hairpins that are excised by the Microprocessor complex minimally composed of Drosha and DGCR8. Most mammalian miRNAs reside in introns of protein-encoding and non-coding genes, but it is unclear how microprocessing of an intronic miRNA and splicing at the host gene intron affect each other. We recently reported that in melanoma, a miRNA expressed from intron 6 of melastatin (miR-211) assumes the tumor suppressive function of its host gene. In our current work, we detected elevated melastatin exon 6–exon 7 junctions relative to other exon-exon junctions that lack intronic miRNAs, suggesting that microprocessing promotes splicing. We show that microprocessing of miR-211 precedes completion of splicing of the exon 6–exon 7 junctions and that Drosha's endonuclease activity is required to facilitate exon 6–exon 7 junction formation. Additionally, we found that the first step of spliceosome assembly, recognition of the 5′ splice site by the U1 snRNP complex, promotes microprocessing of miR-211 and other intronic but not intergenic miRNAs. Our findings reveal a mutually cooperative, physical, and functional coupling of intronic miRNA biogenesis and splicing at the host intron, and they suggest a global positive effect of spliceosome assembly on intronic miRNA microprocessing.
PMCID: PMC3197686  PMID: 22028668
4.  Drosha Promotes Splicing of a Pre-microRNA-like Alternative Exon 
PLoS Genetics  2014;10(5):e1004312.
The ribonuclease III enzyme Drosha has a central role in the biogenesis of microRNA (miRNA) by binding and cleaving hairpin structures in primary RNA transcripts into precursor miRNAs (pre-miRNAs). Many miRNA genes are located within protein-coding host genes and cleaved by Drosha in a manner that is coincident with splicing of introns by the spliceosome. The close proximity of splicing and pre-miRNA biogenesis suggests a potential for co-regulation of miRNA and host gene expression, though this relationship is not completely understood. Here, we describe a cleavage-independent role for Drosha in the splicing of an exon that has a predicted hairpin structure resembling a Drosha substrate. We find that Drosha can cleave the alternatively spliced exon 5 of the eIF4H gene into a pre-miRNA both in vitro and in cells. However, the primary role of Drosha in eIF4H gene expression is to promote the splicing of exon 5. Drosha binds to the exon and enhances splicing in a manner that depends on RNA structure but not on cleavage by Drosha. We conclude that Drosha can function like a splicing enhancer and promote exon inclusion. Our results reveal a new mechanism of alternative splicing regulation involving a cleavage-independent role for Drosha in splicing.
Author Summary
MicroRNAs (miRNAs) are short non-coding RNAs that function in gene silencing and are produced by cleavage from a larger primary RNA transcript through a reaction that is carried out by the Microprocessor. Primary miRNA transcripts are often located within the introns of genes. Thus, both the Microprocessor and the spliceosome, which is responsible for pre-mRNA splicing, interact with the same sequences, though little is known about how these two processes influence each other. In this study, we discovered that the alternatively spliced eIF4H exon 5 is predicted to form an RNA hairpin that resembles a Microprocessor substrate. We found that the Microprocessor can bind and cleave exon 5, which precludes inclusion of the exon in the mRNA. However, we find that Drosha, a component of the Microprocessor, primarily functions to enhance exon 5 splicing both in vitro and in cells, rather than to cleave the RNA. Our results suggest that the Microprocessor has a role in splicing that is distinct from its role in miRNA biogenesis. This Microprocessor activity represents a new function for the complex that may be an important mechanism for regulating alternative splicing.
PMCID: PMC4006729  PMID: 24786770
5.  Genome organization and characteristics of soybean microRNAs 
BMC Genomics  2012;13:169.
microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets.
We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean.
Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development.
PMCID: PMC3481472  PMID: 22559273
microRNA; Soybean; Genome organization; Evolution; Nodulation
6.  Intragenomic Matching Reveals a Huge Potential for miRNA-Mediated Regulation in Plants 
PLoS Computational Biology  2007;3(11):e238.
microRNAs (miRNAs) are important post-transcriptional regulators, but the extent of this regulation is uncertain, both with regard to the number of miRNA genes and their targets. Using an algorithm based on intragenomic matching of potential miRNAs and their targets coupled with support vector machine classification of miRNA precursors, we explore the potential for regulation by miRNAs in three plant genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. We find that the intragenomic matching in conjunction with a supervised learning approach contains enough information to allow reliable computational prediction of miRNA candidates without requiring conservation across species. Using this method, we identify ∼1,200, ∼2,500, and ∼2,100 miRNA candidate genes capable of extensive base-pairing to potential target mRNAs in A. thaliana, P. trichocarpa, and O. sativa, respectively. This is more than five times the number of currently annotated miRNAs in the plants. Many of these candidates are derived from repeat regions, yet they seem to contain the features necessary for correct processing by the miRNA machinery. Conservation analysis indicates that only a few of the candidates are conserved between the species. We conclude that there is a large potential for miRNA-mediated regulatory interactions encoded in the genomes of the investigated plants. We hypothesize that some of these interactions may be realized under special environmental conditions, while others can readily be recruited when organisms diverge and adapt to new niches.
Author Summary
microRNAs (miRNAs) are small RNA molecules that regulate gene expression by complementary basepairing to mRNAs. In plants, this base-pairing is almost perfect along the whole length of miRNAs. This long stretch of complementarity makes it relatively easy to make computational predictions of the targets for known miRNAs. To predict novel miRNA genes, we take advantage of this and reverse the target prediction: instead of predicting targets for known miRNAs, we predict novel miRNA candidates for all known mRNAs. Because matching between target and miRNA candidates is integral to the method, it is possible to achieve good predictions without having to rely on evolutionary conservation, as most other current methods do. This means that we can predict new miRNAs that are specific to an organism. Interestingly, this could help explain the difference between species that have very similar protein-coding genes, but highly different phenotypes. Furthermore, it turns out that many of these new miRNA candidates derive from genomic repeat regions such as transposons, which points to a possible active role for repeats/transposons in the regulation of gene expression.
PMCID: PMC2098865  PMID: 18052543
7.  Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data 
PLoS ONE  2009;4(4):e5279.
MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown.
We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters.
miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex.
PMCID: PMC2668758  PMID: 19390574
8.  Genome-Wide Identification and Comparative Analysis of Conserved and Novel MicroRNAs in Grafted Watermelon by High-Throughput Sequencing 
PLoS ONE  2013;8(2):e57359.
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs involved in the post-transcriptional gene regulation and play a critical role in plant growth, development and stresses response. However less is known about miRNAs involvement in grafting behaviors, especially with the watermelon (Citrullus lanatus L.) crop, which is one of the most important agricultural crops worldwide. Grafting method is commonly used in watermelon production in attempts to improve its adaptation to abiotic and biotic stresses, in particular to the soil-borne fusarium wilt disease. In this study, Solexa sequencing has been used to discover small RNA populations and compare miRNAs on genome-wide scale in watermelon grafting system. A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known miRNA families and 15 novel miRNAs) and 47 (17 known miRNA families and 30 novel miRNAs) miRNAs were expressed significantly different in watermelon grafted on to bottle gourd and squash, respectively. MiRNAs expressed differentially when watermelon was grafted onto different rootstocks, suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expressions to regulate plant growth and development as well as adaptation to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular aspects of miRNA-mediated regulation in grafted watermelon. Obviously, this result would provide a basis for further unravelling the mechanism on how miRNAs information is exchanged between scion and rootstock in grafted watermelon, and its relevance to diverse biological processes and environmental adaptation.
PMCID: PMC3582568  PMID: 23468976
9.  LIN-42, the Caenorhabditis elegans PERIOD homolog, Negatively Regulates MicroRNA Transcription 
PLoS Genetics  2014;10(7):e1004486.
During C. elegans development, microRNAs (miRNAs) function as molecular switches that define temporal gene expression and cell lineage patterns in a dosage-dependent manner. It is critical, therefore, that the expression of miRNAs be tightly regulated so that target mRNA expression is properly controlled. The molecular mechanisms that function to optimize or control miRNA levels during development are unknown. Here we find that mutations in lin-42, the C. elegans homolog of the circadian-related period gene, suppress multiple dosage-dependent miRNA phenotypes including those involved in developmental timing and neuronal cell fate determination. Analysis of mature miRNA levels in lin-42 mutants indicates that lin-42 functions to attenuate miRNA expression. Through the analysis of transcriptional reporters, we show that the upstream cis-acting regulatory regions of several miRNA genes are sufficient to promote highly dynamic transcription that is coupled to the molting cycles of post-embryonic development. Immunoprecipitation of LIN-42 complexes indicates that LIN-42 binds the putative cis-regulatory regions of both non-coding and protein-coding genes and likely plays a role in regulating their transcription. Consistent with this hypothesis, analysis of miRNA transcriptional reporters in lin-42 mutants indicates that lin-42 regulates miRNA transcription. Surprisingly, strong loss-of-function mutations in lin-42 do not abolish the oscillatory expression patterns of lin-4 and let-7 transcription but lead to increased expression of these genes. We propose that lin-42 functions to negatively regulate the transcriptional output of multiple miRNAs and mRNAs and therefore coordinates the expression levels of genes that dictate temporal cell fate with other regulatory programs that promote rhythmic gene expression.
Author Summary
MicroRNAs play pervasive roles in controlling gene expression throughout animal development. Given that individual microRNAs are predicted to regulate hundreds of mRNAs and that most mRNA transcripts are microRNA targets, it is essential that the expression levels of microRNAs be tightly regulated. With the goal of unveiling factors that regulate the expression of microRNAs that control developmental timing, we identified lin-42, the C. elegans homolog of the human and Drosophila period gene implicated in circadian gene regulation, as a negative regulator of microRNA expression. By analyzing the transcriptional expression patterns of representative microRNAs, we found that the transcription of many microRNAs is normally highly dynamic and coupled aspects of post-embryonic growth and behavior. We suggest that lin-42 functions to modulate the transcriptional output of temporally-regulated microRNAs and mRNAs in order to maintain optimal expression of these genes throughout development.
PMCID: PMC4102445  PMID: 25032706
10.  Auto-regulation of miRNA biogenesis by let-7 and Argonaute 
Nature  2012;486(7404):541-544.
MicroRNAs (miRNAs) comprise a large family of small RNA molecules that post-transcriptionally regulate gene expression in many biological pathways1. Most miRNAs are derived from long primary transcripts that undergo processing by Drosha to produce ~65 nucleotide (nt) precursors that are then cleaved by Dicer, resulting in the mature 22 nt forms2,3. Serving as guides in Argonaute protein complexes, mature miRNAs use imperfect base-pairing to recognize sequences in mRNA transcripts, leading to translational repression and destabilization of the target mRNAs4,5. Here we show that the miRNA complex also targets and regulates non-coding RNAs (ncRNAs) that serve as substrates for the miRNA processing pathway. We found that the C. elegans Argonaute, ALG-1, binds to a specific site at the 3′ end of let-7 miRNA primary transcripts and promotes downstream processing events. This interaction is mediated by mature let-7 miRNA via a conserved complementary site in its own primary transcript, thus creating a positive feedback loop. We further show that ALG-1 associates with let-7 primary transcripts in nuclear fractions. Argonaute also binds let-7 primary transcripts in human cells, demonstrating that the miRNA pathway targets non-coding RNAs in addition to protein-coding mRNAs across species. Moreover, our studies in C. elegans reveal a novel role for Argonaute in promoting biogenesis of a targeted transcript, expanding the functions of the miRNA pathway in gene regulation. This discovery of auto-regulation of let-7 biogenesis sets a new paradigm for controlling miRNA expression.
PMCID: PMC3387326  PMID: 22722835
11.  Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques 
By integrating genotype information, microRNA transcript abundances and mRNA expression levels, Eric Schadt and colleagues provide insights into the genetic basis of microRNA gene expression and the role of microRNAs within the liver gene-regulatory network.
This article demonstrates how integrative genomics techniques can be used to investigate novel classes of RNA molecules. Moreover, it represents one of the first examinations of the genetic basis of variation in miRNA gene expression.Our results suggest that miRNA transcript abundances are under more complex regulation than previously observed for mRNA abundances.We also demonstrate that miRNAs typically exist as highly connected hub nodes and function as key sensors within the liver transcriptional network.Additionally, our results provide support for two key hypotheses—namely, that miRNAs can act cooperatively or redundantly to regulate a given pathway, and that miRNAs play a subtle role by dampening expression of their target gene through the use of feedback loops.
Since their discovery less than two decades ago, microRNAs (miRNAs) have repeatedly been shown to play a regulatory role in important biological processes. These small single-stranded molecules have been found to regulate multiple pathways—such as developmental timing in worms; fat metabolism in flies; and stress response in plants—and have been established as key regulatory molecules with potential widespread influence on both fundamental biology and various diseases. In the past decade, a new approach referred to by a number of names (‘integrative genomics', ‘systems genetics' or ‘genetical genomics') has shown increasing levels of success in elucidating the complex relationships found in gene regulatory networks. This approach leverages multiple layers of information (such as genotype, gene expression and phenotype) to infer causal associations that are then used for a number of different purposes, including identifying drivers of diseases and characterizing molecular networks. More importantly, many of the causal relationships that have been identified using this approach have been experimentally tested and verified. By integrating miRNA transcript abundances with messenger RNA (mRNA) expression data and genetic data, we have demonstrated how integrative genomics approaches can be used to characterize the global role played by miRNAs within complex gene regulatory networks. Overall, we investigated approximately 30% of the registered mouse miRNAs with a focus on liver networks. Our analysis reveals that miRNAs exist as highly connected hub nodes and function as key sensors within the gene regulatory network. Further comparisons between the regulatory loci contributing to the variation observed in miRNA and mRNA expression levels indicate that while miRNAs are controlled by more loci than have previously been observed for mRNAs, the contribution from each locus is on average smaller for miRNAs. We also provide evidence supporting two key hypotheses in the field: (i) miRNAs can act cooperatively or redundantly to regulate a given pathway; and (ii) miRNAs may regulate expression of their target gene through the use of feedback loops.
Integrative genomics and genetics approaches have proven to be a useful tool in elucidating the complex relationships often found in gene regulatory networks. More importantly, a number of studies have provided the necessary experimental evidence confirming the validity of the causal relationships inferred using such an approach. By integrating messenger RNA (mRNA) expression data with microRNA (miRNA) (i.e. small non-coding RNA with well-established regulatory roles in a myriad of biological processes) expression data, we show how integrative genomics approaches can be used to characterize the role played by approximately a third of registered mouse miRNAs within the context of a liver gene regulatory network. Our analysis reveals that the transcript abundances of miRNAs are subject to regulatory control by many more loci than previously observed for mRNA expression. Moreover, our results indicate that miRNAs exist as highly connected hub-nodes and function as key sensors within the transcriptional network. We also provide evidence supporting the hypothesis that miRNAs can act cooperatively or redundantly to regulate a given pathway and that miRNAs play a subtle role by dampening expression of their target gene through the use of feedback loops.
PMCID: PMC3130556  PMID: 21613979
causal associations; eQTL mapping; expression QTL; microRNA
12.  A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana 
PLoS Genetics  2010;6(7):e1001031.
Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ∼20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants.
Author Summary
MiRNAs are small RNA molecules that play an important role in regulating gene function, both in animals and in plants. In plants, miRNA target mimicry is an endogenous mechanism used to negatively regulate the activity of a specific miRNA family, through the production of a false target transcript that cannot be cleaved. This mechanism can be engineered to target different miRNA families. Using this technique, we have generated artificial target mimics predicted to reduce the activity of most of the miRNA families in Arabidopsis thaliana and have observed their effects on plant development. We found that deeply conserved miRNAs tend to have a strong impact on plant growth, while more recently evolved ones had generally less obvious effects, suggesting either that they primarily affect processes other than development, or else that they have more subtle or conditional functions or are even dispensable. In several cases, the effects on plant development that we observed closely resembled those seen in plants expressing miRNA–resistant versions of the major predicted targets, indicating that a limited number of targets mediates most effects of these miRNAs. Analyses of mimic expressing plants also support that plant miRNAs affect both transcript stability and protein accumulation. The artificial target mimic collection will be a useful resource to further investigate the function of individual miRNA families.
PMCID: PMC2908682  PMID: 20661442
13.  The evolution of core proteins involved in microRNA biogenesis 
MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs (ncRNAs) which play important roles in eukaryotic gene regulation. miRNA biogenesis and activation is a complex process involving multiple protein catalysts and involves the large macromolecular RNAi Silencing Complex or RISC. While phylogenetic analyses of miRNA genes have been previously published, the evolution of miRNA biogenesis itself has been little studied. In order to better understand the origin of miRNA processing in animals and plants, we determined the phyletic occurrences and evolutionary relationships of four major miRNA pathway protein components; Dicer, Argonaute, RISC RNA-binding proteins, and Exportin-5.
Phylogenetic analyses show that all four miRNA pathway proteins were derived from large multiple protein families. As an example, vertebrate and invertebrate Argonaute (Ago) proteins diverged from a larger family of PIWI/Argonaute proteins found throughout eukaryotes. Further gene duplications among vertebrates after the evolution of chordates from urochordates but prior to the emergence of fishes lead to the evolution of four Ago paralogues. Invertebrate RISC RNA-binding proteins R2D2 and Loquacious are related to other RNA-binding protein families such as Staufens as well as vertebrate-specific TAR (HIV trans-activator RNA) RNA-binding protein (TRBP) and protein kinase R-activating protein (PACT). Export of small RNAs from the nucleus, including miRNA, is facilitated by three closely related karyopherin-related nuclear transporters, Exportin-5, Exportin-1 and Exportin-T. While all three exportins have direct orthologues in deutrostomes, missing exportins in arthropods (Exportin-T) and nematodes (Exportin-5) are likely compensated by dual specificities of one of the other exportin paralogues.
Co-opting particular isoforms from large, diverse protein families seems to be a common theme in the evolution of miRNA biogenesis. Human miRNA biogenesis proteins have direct, orthologues in cold-blooded fishes and, in some cases, urochordates and deutrostomes. However, lineage specific expansions of Dicer in plants and invertebrates as well as Argonaute and RNA-binding proteins in vertebrates suggests that novel ncRNA regulatory mechanisms can evolve in relatively short evolutionary timeframes. The occurrence of multiple homologues to RNA-binding and Argonaute/PIWI proteins also suggests the possible existence of further pathways for additional types of ncRNAs.
PMCID: PMC2287173  PMID: 18366743
14.  Functional Analysis of Neuronal MicroRNAs in Caenorhabditis elegans Dauer Formation by Combinational Genetics and Neuronal miRISC Immunoprecipitation 
PLoS Genetics  2013;9(6):e1003592.
Identifying the physiological functions of microRNAs (miRNAs) is often challenging because miRNAs commonly impact gene expression under specific physiological conditions through complex miRNA::mRNA interaction networks and in coordination with other means of gene regulation, such as transcriptional regulation and protein degradation. Such complexity creates difficulties in dissecting miRNA functions through traditional genetic methods using individual miRNA mutations. To investigate the physiological functions of miRNAs in neurons, we combined a genetic “enhancer” approach complemented by biochemical analysis of neuronal miRNA-induced silencing complexes (miRISCs) in C. elegans. Total miRNA function can be compromised by mutating one of the two GW182 proteins (AIN-1), an important component of miRISC. We found that combining an ain-1 mutation with a mutation in unc-3, a neuronal transcription factor, resulted in an inappropriate entrance into the stress-induced, alternative larval stage known as dauer, indicating a role of miRNAs in preventing aberrant dauer formation. Analysis of this genetic interaction suggests that neuronal miRNAs perform such a role partly by regulating endogenous cyclic guanosine monophosphate (cGMP) signaling, potentially influencing two other dauer-regulating pathways. Through tissue-specific immunoprecipitations of miRISC, we identified miRNAs and their likely target mRNAs within neuronal tissue. We verified the biological relevance of several of these miRNAs and found that many miRNAs likely regulate dauer formation through multiple dauer-related targets. Further analysis of target mRNAs suggests potential miRNA involvement in various neuronal processes, but the importance of these miRNA::mRNA interactions remains unclear. Finally, we found that neuronal genes may be more highly regulated by miRNAs than intestinal genes. Overall, our study identifies miRNAs and their targets, and a physiological function of these miRNAs in neurons. It also suggests that compromising other aspects of gene expression, along with miRISC, can be an effective approach to reveal miRNA functions in specific tissues under specific physiological conditions.
Author Summary
MicroRNAs (miRNAs) are important in the regulation of gene expression and are present in many organisms. To identify specific biological processes that are regulated by miRNAs, we disturbed total miRNA function under a certain genetic background and searched for defects. Interestingly, we found a prominent developmental defect that was dependent on a mutation in another gene involved in regulating transcription in neurons. Thus, by compromising two different aspects of gene regulation, we were able to identify a specific biological function of miRNAs. By investigating this defect, we determined that neuronal miRNAs likely function to help modulate cyclic guanosine monophosphate signaling. We then took a systematic approach and identified many miRNAs and genes that are likely to be regulated by neuronal miRNAs, and in doing so, we found genes involved in the initial defect. Additionally, we found many other genes, and show that genes expressed in neurons seem to be more regulated by miRNAs than genes in the intestine. Through our study, we identify a biological function of neuronal miRNAs and provide data that will help in identifying other important, novel, and exciting roles of this important class of small RNAs.
PMCID: PMC3688502  PMID: 23818874
15.  Development-associated microRNAs in grains of wheat (Triticum aestivum L.) 
BMC Plant Biology  2013;13:140.
MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes by mRNA degradation or translational repression. Numerous plant miRNAs have been identified. Evidence is increasing for their crucial roles during plant development. In the globally important crop of wheat (Triticum aestivum L.), the process by which grains are formed determines yield and end-use quality. However, little is known about miRNA-mediated developmental regulation of grain production. Here, we applied high-throughput sRNA sequencing and genome-wide mining to identify miRNAs potentially involved in the developmental regulation of wheat grains.
Four sRNA libraries were generated and sequenced from developing grains sampled at 5, 15, 25, and 30 days after pollination (DAP). Through integrative analysis, we identified 605 miRNAs (representing 540 families) and found that 86 are possibly involved in the control of grain-filling. Additionally, 268 novel miRNAs (182 families) were identified, with 18 of them also potentially related to that maturation process. Our target predictions indicated that the 104 grain filling-associated miRNAs might target a set of wheat genes involved in various biological processes, including the metabolism of carbohydrates and proteins, transcription, cellular transport, cell organization and biogenesis, stress responses, signal transduction, and phytohormone signaling. Together, these results demonstrate that the developmental steps by which wheat grains are filled is correlated with miRNA-mediated gene regulatory networks.
We identified 605 conserved and 268 novel miRNAs from wheat grains. Of these, 104 are potentially involved in the regulation of grain-filling. Our dataset provides a useful resource for investigating miRNA-mediated regulatory mechanisms in cereal grains, and our results suggest that miRNAs contribute to this regulation during a crucial phase in determining grain yield and flour quality.
PMCID: PMC4015866  PMID: 24060047
MicroRNA; Grain development; Wheat (Triticum aestivum L.)
16.  miRIAD—integrating microRNA inter- and intragenic data 
MicroRNAs (miRNAs) are a class of small (∼22 nucleotides) non-coding RNAs that post-transcriptionally regulate gene expression by interacting with target mRNAs. A majority of miRNAs is located within intronic or exonic regions of protein-coding genes (host genes), and increasing evidence suggests a functional relationship between these miRNAs and their host genes. Here, we introduce miRIAD, a web-service to facilitate the analysis of genomic and structural features of intragenic miRNAs and their host genes for five species (human, rhesus monkey, mouse, chicken and opossum). miRIAD contains the genomic classification of all miRNAs (inter- and intragenic), as well as classification of all protein-coding genes into host or non-host genes (depending on whether they contain an intragenic miRNA or not). We collected and processed public data from several sources to provide a clear visualization of relevant knowledge related to intragenic miRNAs, such as host gene function, genomic context, names of and references to intragenic miRNAs, miRNA binding sites, clusters of intragenic miRNAs, miRNA and host gene expression across different tissues and expression correlation for intragenic miRNAs and their host genes. Protein–protein interaction data are also presented for functional network analysis of host genes. In summary, miRIAD was designed to help the research community to explore, in a user-friendly environment, intragenic miRNAs, their host genes and functional annotations with minimal effort, facilitating hypothesis generation and in-silico validations.
Database URL:
PMCID: PMC4186326  PMID: 25288656
17.  Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats 
BMC Genomics  2014;15(1):512.
In the past, numerous studies revealed that supplementation with carnitine has multiple effects on performance characteristics and gene expression in livestock and model animals. The molecular mechanisms underlying these observations are still largely unknown. Increasing evidence suggests that microRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing several physiological and pathological processes. Based on these findings, the aim of the present study was to investigate the influence of carnitine supplementation on the miRNA expression profile in skeletal muscle of obese Zucker rats using miRNA microarray analysis.
Obese Zucker rats supplemented with carnitine had higher concentrations of total carnitine in plasma and muscle than obese control rats (P < 0.05). miRNA expression profiling in skeletal muscle revealed a subset of 152 miRNAs out of the total number of miRNAs analysed (259) were identified to be differentially regulated (adjusted P-value < 0.05) by carnitine supplementation. Compared to the obese control group, 111 miRNAs were up-regulated and 41 down-regulated by carnitine supplementation (adjusted P-value < 0.05). 14 of these miRNAs showed a log2 ratio ≥ 0.5 and 7 miRNAs showed a log2 ratio ≤ −0.5 (adjusted P-value < 0.05). After confirmation by qRT-PCR, 11 miRNAs were found to be up-regulated and 6 miRNAs were down-regulated by carnitine supplementation (P < 0.05). Furthermore, a total of 1,446 target genes within the validated miRNAs were revealed using combined three bioinformatic algorithms. Analysis of Gene Ontology (GO) categories and KEGG pathways of the predicted targets revealed that carnitine supplementation regulates miRNAs that target a large set of genes involved in protein-localization and -transport, regulation of transcription and RNA metabolic processes, as well as genes involved in several signal transduction pathways, like ubiquitin-mediated proteolysis and longterm depression, are targeted by the miRNAs regulated by carnitine supplementation.
The present study shows for the first time that supplementation of carnitine affects a large set of miRNAs in skeletal muscle of obese Zucker rats suggesting a novel mechanism through which carnitine exerts its multiple effects on gene expression, which were observed during the past.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-512) contains supplementary material, which is available to authorized users.
PMCID: PMC4078242  PMID: 24952657
Carnitine; microRNA expression profile; Microarray; Skeletal muscle; Obese Zucker rat
18.  Developmentally regulated expression and complex processing of barley pri-microRNAs 
BMC Genomics  2013;14:34.
MicroRNAs (miRNAs) regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19). However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely.
To investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3′ UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element.
Seven of the eight barley miRNA genes characterized in this study contain introns with their respective transcripts undergoing developmentally specific processing events prior to the dicing out of pre-miRNA species from their pri-miRNA precursors. The observed tendency to maintain the intron encoding miR156g within the transcript, and preferences in splicing the miR1126-harboring intron, may suggest the existence of specific regulation of the levels of intron-derived miRNAs in barley.
PMCID: PMC3558349  PMID: 23324356
MicroRNA; Pri-microRNA processing; MicroRNA genes; Splicing; Alternative splicing; Introns; Barley
19.  Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis 
BMC Plant Biology  2012;12:29.
microRNAs (miRNAs) are short RNA molecules that control gene expression by silencing complementary mRNA. They play a crucial role in stress response in plants, including biotic stress. Some miRNAs are known to respond to bacterial infection in Arabidopsis thaliana but it is currently unknown whether these responses are conserved in other plants and whether novel species-specific miRNAs could have a role in defense.
This work addresses the role of miRNAs in the Manihot esculenta (cassava)-Xanthomonas axonopodis pv. manihotis (Xam) interaction. Next-generation sequencing was used for analyzing small RNA libraries from cassava tissue infected and non-infected with Xam. A full repertoire of cassava miRNAs was characterized, which included 56 conserved families and 12 novel cassava-specific families. Endogenous targets were predicted in the cassava genome for many miRNA families. Some miRNA families' expression was increased in response to bacterial infection, including miRNAs known to mediate defense by targeting auxin-responding factors as well as some cassava-specific miRNAs. Some bacteria-repressed miRNAs included families involved in copper regulation as well as families targeting disease resistance genes. Putative transcription factor binding sites (TFBS) were identified in the MIRNA genes promoter region and compared to promoter regions in miRNA target genes and protein coding genes, revealing differences between MIRNA gene transcriptional regulation and other genes.
Taken together these results suggest that miRNAs in cassava play a role in defense against Xam, and that the mechanism is similar to what's known in Arabidopsis and involves some of the same families.
PMCID: PMC3337288  PMID: 22361011
20.  Genome-Wide and Species-Wide In Silico Screening for Intragenic MicroRNAs in Human, Mouse and Chicken 
PLoS ONE  2013;8(6):e65165.
MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) involved in regulation of gene expression. Intragenic miRNAs, especially those exhibiting a high degree of evolutionary conservation, have been shown to be coordinately regulated and/or expressed with their host genes, either with synergistic or antagonistic correlation patterns. However, the degree of cross-species conservation of miRNA/host gene co-location is not known and co-expression information is incomplete and fragmented among several studies. Using the genomic resources (miRBase and Ensembl) we performed a genome-wide in silico screening (GWISS) for miRNA/host gene pairs in three well-annotated vertebrate species: human, mouse, and chicken. Approximately half of currently annotated miRNA genes resided within host genes: 53.0% (849/1,600) in human, 48.8% (418/855) in mouse, and 42.0% (210/499) in chicken, which we present in a central publicly available Catalog of intragenic miRNAs ( The miRNA genes resided within either protein-coding or ncRNA genes, which include long intergenic ncRNAs (lincRNAs) and small nucleolar RNAs (snoRNAs). Twenty-seven miRNA genes were found to be located within the same host genes in all three species and the data integration from literature and databases showed that most (26/27) have been found to be co-expressed. Particularly interesting are miRNA genes located within genes encoding for miRNA silencing machinery (DGCR8, DICER1, and SND1 in human and Cnot3, Gdcr8, Eif4e, Tnrc6b, and Xpo5 in mouse). We furthermore discuss a potential for phenotype misattribution of miRNA host gene polymorphism or gene modification studies due to possible collateral effects on miRNAs hosted within them. In conclusion, the catalog of intragenic miRNAs and identified 27 miRNA/host gene pairs with cross-species conserved co-location, co-expression, and potential co-regulation, provide excellent candidates for further functional annotation of intragenic miRNAs in health and disease.
PMCID: PMC3675212  PMID: 23762306
21.  Profiles of Small Non-Coding RNAs in Schistosoma japonicum during Development 
The gene regulation mechanism along the life cycle of the genus Schistosoma is complex. Small non-coding RNAs (sncRNAs) are essential post transcriptional gene regulation elements that affect gene expression and mRNA stability. Preliminary studies indicated that sncRNAs in schistosomal parasites are generated through different pathways, which are developmentally regulated. However, the data of sncRNAs of schistosomal parasites are still fragmental and a complete expression profile of sncRNAs during the parasite development requires a deep investigation.
Methodology/Principal Findings
We employed high-throughput genome-wide transcriptome analytic techniques to explore the dynamic expression of microRNAs (miRNAs) and endogenous siRNAs (endo-siRNAs) of Schistosoma japonicum covering the free-living cercarial stage and all stages in the definitive host. This led us to analyze over 70 million clean reads represented both high and low abundance of the small RNA population. Patterns of differential expression of miRNAs and endo-siRNAs were observed. MiRNAs was twice more than endo-siRNAs in cercariae, but gradually decreased along with the development of the parasite. Both small RNA types were presented in equal aboudance in lung-stage schistosomula, while endo-siRNAs accumulated to 6 times more than miRNAs in adult female worms and hepatic eggs. Further, miRNAs were found mainly derived from genes located in the intergenic regions, while endo-siRNAs were mainly generated from transposable elements (TEs). The expression pattern of TE-siRNAs, as well as the pseudogene-derived siRNAs clustered in mRNAs of cytoskeletal proteins, stress proteins, enzymes related to energy metabolism also revealed distinction throughout different developmental stages. Natural antisense transcripts (NATs)-related siRNAs accounted for minor proportion of the endo-siRNAs which were dominantly expressed in cercariae.
Our results represented a comprehensive expression profile of sncRNAs in various developmental stages of S. japonicum with high accuracy and coverage. The data would facilitate a deep understanding of the parasite biology and potential discovery of novel targets for the design of anti-parasite drugs.
Author Summary
Schistosomiasis, a debilitating disease, caused by agents of the genus Schistosoma afflicts more than 200 million people worldwide. Schistosomes could serve as an interesting model to explore gene regulation due to its evolutional position, complex life cycle and sexual dimorphism. We previously indicated that sncRNA profile in the parasite S. japonicum was developmentally regulated in hepatic and adult stages. In this study, we systematically investigated mircoRNA (miRNA) and endogenous siRNA (endo-siRNA) profile in this parasite in more detailed developmental stages (cercariae, lung-stage schistosomula, separated adult worms, and liver tissue-trapped eggs) using high-throughput RNA sequencing technology. We observed that the ratio of miRNAs to endo-siRNAs was dynamically changed throughout different developmental stages of the parasite. MiRNAs were expressed dominantly in cercariae, while endo-siRNAs accumulated in adult female worms and hepatic eggs. We demonstrated that miRNAs were mostly derived from intergenic regions whereas siRNAs were mostly derived from transposable elements. We also annotated miRNAs and siRNAs with stage- and gender- biased expression. Our findings would facilitate to understand the gene regulation mechanism of this parasite and discover novel targets for anti-parasite drugs.
PMCID: PMC3149011  PMID: 21829742
22.  MicroRNAs in bovine adipogenesis: genomic context, expression and function 
BMC Genomics  2014;15:137.
MicroRNAs (miRNAs) are small non-coding RNAs found to regulate several biological processes including adipogenesis. Understanding adipose tissue regulation is critical for beef cattle as fat is an important determinant of beef quality and nutrient value. This study analyzed the association between genomic context characteristics of miRNAs with their expression and function in bovine adipose tissue. Twenty-four subcutaneous adipose tissue biopsies were obtained from eight British-continental crossbred steers at 3 different time points. Total RNA was extracted and miRNAs were profiled using a miRNA microarray with expression further validated by qRT-PCR.
A total of 224 miRNAs were detected of which 155 were expressed in all steers (n = 8), and defined as the core miRNAs of bovine subcutaneous adipose tissue. Core adipose miRNAs varied in terms of genomic location (59.5% intergenic, 38.7% intronic, 1.2% exonic, and 0.6% mirtron), organization (55.5% non-clustered and 44.5% clustered), and conservation (49% highly conserved, 14% conserved and 37% poorly conserved). Clustered miRNAs and highly conserved miRNAs were more highly expressed (p < 0.05) and had more predicted targets than non-clustered or less conserved miRNAs (p < 0.001). A total of 34 miRNAs were coordinately expressed, being part of six identified relevant networks. Two intronic miRNAs (miR-33a and miR-1281) were confirmed to have coordinated expression with their host genes, transcriptional factor SREBF2 and EP300 (a transcriptional co-activator of transcriptional factor C/EBPα), respectively which are involved in lipid metabolism, suggesting these miRNAs may also play a role in regulation of bovine lipid metabolism/adipogenesis. Furthermore, a total of 17 bovine specific miRNAs were predicted to be involved in the regulation of energy balance in adipose tissue.
These findings improve our understanding on the behavior of miRNAs in the regulation of bovine adipogenesis and fat metabolism as it reveals that miRNA expression patterns and functions are associated with miRNA genomic location, organization and conservation.
PMCID: PMC3930007  PMID: 24548287
Adipogenesis; Adipose tissue; Bovine; Fat metabolism; Genomic context; microRNA; Cluster; Co-expression; Species specific
23.  PRL1, an RNA-Binding Protein, Positively Regulates the Accumulation of miRNAs and siRNAs in Arabidopsis 
PLoS Genetics  2014;10(12):e1004841.
The evolutionary conserved WD-40 protein PRL1 plays important roles in immunity and development. Here we show that PRL1 is required for the accumulation of microRNAs (miRNAs) and small interfering RNAs (siRNAs). PRL1 positively influences the processing of miRNA primary transcripts (pri-miRNAs) and double-stranded RNAs (dsRNAs). Furthermore, PRL1 interacts with the pri-miRNA processor, DCL1, and the dsRNA processors (DCL3 and DCL4). These results suggest that PRL1 may function as a general factor to promote the production of miRNAs and siRNAs. We also show that PRL1 is an RNA-binding protein and associates with pri-miRNAs in vivo. In addition, prl1 reduces pri-miRNA levels without affecting pri-miRNA transcription. These results suggest that PRL1 may stabilize pri-miRNAs and function as a co-factor to enhance DCL1 activity. We further reveal the genetic interaction of PRL1 with CDC5, which interacts with PRL1 and regulates transcription and processing of pri-miRNAs. Both miRNA and pri-miRNA levels are lower in cdc5 prl1 than those in either cdc5 or prl1. However, the processing efficiency of pri-miRNAs in cdc5 prl1 is similar to that in cdc5 and slightly lower than that in prl1. Based on these results, we propose that CDC5 and PRL1 cooperatively regulate pri-miRNA levels, which results in their synergistic effects on miRNA accumulation, while they function together as a complex to enhance DCL1 activity.
Author Summary
PRL1, a conserved WD-40 protein, is required for plant development and immune responses. However, its functional mechanisms are not well understood. Here, we show the positive impact of PRL1 on the accumulation of miRNAs and siRNAs, which are key regulators of plant growth and immunity. PRL1 interacts with multiple DCLs (the processors of miRNAs and siRNAs) and is required for their optimal activities, suggesting that PRL1 acts as a general factor to facilitate the production of miRNAs and siRNAs. In addition, PRL1 is an RNA-binding protein, binds pri-miRNAs in vivo and positively influences the levels of pri-miRNAs levels without affecting the promoter activities of genes encoding pri-miRNAs. These results suggest that PRL1 may also stabilize pri-miRNAs. We further show that RPL1 and its interactor CDC5 (a DNA-binding protein) synergistically regulate pri-miRNA levels, resulting in enhanced effects on miRNA accumulation, although they function together as a complex to facilitate DCL1 activity.
PMCID: PMC4256206  PMID: 25474114
24.  A potential role for intragenic miRNAs on their hosts' interactome 
BMC Genomics  2010;11:533.
miRNAs are small, non-coding RNA molecules that mainly act as negative regulators of target gene messages. Due to their regulatory functions, they have lately been implicated in several diseases, including malignancies. Roughly half of known miRNA genes are located within previously annotated protein-coding regions ("intragenic miRNAs"). Although a role of intragenic miRNAs as negative feedback regulators has been speculated, to the best of our knowledge there have been no conclusive large-scale studies investigating the relationship between intragenic miRNAs and host genes and their pathways.
miRNA-containing host genes were three times longer, contained more introns and had longer 5' introns compared to a randomly sampled gene cohort. These results are consistent with the observation that more than 60% of intronic miRNAs are found within the first five 5' introns. Host gene 3'-untranslated regions (3'-UTRs) were 40% longer and contained significantly more adenylate/uridylate-rich elements (AREs) compared to a randomly sampled gene cohort. Coincidentally, recent literature suggests that several components of the miRNA biogenesis pathway are required for the rapid decay of mRNAs containing AREs. A high-confidence set of predicted mRNA targets of intragenic miRNAs also shared many of these features with the host genes. Approximately 20% of intragenic miRNAs were predicted to target their host mRNA transcript. Further, KEGG pathway analysis demonstrated that 22 of the 74 pathways in which host genes were associated showed significant overrepresentation of proteins encoded by the mRNA targets of associated intragenic miRNAs.
Our findings suggest that both host genes and intragenic miRNA targets may potentially be subject to multiple layers of regulation. Tight regulatory control of these genes is likely critical for cellular homeostasis and absence of disease. To this end, we examined the potential for negative feedback loops between intragenic miRNAs, host genes, and miRNA target genes. We describe, how higher-order miRNA feedback on hosts' interactomes may at least in part explain correlation patterns observed between expression of host genes and intragenic miRNA targets in healthy and tumor tissue.
PMCID: PMC3091682  PMID: 20920310
25.  Multiple distinct small RNAs originate from the same microRNA precursors 
Genome Biology  2010;11(8):R81.
MicroRNAs (miRNAs), which originate from precursor transcripts with stem-loop structures, are essential gene expression regulators in eukaryotes.
We report 19 miRNA precursors in Arabidopsis that can yield multiple distinct miRNA-like RNAs in addition to miRNAs and miRNA*s. These miRNA precursor-derived miRNA-like RNAs are often arranged in phase and form duplexes with an approximately two-nucleotide 3'-end overhang. Their production depends on the same biogenesis pathway as their sibling miRNAs and does not require RNA-dependent RNA polymerases or RNA polymerase IV. These miRNA-like RNAs are methylated, and many of them are associated with Argonaute proteins. Some of the miRNA-like RNAs are differentially expressed in response to bacterial challenges, and some are more abundant than the cognate miRNAs. Computational and expression analyses demonstrate that some of these miRNA-like RNAs are potentially functional and they target protein-coding genes for silencing. The function of some of these miRNA-like RNAs was further supported by their target cleavage products from the published small RNA degradome data. Our systematic examination of public small-RNA deep sequencing data from four additional plant species (Oryza sativa, Physcomitrella patens, Medicago truncatula and Populus trichocarpa) and four animals (Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila) shows that such miRNA-like RNAs exist broadly in eukaryotes.
We demonstrate that multiple miRNAs could derive from miRNA precursors by sequential processing of Dicer or Dicer-like proteins. Our results suggest that the pool of miRNAs is larger than was previously recognized, and miRNA-mediated gene regulation may be broader and more complex than previously thought.
PMCID: PMC2945783  PMID: 20696037

Results 1-25 (1147625)