PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1744189)

Clipboard (0)
None

Related Articles

1.  Rapid calcium-dependent activation of Aurora-A kinase  
Nature Communications  2010;1(6):1-8.
Oncogenic hyperactivation of the mitotic kinase Aurora-A (AurA) in cancer is associated with genomic instability. Increasing evidence indicates that AurA also regulates critical processes in normal interphase cells, but the source of such activity has been obscure. We report here that multiple stimuli causing release of Ca2+ from intracellular endoplasmic reticulum stores rapidly and transiently activate AurA, without requirement for second messengers. This activation is mediated by direct Ca2+-dependent calmodulin (CaM) binding to multiple motifs on AurA. On the basis of structure–function analysis and molecular modelling, we map two primary regions of CaM-AurA interaction to unfolded sequences in the AurA N- and C-termini. This unexpected mechanism for AurA activation provides a new context for evaluating the function of AurA and its inhibitors in normal and cancerous cells.
Aurora-A kinase localizes to centrosomes, is involved in the progression through mitosis and is overexpressed in certain cancers. Here, calcium is shown to induce Aurora-A auto-phosphorylation in a calmodulin-dependent manner, suggesting a novel role for Aurora-A in non-mitotic cells.
doi:10.1038/ncomms1061
PMCID: PMC2963827  PMID: 20842194
2.  Inhibition of Aurora A promotes chemosensitivity via inducing cell cycle arrest and apoptosis in cervical cancer cells 
American Journal of Cancer Research  2015;5(3):1133-1145.
Aurora kinase A (AurA) regulates genomic instability and tumorigenesis in multiple cancer types. Although some studies have reported that Aur A may predict cervical cancer outcomes, its precise function and molecular mechanism in cervical cancer pathogenesis remain unclear. In this study, by overexpression or silencing of Aur A in cervical cancer cell lines, we found that overexpression of Aur A promoted cell proliferation through G1/S cell cycle transition and anti-apoptosis, xenograft tumor growth and chemoresistance to Taxol. We further found that inhibition of Aur A with its specific inhibitor VX-680 enhanced the antitumor effect of Taxol via inducing apoptosis. Moreover, the clinical analysis from tissue samples demonstrated that Aur A was overexpressed, and the expression of Aur A and pERK1/2 was negatively correlated in cervical cancer tissues. The above results may provide some potential insights in treatment of cervical cancer in clinic.
PMCID: PMC4449441  PMID: 26045992
Aurora A; VX-680; Taxol; chemoresistance; cervical cancer
3.  Localization of aurora A and aurora B kinases during interphase: role of the N-terminal domain 
Cell Cycle  2008;7(19):3012-3020.
Aurora kinases possess a conserved catalytic domain (CD) and a N-terminal domain (ND) that varies in size and sequence. We have previously reported that the N-terminal domain of AuroraA (AurA) participates in the localization of the kinase to the centrosome in interphase. AuroraB (AurB) is a chromosome passenger protein and its N-terminal domain is not necessary for its localization or function during mitosis. Using various combinations of GFP-AurA and AurB protein domains we show that in interphase, AurB N-terminal domain is required for nuclear localization in Xenopus XL2 cells. In human cells, however, we found both AurA and AurB kinases in the nucleus, AurA being mainly cytoplasmic and AurB mainly nuclear. Both proteins are actively excluded from the nucleus by a CRM1 dependent pathway. Interestingly, at a functional level, in interphase, every combination of Aurora kinase domains (ND-CD) rescues histone H3 Serine10 phosphorylation defect induced by AurB knockdown. This clearly indicates the presence of a functional AurA in the nucleus. Additionally, the chimera ND-AurA/CD-AurB was much more efficient than the ND-AurB/CD-AurA to rescue multinucleation also induced by AurB knockdown. This indicates that the catalytic domain of AurB is required to fulfill specific functions during mitosis that cannot be fulfilled by the catalytic domain of AurA, probably for localization reasons during mitosis.
PMCID: PMC3325910  PMID: 18802402
Animals; Cell Nucleus; metabolism; Cells, Cultured; Centrosome; metabolism; Green Fluorescent Proteins; genetics; metabolism; HeLa Cells; Humans; Interphase; physiology; Protein Structure, Tertiary; Protein-Serine-Threonine Kinases; analysis; chemistry; metabolism; Transfection; Xenopus
4.  Aurora A Kinase Inhibitor AKI603 Induces Cellular Senescence in Chronic Myeloid Leukemia Cells Harboring T315I Mutation 
Scientific Reports  2016;6:35533.
The emergence of resistance to imatinib mediated by mutations in the BCR-ABL has become a major challenge in the treatment of chronic myeloid leukemia (CML). Alternative therapeutic strategies to override imatinib-resistant CML are urgently needed. In this study, we investigated the effect of AKI603, a novel small molecule inhibitor of Aurora kinase A (AurA) to overcome resistance mediated by BCR-ABL-T315I mutation. Our results showed that AKI603 exhibited strong anti-proliferative activity in leukemic cells. AKI603 inhibited cell proliferation and colony formation capacities in imatinib-resistant CML cells by inducing cell cycle arrest with polyploidy accumulation. Surprisingly, inhibition of AurA by AKI603 induced leukemia cell senescence in both BCR-ABL wild type and T315I mutation cells. Furthermore, the induction of senescence was associated with enhancing reactive oxygen species (ROS) level. Moreover, the anti-tumor effect of AKI603 was proved in the BALB/c nude mice KBM5-T315I xenograft model. Taken together, our data demonstrate that the small molecule AurA inhibitor AKI603 may be used to overcome drug resistance induced by BCR-ABL-T315I mutation in CML.
doi:10.1038/srep35533
PMCID: PMC5099696  PMID: 27824120
5.  Aurora A and Aurora B jointly coordinate chromosome segregation and anaphase microtubule dynamics 
The Journal of Cell Biology  2011;195(7):1103-1113.
Aurora A and Aurora B have nonredundant functions during mitosis in chromosome segregation and anaphase microtubule dynamics.
We established a conditional deletion of Aurora A kinase (AurA) in Cdk1 analogue-sensitive DT40 cells to analyze AurA knockout phenotypes after Cdk1 activation. In the absence of AurA, cells form bipolar spindles but fail to properly align their chromosomes and exit mitosis with segregation errors. The resulting daughter cells exhibit a variety of phenotypes and are highly aneuploid. Aurora B kinase (AurB)–inhibited cells show a similar chromosome alignment problem and cytokinesis defects, resulting in binucleate daughter cells. Conversely, cells lacking AurA and AurB activity exit mitosis without anaphase, forming polyploid daughter cells with a single nucleus. Strikingly, inhibition of both AurA and AurB results in a failure to depolymerize spindle microtubules (MTs) in anaphase after Cdk1 inactivation. These results suggest an essential combined function of AurA and AurB in chromosome segregation and anaphase MT dynamics.
doi:10.1083/jcb.201105058
PMCID: PMC3246887  PMID: 22184196
6.  Fibrillin-1, induced by Aurora-A but inhibited by BRCA2, promotes ovarian cancer metastasis 
Oncotarget  2015;6(9):6670-6683.
While Aurora-A (Aur A) provokes, BRCA2 restrains primary tumorigenesis, the roles of Aur A and BRCA2 in cancer metastasis remains unclear. Here, we show that the metastatic promoting markers SLUG, FBN1, and MMP2, 9, 13 are either stimulated or suppressed by Aur A or BRCA2, but the metastatic suppressors E-cadherin, β-catenin, and p53 are either inhibited or promoted by Aur A or BRCA2, leading to enhanced or reduced cell migration and invasion. Further study suggests that FBN1 inhibits E-cadherin and β-catenin, but stimulates MMP2, 9, 13. Depletion of SLUG abrogates FBN1 and MMP9, but increases E-cadherin, while p53 decreases both SLUG and FBN1. Animal assays demonstrate that FBN1 promotes both ovarian tumorigenesis and metastasis. Clinically, overexpression of BRCA2 or Aur A in ovarian cancer tissues predicts good or poor overall and disease free survivals. High expression of SLUG or FBN1 indicates poor overall survivals, whereas high expression of FBN1 but not of SLUG predicts poor disease free survival. No significant associations between p53 expression and patient survivals were found. Overall, FBN1, acts at the downstream of Aur A and BRCA2, promotes ovarian cancer metastasis through the p53 and SLUG-associated signaling, which may be useful for ovarian cancer diagnosis and treatment.
PMCID: PMC4466642  PMID: 25749384
Aurora-A; BRCA2; FBN1; SLUG; Metastasis
7.  Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells 
The Journal of Cell Biology  2012;197(3):391-405.
The trichoplein–AurA pathway must suppress primary cilia assembly in order for cells to exit G1.
The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference–mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein–AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.
doi:10.1083/jcb.201106101
PMCID: PMC3341160  PMID: 22529102
8.  Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide 
Molecular Biology of the Cell  2014;25(11):1715-1729.
Human embryonic stem and induced pluripotent stem cell–derived neuroprogenitors (NPs) develop primary cilia. Ciliogenesis depends on the sphingolipid ceramide and its interaction with atypical PKC, both of which distribute to the primary cilium and the apicolateral cell membrane in NP rosettes.
We show here that human embryonic stem (ES) and induced pluripotent stem cell–derived neuroprogenitors (NPs) develop primary cilia. Ciliogenesis depends on the sphingolipid ceramide and its interaction with atypical PKC (aPKC), both of which distribute to the primary cilium and the apicolateral cell membrane in NP rosettes. Neural differentiation of human ES cells to NPs is concurrent with a threefold elevation of ceramide—in particular, saturated, long-chain C16:0 ceramide (N-palmitoyl sphingosine) and nonsaturated, very long chain C24:1 ceramide (N-nervonoyl sphingosine). Decreasing ceramide levels by inhibiting ceramide synthase or neutral sphingomyelinase 2 leads to translocation of membrane-bound aPKC to the cytosol, concurrent with its activation and the phosphorylation of its substrate Aurora kinase A (AurA). Inhibition of aPKC, AurA, or a downstream target of AurA, HDAC6, restores ciliogenesis in ceramide-depleted cells. Of importance, addition of exogenous C24:1 ceramide reestablishes membrane association of aPKC, restores primary cilia, and accelerates neural process formation. Taken together, these results suggest that ceramide prevents activation of HDAC6 by cytosolic aPKC and AurA, which promotes acetylation of tubulin in primary cilia and, potentially, neural processes. This is the first report on the critical role of ceramide generated by nSMase2 in stem cell ciliogenesis and differentiation.
doi:10.1091/mbc.E13-12-0730
PMCID: PMC4038499  PMID: 24694597
9.  Constitutive Phosphorylation of Aurora-A on Ser51 Induces Its Stabilization and Consequent Overexpression in Cancer 
PLoS ONE  2007;2(9):e944.
Background
The serine/threonine kinase Aurora-A (Aur-A) is a proto-oncoprotein overexpressed in a wide range of human cancers. Overexpression of Aur-A is thought to be caused by gene amplification or mRNA overexpression. However, recent evidence revealed that the discrepancies between amplification of Aur-A and overexpression rates of Aur-A mRNA were observed in breast cancer, gastric cancer, hepatocellular carcinoma, and ovarian cancer. We found that aggressive head and neck cancers exhibited overexpression and stabilization of Aur-A protein without gene amplification or mRNA overexpression. Here we tested the hypothesis that aberration of the protein destruction system induces accumulation and consequently overexpression of Aur-A in cancer.
Principal Findings
Aur-A protein was ubiquitinylated by APCCdh1 and consequently degraded when cells exited mitosis, and phosphorylation of Aur-A on Ser51 was observed during mitosis. Phosphorylation of Aur-A on Ser51 inhibited its APCCdh1-mediated ubiquitylation and consequent degradation. Interestingly, constitutive phosphorylation on Ser51 was observed in head and neck cancer cells with protein overexpression and stabilization. Indeed, phosphorylation on Ser51 was observed in head and neck cancer tissues with Aur-A protein overexpression. Moreover, an Aur-A Ser51 phospho-mimetic mutant displayed stabilization of protein during cell cycle progression and enhanced ability to cell transformation.
Conclusions/Significance
Broadly, this study identifies a new mode of Aur-A overexpression in cancer through phosphorylation-dependent inhibition of its proteolysis in addition to gene amplification and mRNA overexpression. We suggest that the inhibition of Aur-A phosphorylation can represent a novel way to decrease Aur-A levels in cancer therapy.
doi:10.1371/journal.pone.0000944
PMCID: PMC1976594  PMID: 17895985
10.  Aurora-A Identifies Early Recurrence and Poor Prognosis and Promises a Potential Therapeutic Target in Triple Negative Breast Cancer 
PLoS ONE  2013;8(2):e56919.
Triple negative breast cancer (TNBC) acquires an unfavorable prognosis, emerging as a major challenge for the treatment of breast cancer. In the present study, 122 TNBC patients were subjected to analysis of Aurora-A (Aur-A) expression and survival prognosis. We found that Aur-A high expression was positively associated with initial clinical stage (P = 0.025), the proliferation marker Ki-67 (P = 0.001), and the recurrence rate of TNBC patients (P<0.001). In TNBC patients with Aur-A high expression, the risk of distant recurrence peaked at the first 3 years and declined rapidly thereafter, whereas patients with Aur-A low expression showed a relatively constant risk of recurrence during the entire follow-up period. Univariate and multivariate analysis showed that overexpression of Aur-A predicted poor overall survival (P = 0.002) and progression-free survival (P = 0.012) in TNBC. Furthermore, overexpression of Aur-A, associated with high Ki-67, predicted an inferior prognosis compared with low expression of both Aur-A and Ki-67. Importantly, we further found that Aur-A was overexpressed in TNBC cells, and inhibition of this kinase inhibited cell proliferation and prevented cell migration in TNBC. Our findings demonstrated that Aur-A was a potential therapeutic target for TNBC and inhibition of Aur-A kinase was a promising regimen for TNBC cancer therapy.
doi:10.1371/journal.pone.0056919
PMCID: PMC3577665  PMID: 23437271
11.  Ubiquitin-Mediated Degradation of Aurora Kinases 
Frontiers in Oncology  2016;5:307.
The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting of these critical mitotic regulators and discuss the different factors that contribute to proteolytic control of Aurora kinase activity in the cell.
doi:10.3389/fonc.2015.00307
PMCID: PMC4716142  PMID: 26835416
Aurora kinase; AURKA; AURKB; ubiquitin-mediated proteolysis; mitosis; APC/C
12.  Aurora A kinase activity influences calcium signaling in kidney cells 
The Journal of Cell Biology  2011;193(6):1021-1032.
Aurora A is abnormally expressed and activated in cells lining cysts associated with polycystic kidney disease and can phosphorylate and inactivate polycystin 2.
Most studies of Aurora A (AurA) describe it as a mitotic centrosomal kinase. However, we and others have recently identified AurA functions as diverse as control of ciliary resorption, cell differentiation, and cell polarity control in interphase cells. In these activities, AurA is transiently activated by noncanonical signals, including Ca2+-dependent calmodulin binding. These and other observations suggested that AurA might be involved in pathological conditions, such as polycystic kidney disease (PKD). In this paper, we show that AurA is abundant in normal kidney tissue but is also abnormally expressed and activated in cells lining PKD-associated renal cysts. PKD arises from mutations in the PKD1 or PKD2 genes, encoding polycystins 1 and 2 (PC1 and PC2). AurA binds, phosphorylates, and reduces the activity of PC2, a Ca2+-permeable nonselective cation channel and, thus, limits the amplitude of Ca2+ release from the endoplasmic reticulum. These and other findings suggest AurA may be a relevant new biomarker or target in the therapy of PKD.
doi:10.1083/jcb.201012061
PMCID: PMC3115793  PMID: 21670214
13.  Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells 
Oncotarget  2014;5(17):7498-7511.
Aberrant Aur-A signaling is associated with tumor malignant behaviors. However, its involvement in tumor metabolic stress is not fully elucidated. In the present study, prolonged nutrient deprivation was conducted into breast cancer cells to mimic metabolic stress in tumors. In these cells, autophagy was induced, leading to caspase-independent cell death, which was blocked by either targeted knockdown of autophagic gene ATG5 or autophagy inhibitor 3-Methyladenine (3-MA). Aur-A overexpression mediated resistance to autophagic cell death and promoted breast cancer cells survival when exposed to metabolic stress. Moreover, we provided evidence that Aur-A suppressed autophagy in a kinase-dependent manner. Furthermore, we revealed that Aur-A overexpression enhanced the mammalian target of rapamycin (mTOR) activity under metabolic stress by inhibiting glycogen synthase kinase 3β (GSK3β). Inhibition of mTOR activity by rapamycin sensitized Aur-A-overexpressed breast cancer cells to metabolic stress-induced cell death. Consistently, we presented an inverse correlation between Aur-A expression (high) and autophagic levels (low) in clinical breast cancer samples. In conclusion, our data provided a novel insight into the cyto-protective role of Aur-A against metabolic stress by suppressing autophagic cell death, which might help to develop alternative cell death avenues for breast cancer therapy.
PMCID: PMC4202139  PMID: 25115395
aurora kinase; metabolic stress; autophagy; cell death; breast cancer
14.  Dual Targeting of the Thioredoxin and Glutathione Anti-Oxidant Systems in Malignant B-cells; A Novel Synergistic Therapeutic Approach 
Experimental hematology  2014;43(2):89-99.
B-cell malignancies are a common type of cancer. One approach to cancer therapy is to either increase oxidative stress or inhibit the stress response systems on which cancer cells rely. In this study, we combined non-toxic concentrations of Auranofin (AUR), an inhibitor of the thioredoxin (Trx) system, with non-toxic concentrations of buthionine-sulfoximine (BSO), a compound that reduces intracellular glutathione (GSH) levels, and investigated the effect of this drug combination on multiple pathways critical for malignant B-cell survival.
AUR interacted synergistically with BSO at low concentrations to trigger death in multiple malignant B-cell lines and primary mantle cell lymphoma (MCL) cells. Additionally, there was less toxicity toward normal B-cells. Low AUR concentrations inhibited Trx reductase (TrxR) activity, an effect significantly increased by BSO co-treatment. TrxR over-expression partially reversed AUR+BSO toxicity. Interestingly, the combination of AUR+BSO inhibited NF-κB signaling. Moreover, synergistic cell death induced by this regimen was attenuated in cells over-expressing NF-κB proteins, arguing for a functional role for NF-κB inhibition in AUR+BSO-mediated cell death.
Together, these findings suggest that AUR+BSO synergistically induce malignant B-cell death, a process mediated by dual inhibition of TrxR and NF-κB, and such an approach warrants further investigation in B-cell malignancies.
doi:10.1016/j.exphem.2014.10.004
PMCID: PMC4324472  PMID: 25448488
B-cell malignancies; Auranofin; BSO; NF-κB; Thioredoxin Reductase
15.  Nucleophosmin/B23 activates Aurora A at the centrosome through phosphorylation of serine 89 
The Journal of Cell Biology  2012;197(1):19-26.
Aurora A, which is known to be activated by autophosphorylation at Thr288, is also locally activated during centrosomal maturation by nucleophosmin-mediated phosphorylation at Ser89.
Aurora A (AurA) is a major mitotic protein kinase involved in centrosome maturation and spindle assembly. Nucleophosmin/B23 (NPM) is a pleiotropic nucleolar protein involved in a variety of cellular processes including centrosome maturation. In the present study, we report that NPM is a strong activator of AurA kinase activity. NPM and AurA coimmunoprecipitate and colocalize to centrosomes in G2 phase, where AurA becomes active. In contrast with previously characterized AurA activators, NPM does not trigger autophosphorylation of AurA on threonine 288. NPM induces phosphorylation of AurA on serine 89, and this phosphorylation is necessary for activation of AurA. These data were confirmed in vivo, as depletion of NPM by ribonucleic acid interference eliminated phosphorylation of CDC25B on S353 at the centrosome, indicating a local loss of AurA activity. Our data demonstrate that NPM is a strong activator of AurA kinase activity at the centrosome and support a novel mechanism of activation for AurA.
doi:10.1083/jcb.201107134
PMCID: PMC3317798  PMID: 22451695
16.  Inhibition of mitotic kinase Aurora suppresses Akt-1 activation and induces apoptotic cell death in all-trans retinoid acid-resistant acute promyelocytic leukemia cells 
Background
Aurora kinase ensures accurate chromosome segregation during cell cycle, maintaining genetic integrity in cell division. VX-680, a small-molecule Aurora kinase inhibitor, interferes with mitotic entry and formation of bipolar spindles. Here, we evaluated VX-680 as a potential agent for treatment of all-trans retinoid acid (ATRA)-resistant acute promyelocytic leukemia (APL) in vitro.
Methods
CD11b expression was utilized to assess cell differentiation by flow cytometry. Immunofluorescence staining was conducted to analyze formation of cell monopolar spindle. Cell proliferation was evaluated by MTT assay. Sub-G1 population and Annexin V/PI staining were used to measure cell apoptosis. Hoechst 33342 staining was applied for identifying morphological changes in nucleus of apoptotic cell. Aurora-A (Aur-A) activation and the signaling pathways involved in apoptosis were detected by Western blot. JC-1 probe was employed to measure mitochondrial depolarization.
Results
VX-680 inhibited Aur-A by reducing autophosphorylation at the activation site, Thr288, accompanied by producing monopolar mitotic spindles in APL cell line NB4-R2 that was resistant to ATRA. In addition, we found that VX-680 inhibited cell proliferation as assessed by MTT assay. Flow cytometry showed that VX-680 led to apoptotic cell death in both dose- and time-dependent manners by either Sub-G1 or Annexin V/PI analysis. Hoechst 33342 staining represented typical apoptotic cells with nuclear fragmentation in VX-680 treated cells. Importantly, VX-680 inhibition of Aurora kinase suppressed Akt-1 activation and induced mitochondrial depolarization, which eventually resulted in apoptosis by activation of caspase pathway, as indicated by increasing proteolytic cleavage of procaspase-3 and poly ADP ribose polymerase (PARP) in NB4-R2 cells.
Conclusions
Our study suggested potential clinical use of mitotic Aurora kinase inhibitor in targeting ATRA-resistant leukemic cells.
doi:10.1186/1479-5876-9-74
PMCID: PMC3224588  PMID: 21600017
17.  Zwint-1 is a novel Aurora B substrate required for the assembly of a dynein-binding platform on kinetochores 
Molecular Biology of the Cell  2011;22(18):3318-3330.
This study identifies zwint-1 as a novel substrate for AurB during mitosis. Phosphorylation is required for outer kinetochore assembly during prometaphase. However, zwint-1 dephosphorylation is required at metaphase for checkpoint silencing.
Aurora B (AurB) is a mitotic kinase responsible for multiple aspects of mitotic progression, including assembly of the outer kinetochore. Cytoplasmic dynein is an abundant kinetochore protein whose recruitment to kinetochores requires phosphorylation. To assess whether AurB regulates recruitment of dynein to kinetochores, we inhibited AurB using ZM447439 or a kinase-dead AurB construct. Inhibition of AurB reduced accumulation of dynein at kinetochores substantially; however, this reflected a loss of dynein-associated proteins rather than a defect in dynein phosphorylation. We determined that AurB inhibition affected recruitment of the ROD, ZW10, zwilch (RZZ) complex to kinetochores but not zwint-1 or more-proximal kinetochore proteins. AurB phosphorylated zwint-1 but not ZW10 in vitro, and three novel phosphorylation sites were identified by tandem mass spectrometry analysis. Expression of a triple-Ala zwint-1 mutant blocked kinetochore assembly of RZZ-dependent proteins and induced defects in chromosome movement during prometaphase. Expression of a triple-Glu zwint-1 mutant rendered cells resistant to AurB inhibition during prometaphase. However, cells expressing the triple-Glu mutant failed to satisfy the spindle assembly checkpoint (SAC) at metaphase because poleward streaming of dynein/dynactin/RZZ was inhibited. These studies identify zwint-1 as a novel AurB substrate required for kinetochore assembly and for proper SAC silencing at metaphase.
doi:10.1091/mbc.E11-03-0213
PMCID: PMC3172258  PMID: 21775627
18.  Aurora-A is a novel predictor of poor prognosis in patients with resected lung adenocarcinoma 
Background
The Aurora-A (Aur-A) gene, a key regulator of mitosis, has been proved as an oncogene in a variety of cancers. The Aur-A overexpression has been proved correlated with aggressiveness of cancer cells. However, the frequency of Aur-A protein overexpression, as well as its association with clinicopathologic parameters and prognosis remain unclear in lung adenocarcinoma (ADC). This study tried to clarify the clinical significance of Aur-A in patients with resected lung ADC.
Patients and methods
A total of 142 informative patients with surgically resected lung ADC and 20 normal lung tissues were enrolled. Western blot and immunohistochemistry (IHC) were utilized to assess protein expression of Aur-A.
Result
The expression of Aur-A was elevated in most of tumor tissues compared with the adjacent tissues by western blot. The IHC results showed that Aur-A protein was over-expressed in 98 of 142 (69.0%) tumor sections, while Aur-A was low-expressed in all normal lung sections. A positive correlation between Aur-A overexpression rate and ascending pathologic stages was observed (P<0.05). Kaplan-Meier analysis demonstrated that patients with Aur-A high expression had significantly inferior survival compared to those with Aur-A low expression. Both overall survival (OS) and disease-free survival (DFS) of positive overexpression patients were shorter than the negative group (P=0.036, P=0.041, respectively). Multivariate analysis confirmed that Aur-A expression, as an independent and significant factor for both DFS and OS, could predict a poor prognosis in patients with resected lung ADC (P=0.022, P=0.049, respectively).
Conclusions
Aur-A was overexpressed in lung ADC and overexpression of Aur-A might be a novel predictor for poor prognosis and potential therapeutic target in lung ADC.
doi:10.3978/j.issn.1000-9604.2014.04.08
PMCID: PMC4000897  PMID: 24826057
Aurora-A (Aur-A); lung adenocarcinoma (ADC); prognosis
19.  The negative interplay between Aurora A/B and BRCA1/2 controls cancer cell growth and tumorigenesis via distinct regulation of cell cycle progression, cytokinesis, and tetraploidy 
Molecular Cancer  2014;13:94.
It is well known that the activation of Aurora A/B (Aur A/B) or inactivation of BRCA1/2 induces tumor formation. Others and we have reported that the mutual suppression between Aur A/B and BRCA1/2 may manipulate cancer cell growth and tumorigenesis, however, the interactive regulation and mechanism between these molecules are still elusive. In this study, by consecutive silencing of Aur A/B or/and BRCA1/2 with specific shRNAs, we showed that, in BRCA2-deficient pancreatic cancer cell line Capan-1 and in ovarian cancer cell line OVCA433, Aur A/B and BRCA1/2 inversely regulated the expression of each other likely through proteasome-mediated proteolysis but not through gene transcription. Aur A/B and BRCA1/2 conversely regulated cell cycle progression mainly through control of p53 and cyclin A. Moreover, the disruption of Aur A/B blocked abnormal cytokinesis and decreased cell multinuclearity and chromosome tetraploidy, whereas the deprivation of BRCA1/2 promoted the abnormal cytokinesis and enhanced the cell multinuclearity and tetraploidy. Furthermore, we showed by animal assays that the depletion of Aur A/B inhibited tumor growth of both cell lines, while the knockdown of BRCA1/2 promoted the tumor growth. However, the concurrent silencing of Aur A/B and BRCA1/2 diminished the effects of these molecules on the regulation of cell cycle, cytokinesis, and tetraploidy, leading to the burdened tumor sizes similar to those induced by scrambled shRNA-treated control cells. In summary, our study revealed that the negative interplay between Aur A/B and BRCA1/2 inversely controls the cell proliferation, cell cycle progression, cell multinuclearity, and tetraploidization to modulate tumorigenesis.
doi:10.1186/1476-4598-13-94
PMCID: PMC4028103  PMID: 24775809
Aurora A/B; BRCA1/2; Cell cycle; Cytokinesis; Tetraploidy; Tumorigenesis
20.  Aurora A is involved in central spindle assembly through phosphorylation of Ser 19 in P150Glued 
The Journal of Cell Biology  2013;201(1):65-79.
A human Aurora A kinase engineered to be specifically inhibited by the ATP analog 1-Na-PP1 allows dissection of a novel role for this protein in central spindle assembly.
Knowledge of Aurora A kinase functions is limited to premetaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. The involvement of Aurora A in events after metaphase has only been suggested because appropriate experiments are technically difficult. We report here the design of the first human Aurora A kinase (as-AurA) engineered by chemical genetics techniques. This kinase is fully functional biochemically and in cells, and is rapidly and specifically inhibited by the ATP analogue 1-Naphthyl-PP1 (1-Na-PP1). By treating cells exclusively expressing the as-AurA with 1-Na-PP1, we discovered that Aurora A is required for central spindle assembly in anaphase through phosphorylation of Ser 19 of P150Glued. This paper thus describes a new Aurora A function that takes place after the metaphase-to-anaphase transition and a new powerful tool to search for and study new Aurora A functions.
doi:10.1083/jcb.201210060
PMCID: PMC3613693  PMID: 23547029
21.  p53 Family Members Regulate Phenotypic Response to Aurora Kinase A Inhibition in Triple-Negative Breast Cancer 
Molecular cancer therapeutics  2015;14(5):1117-1129.
Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis. Advances in the treatment of TNBC have been hampered by the lack of novel effective targeted therapies. The primary goal of this study was to evaluate the efficacy of targeting Aurora kinase A (AurA), a key regulator of mitosis, in TNBC models. A secondary objective was to determine the role of the p53 family of transcriptional regulators, commonly mutated in TNBC, in determining the phenotypic response to the AurA inhibitor alisertib (MLN8237). Alisertib exhibited potent antiproliferative and proapototic activity in a subset of TNBC models. The induction of apoptosis in response to alisertib exposure was dependent on p53 and p73 activity. In the absence of functional p53 or p73, there was a shift in the phenotypic response following alisertib exposure from apoptosis to cellular senescence. Additionally, senescence was observed in patient-derived tumor xenografts with acquired resistance to alisertib treatment. AurA inhibitors are a promising class of novel therapeutics in TNBC. The role of p53 and p73 in mediating the phenotypic response to anti-mitotic agents in TNBC may be harnessed to develop an effective biomarker selection strategy in this difficult to target disease.
doi:10.1158/1535-7163.MCT-14-0538-T
PMCID: PMC4425647  PMID: 25758253
triple-negative breast cancer; aurora kinase; MLN8237; p53; senescence
22.  The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome 
Nature cell biology  2005;7(10):937-946.
Although HEF1 has a well-defined role in integrin-dependent attachment signaling at focal adhesions, it relocalizes to the spindle asters at mitosis. We report here that overexpression of HEF1 causes increase in centrosome numbers and multipolar spindles, resembling defects induced by manipulation of the mitotic regulatory kinase Aurora A (AurA). We show that HEF1 associates with and controls activation of AurA. We also show HEF1 depletion causes centrosomal splitting, monoastral spindles, and hyperactivation of Nek2, implying additional action earlier in cell cycle. These results provide new insights into the role of an adhesion protein in coordination of cell attachment and division.
doi:10.1038/ncb1309
PMCID: PMC2652766  PMID: 16184168
HEF1; centrosome; spindle; mitosis; Aurora-A; Nek2
23.  RNA Stimulates Aurora B Kinase Activity during Mitosis 
PLoS ONE  2014;9(6):e100748.
Accurate chromosome segregation is essential for cell viability. The mitotic spindle is crucial for chromosome segregation, but much remains unknown about factors that regulate spindle assembly. Recent work implicates RNA in promoting proper spindle assembly independently of mRNA translation; however, the mechanism by which RNA performs this function is currently unknown. Here, we show that RNA regulates both the localization and catalytic activity of the mitotic kinase, Aurora-B (AurB), which is present in a ribonucleoprotein (RNP) complex with many mRNAs. Interestingly, AurB kinase activity is reduced in Xenopus egg extracts treated with RNase, and its activity is stimulated in vitro by RNA binding. Spindle assembly defects following RNase-treatment are partially rescued by inhibiting MCAK, a microtubule depolymerase that is inactivated by AurB-dependent phosphorylation. These findings implicate AurB as an important RNA-dependent spindle assembly factor, and demonstrate a translation-independent role for RNA in stimulating AurB.
doi:10.1371/journal.pone.0100748
PMCID: PMC4072698  PMID: 24968351
24.  SB203580 increases G-CSF production via a stem-loop destabilizing element in the 3’ untranslated region in macrophages independently of its effect on p38 MAPK activity 
Background
Granulocyte-colony stimulating factor (G-CSF) is a major regulator of the production and survival of neutrophils. Regulation of G-CSF expression is complex and occurs at both transcription and post-transcription levels. Two distinct types of cis-acting elements in the 3’ untranslated region (3’UTR) of G-CSF mRNA have been identified as destabilizing elements; these consist of adenylate uridylate-rich elements (AUREs) and a stem–loop destabilizing element (SLDE). Regulation of the stability of mRNA by p38 mitogen-activated protein kinase (MAPK) has been indicated to be linked to AUREs in the 3’UTR. However, whether p38 MAPK is involved in the regulation of the stability of G-CSF mRNA has not been elucidated. This study investigated the effect of SB203580, an inhibitor of p38 MAPK, on the lipopolysaccharide-induced G-CSF expression in macrophages at the post-transcription level.
Results
Our study showed surprising results that SB203580 augmented the lipopolysaccharide-induced increase in the G-CSF mRNA levels in RAW264.7 mouse macrophages, mouse bone marrow-derived macrophages and in THP-1 human macrophages. This effect was also seen in p38α MAPK knockdown RAW264.7 cells, showing that it was not due to inhibition of p38 MAPK activity. In the presence of actinomycin D, the decay of G-CSF mRNA was slower in SB203580-treated cells than in control cells, showing that SB203580 increased the stability of G-CSF mRNA. Reporter genes containing luciferase with or without the 3’UTR of G-CSF were constructed and transfected into RAW264.7 cells and the results showed that the presence of the 3’UTR reduced the luciferase mRNA levels and luciferase activity. Furthermore, SB203580 increased the luciferase mRNA levels and activity in RAW264.7 cells transfected with the luciferase reporter containing the 3’UTR, but not in cells transfected with the luciferase reporter without the 3’UTR. Mutations of the highly conserved SLDE in the 3’UTR abolished these effects, showing that the SLDE was essential for the SB203580-induced increase in the stability of mRNA.
Conclusions
SB203580 increases G-CSF expression in macrophages by increasing the stability of G-CSF mRNA via its 3’UTR, and the effect was not due to its inhibition of p38 MAPK activity. The results of this study also highlight a potential target for boosting endogenous production of G-CSF during neutropenia.
doi:10.1186/s12929-016-0221-z
PMCID: PMC4715298  PMID: 26772539
G-CSF; mRNA; p38 MAPK; Pyridinyl imidazole compounds; SB203580; 3’ untranslated region
25.  Spindle assembly checkpoint inactivation fails to suppress neuroblast tumour formation in aurA mutant Drosophila 
Nature Communications  2015;6:8879.
Tissue homeostasis requires accurate control of cell proliferation, differentiation and chromosome segregation. Drosophila sas-4 and aurA mutants present brain tumours with extra neuroblasts (NBs), defective mitotic spindle assembly and delayed mitosis due to activation of the spindle assembly checkpoint (SAC). Here we inactivate the SAC in aurA and sas-4 mutants to determine whether the generation of aneuploidy compromises NB proliferation. Inactivation of the SAC in the sas-4 mutant impairs NB proliferation and disrupts euploidy. By contrast, disrupting the SAC in the aurA mutant does not prevent NB amplification, tumour formation or chromosome segregation. The monitoring of Mad2 and cyclin B dynamics in live aurA NBs reveals that SAC satisfaction is not coupled to cyclin B degradation. Thus, the NBs of aurA mutants present delayed mitosis, with accurate chromosome segregation occurring in a SAC-independent manner. We report here the existence of an Aurora A-dependent mechanism promoting efficient, timed cyclin B degradation.
Drosophila aurA mutants develop brain tumours which are associated with defective mitotic spindle assembly. Caous et al. show that these mutants are surprisingly insensitive to tumour-suppressive spindle assembly checkpoint inactivation, due to a checkpoint-independent delay in cyclin B degradation.
doi:10.1038/ncomms9879
PMCID: PMC4660220  PMID: 26568519

Results 1-25 (1744189)