PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (945442)

Clipboard (0)
None

Related Articles

1.  piRNAs and epigenetic conversion in Drosophila 
Fly  2013;7(4):237-241.
Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic induction of piRNA production capacity by a locus in the D. melanogaster genome. We used 2 lines carrying a transgenic 7-copy tandem cluster (P-lacZ-white) at the same genomic site. This cluster generates in both lines a local heterochromatic sector. One line (T-1) produces high levels of ovarian piRNAs homologous to the P-lacZ-white transgenes and shows a strong capacity to repress homologous sequences in trans, whereas the other line (BX2) is devoid of both of these capacities. The properties of these 2 lines are perfectly stable over generations. We have shown that the maternal transmission of a cytoplasm carrying piRNAs from the first line can confer to the inert transgenic locus of the second, a totally de novo capacity to produce high levels of piRNAs as well as the ability to induce homology-dependent silencing in trans. These new properties are stably inherited over generations (n > 50). Furthermore, the converted locus has itself become able to convert an inert transgenic locus via cytoplasmic maternal inheritance. This results in a stable epigenetic conversion process, which can be performed recurrently—a phenomenon termed paramutation and discovered in Maize 60 y ago. Paramutation in Drosophila corresponds to the first stable paramutation in animals and provides a model system to investigate the epigenetically induced emergence of a piRNA-producing locus, a crucial step in epigenome shaping. In this Extra View, we discuss some additional functional aspects and the possible molecular mechanism of this piRNA-linked paramutation.
doi:10.4161/fly.26522
PMCID: PMC3896495  PMID: 24088599
epigenetics; cellular memory; heterochromatin; piRNAs; transposable elements
2.  Human piRNAs Are Under Selection in Africans and Repress Transposable Elements 
Molecular Biology and Evolution  2011;28(11):3061-3067.
Piwi-interacting RNAs (piRNAs) are a recently discovered class of 24- to 30-nt noncoding RNAs whose best-understood function is to repress transposable elements (TEs) in animal germ lines. In humans, TE-derived sequences comprise ∼45% of the genome and there are several active TE families, including LINE-1 and Alu elements, which are a significant source of de novo mutations and intrapopulation variability. In the “ping-pong model,” piRNAs are thought to alternatively cleave sense and antisense TE transcripts in a positive feedback loop. Because piRNAs are poorly conserved between closely related species, including human and chimpanzee, we took a population genomics approach to study piRNA function and evolution. We found strong statistical evidence that piRNA sequences are under selective constraint in African populations. We then mapped the piRNA sequences to human TE sequences and found strong correlations between the age of each LINE-1 and Alu subfamily and the number of piRNAs mapping to the subfamily. This result supports the idea that piRNAs function as repressors of TEs in humans. Finally, we observed a significant depletion of piRNA matches in the reverse transcriptase region of the consensus human LINE-1 element but not of the consensus mouse LINE-1 element. This result suggests that reverse transcriptase might have an endogenous role specific to humans. Overall, our results elucidate the function and evolution of piRNAs in humans and highlight the utility of population genomics analysis for studying this rapidly evolving genetic system.
doi:10.1093/molbev/msr141
PMCID: PMC3199439  PMID: 21613236
piRNAs; transposable elements; population genetics; selective constraint; Africans
3.  Profiles of piRNA abundances at emerging or established piRNA loci are determined by local DNA sequences 
RNA Biology  2013;10(8):1233-1239.
Piwi-interacting RNAs (piRNAs) ensure transposable element silencing in Drosophila, thereby preserving genome integrity across generations. Primary piRNAs arise from the processing of long RNA transcripts produced in the germ line by a limited number of telomeric and pericentromeric loci. Primary piRNAs bound to the Argonaute protein Aubergine then drive the production of secondary piRNAs through the “ping-pong” amplification mechanism that involves an interplay with piRNAs bound to the Argonaute protein Argonaute-3. We recently discovered that clusters of P-element-derived transgenes produce piRNAs and mediate silencing of homologous target transgenes in the female germ line. We also demonstrated that some clusters are able to convert other homologous inactive transgene clusters into piRNA-producing loci, which then transmit their acquired silencing capacity over generations. This paramutation phenomenon is mediated by maternal inheritance of piRNAs homologous to the transgenes. Here we further mined our piRNA sequencing data sets generated from various strains carrying transgenes with partial sequence homology at distinct genomic sites. This analysis revealed that same sequences in different genomic contexts generate highly similar profiles of piRNA abundances. The strong tendency of piRNAs for bearing a U at their 5′ end has long been recognized. Our observations support the notion that, in addition, the relative frequencies of Drosophila piRNAs are locally determined by the DNA sequence of piRNA loci.
doi:10.4161/rna.25756
PMCID: PMC3817142  PMID: 23880829
Drosophila melanogaster; argonaute proteins; epigenetics; germline; paramutation; piRNA biogenesis; transposable elements
4.  The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline 
The EMBO Journal  2011;30(22):4601-4615.
The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline
The identity and function of many factors involved in the piRNA pathway remain unknown. Here, in Drosophila, cutoff plays a role in regulating piRNA cluster transcript levels and biogenesis together with the heterochromatin protein Rhino.
In a broad range of organisms, Piwi-interacting RNAs (piRNAs) have emerged as core components of a surveillance system that protects the genome by silencing transposable and repetitive elements. A vast proportion of piRNAs is produced from discrete genomic loci, termed piRNA clusters, which are generally embedded in heterochromatic regions. The molecular mechanisms and the factors that govern their expression are largely unknown. Here, we show that Cutoff (Cuff), a Drosophila protein related to the yeast transcription termination factor Rai1, is essential for piRNA production in germline tissues. Cuff accumulates at centromeric/pericentromeric positions in germ-cell nuclei and strongly colocalizes with the major heterochromatic domains. Remarkably, we show that Cuff is enriched at the dual-strand piRNA cluster 1/42AB and is likely to be involved in regulation of transcript levels of similar loci dispersed in the genome. Consistent with this observation, Cuff physically interacts with the Heterochromatin Protein 1 (HP1) variant Rhino (Rhi). Our results unveil a link between Cuff activity, heterochromatin assembly and piRNA cluster expression, which is critical for stem-cell and germ-cell development in Drosophila.
doi:10.1038/emboj.2011.334
PMCID: PMC3243597  PMID: 21952049
cutoff; Drosophila; germline; heterochromatin; piRNA
5.  The piRNA pathway in flies: highlights and future directions 
Piwi proteins, together with their bound Piwi-interacting RNAs, constitute an evolutionarily conserved, germline-specific innate immune system. The piRNA pathway is one of the key mechanisms for silencing transposable elements in the germline, thereby preserving genome integrity between generations. Recent work from several groups has significantly advanced our understanding of how piRNAs arise from discrete genomic loci, termed piRNA clusters, and how these Piwi-piRNA complexes enforce transposon silencing. Here, we discuss these recent findings, as well as highlight some aspects of piRNA biology that continue to escape our understanding.
doi:10.1016/j.gde.2012.12.003
PMCID: PMC3621807  PMID: 23317515
6.  Function, targets and evolution of Caenorhabditis elegans piRNAs 
Science (New York, N.Y.)  2012;337(6094):574-578.
Piwi-interacting RNAs (piRNAs) are small RNAs required to maintain germline integrity and fertility but their mechanism of action is poorly understood. Here we demonstrate that C. elegans piRNAs silence transcripts in trans through imperfectly complementary sites. Target silencing is independent of Piwi endonuclease activity or “slicing”. Instead, piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are de-repressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes and tend to overlap the start and end of transposons in sense and antisense, respectively. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNAi in C. elegans.
doi:10.1126/science.1220952
PMCID: PMC3951736  PMID: 22700655
7.  Rapid Evolution of piRNA Pathway in the Teleost Fish: Implication for an Adaptation to Transposon Diversity 
Genome Biology and Evolution  2014;6(6):1393-1407.
The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi–piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity.
doi:10.1093/gbe/evu105
PMCID: PMC4079211  PMID: 24846630
teleost fish; evolution; positive selection; reproduction
8.  Euchromatic Transposon Insertions Trigger Production of Novel Pi- and Endo-siRNAs at the Target Sites in the Drosophila Germline 
PLoS Genetics  2014;10(2):e1004138.
The control of transposable element (TE) activity in germ cells provides genome integrity over generations. A distinct small RNA–mediated pathway utilizing Piwi-interacting RNAs (piRNAs) suppresses TE expression in gonads of metazoans. In the fly, primary piRNAs derive from so-called piRNA clusters, which are enriched in damaged repeated sequences. These piRNAs launch a cycle of TE and piRNA cluster transcript cleavages resulting in the amplification of piRNA and TE silencing. Using genome-wide comparison of TE insertions and ovarian small RNA libraries from two Drosophila strains, we found that individual TEs inserted into euchromatic loci form novel dual-stranded piRNA clusters. Formation of the piRNA-generating loci by active individual TEs provides a more potent silencing response to the TE expansion. Like all piRNA clusters, individual TEs are also capable of triggering the production of endogenous small interfering (endo-si) RNAs. Small RNA production by individual TEs spreads into the flanking genomic regions including coding cellular genes. We show that formation of TE-associated small RNA clusters can down-regulate expression of nearby genes in ovaries. Integration of TEs into the 3′ untranslated region of actively transcribed genes induces piRNA production towards the 3′-end of transcripts, causing the appearance of genic piRNA clusters, a phenomenon that has been reported in different organisms. These data suggest a significant role of TE-associated small RNAs in the evolution of regulatory networks in the germline.
Author Summary
Silencing of transposable elements (TEs) in germ cells depends on a distinct class of small RNAs, Piwi-interacting RNAs (piRNAs). TE repression is provided by piRNAs derived from large heterochromatic loci enriched in fragmented TE copies, so-called piRNA clusters. According to the current model, individual TEs and their transcripts are considered merely as targets of cluster-derived primary piRNAs, which exert post-transcriptional and transcriptional silencing in Drosophila. In our work, we show that natural individual transposons become piRNA-generating loci themselves. We came to this conclusion by comparing the ovarian small RNAs and TE insertion sites of two Drosophila strains, which showed that euchromatic target sites of strain-specific TEs generate a number of novel strain-specific piRNAs. This mechanism allows production of additional small RNAs that target active TEs and provide more potent transposon suppression in the germline. Moreover, small RNA production by individual TEs spreads into the flanking genomic regions, which affects the expression of adjacent coding genes and microRNA genes. These data underline the role of individual TEs in a silencing response and explore a new level of TE impact on the gene regulatory networks in the germline.
doi:10.1371/journal.pgen.1004138
PMCID: PMC3916259  PMID: 24516406
9.  A Novel Epigenetic Mechanism in Drosophila Somatic Cells Mediated by PIWI and piRNAs 
Small non-coding RNAs have emerged as key players in epigenetic regulation. Recently, a novel class of small RNAs that interact with Piwi proteins has been discovered in the mammalian and Drosophila germline. These Piwi-interacting RNAs (piRNAs) represent a distinct small RNA pathway that is widely thought to function only in the germline. In this essay, we review our recent work with our collaborators on the epigenetic function of the Drosophila Piwi protein and its associated piRNAs in somatic cells. This work has revealed a novel epigenetic mechanism mediated by Piwi and its associated piRNAs in somatic cells that might also be applicable to the germline. Based on these results, we propose a “Piwi-piRNA guidance hypothesis” for Piwi/piRNA-mediated epigenetic programming, in which the Piwi-piRNA complex serves as a sequence-recognition machinery that recruits epigenetic effectors such as Heterochromatin Protein 1a (HP1a) to specific sites in the genome to execute epigenetic regulation.
doi:10.1101/sqb.2008.73.056
PMCID: PMC2810500  PMID: 19270080
10.  Drosophila Interspecific Hybrids Phenocopy piRNA-Pathway Mutants 
PLoS Biology  2012;10(11):e1001428.
Hybrids of two Drosophila species show transposable element derepression and piRNA pathway malfunction, revealing adaptive evolution of piRNA pathway components.
The Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA pathway genes rather than species-specific differences in TE-derived piRNAs.
Author Summary
Eukaryotic genomes contain large quantities of transposable elements (TEs), short self-replicating DNA sequences that can move within the genome. The selfish replication of TEs has potentially drastic consequences for the host, such as disruption of gene function, induction of sterility, and initiation or exacerbation of some cancers. Like the adaptive immune system that defends our bodies against pathogens, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful effects of TEs. Fundamental to piRNA-mediated defense is the production of small noncoding RNAs that act like antibodies to target replicating TEs for destruction by piRNA-effector proteins. piRNAs are expected to diverge rapidly between species in response to genome infection by increasingly disparate TEs. Here, we tested this hypothesis by examining how differences in piRNAs between two species of fruit fly relate to TE “immunity” in their hybrid offspring. Because piRNAs are maternally deposited, we expected excessive replication of paternal TEs in hybrids. Surprisingly, we observe increased activity of both maternal and paternal TEs, together with defects in piRNA production that are reminiscent of piRNA effector-protein mutants. Our observations reveal that piRNA effector-proteins do not function properly in hybrids, and we propose that adaptive evolution among piRNA effector-proteins contributes to host genome defense and leads to the functional incompatibilities that we observe in hybrids.
doi:10.1371/journal.pbio.1001428
PMCID: PMC3506263  PMID: 23189033
11.  Widespread expression of piRNA-like molecules in somatic tissues 
Nucleic Acids Research  2011;39(15):6596-6607.
Piwi-interacting RNA (piRNA) are small RNA abundant in the germline across animal species. In fruit flies and mice, piRNA have been implicated in maintenance of genomic integrity by transposable elements silencing. Outside of the germline, piRNA have only been found in fruit fly ovarian follicle cells. Previous studies have further reported presence of multiple piRNA-like small RNA (pilRNA) in fly heads and a small number of pilRNA have been reported in mouse tissues and in human NK cells. Here, we analyze high-throughput small RNA sequencing data in more than 130 fruit fly, mouse and rhesus macaque samples. The results show widespread presence of pilRNA, displaying all known characteristics of piRNA in multiple somatic tissues of these three species. In mouse pancreas and macaque epididymis, pilRNA abundance was compatible with piRNA abundance in the germline. Using in situ hybridizations, we further demonstrate pilRNA co-localization with mRNA expression of Piwi-family genes in all macaque tissues. Further, using western blot, we have shown the expression of Miwi protein in mouse pancreas. These findings indicate that piRNA-like molecules might play important roles outside of the germline.
doi:10.1093/nar/gkr298
PMCID: PMC3159465  PMID: 21546553
12.  Evolution of animal Piwi-interacting RNAs and prokaryotic CRISPRs 
Briefings in Functional Genomics  2012;11(4):277-288.
Piwi-interacting RNAs (piRNAs) and CRISPR RNAs (crRNAs) are two recently discovered classes of small noncoding RNA that are found in animals and prokaryotes, respectively. Both of these novel RNA species function as components of adaptive immune systems that protect their hosts from foreign nucleic acids—piRNAs repress transposable elements in animal germlines, whereas crRNAs protect their bacterial hosts from phage and plasmids. The piRNA and CRISPR systems are nonhomologous but rather have independently evolved into logically similar defense mechanisms based on the specificity of targeting via nucleic acid base complementarity. Here we review what is known about the piRNA and CRISPR systems with a focus on comparing their evolutionary properties. In particular, we highlight the importance of several factors on the pattern of piRNA and CRISPR evolution, including the population genetic environment, the role of alternate defense systems and the mechanisms of acquisition of new piRNAs and CRISPRs.
doi:10.1093/bfgp/els016
PMCID: PMC3398257  PMID: 22539610
piRNA; CRISPR; co-evolution; transposable elements; phage; plasmids
13.  C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts 
Cell  2012;150(1):78-87.
SUMMARY
Piwi Argonautes and Piwi-interacting RNAs (piRNAs) mediate genome defense by targeting transposons. However, many piRNA species lack obvious sequence complementarity to transposons or other loci; only one C. elegans transposon is a known piRNA target. Here we show that, in mutants lacking the Piwi Argonaute PRG-1 (and consequently its associated piRNAs/21U-RNAs), many silent loci in the germline exhibit increased levels of mRNA expression and depletion of an amplified RNA-dependent RNA polymerase (RdRP)-derived species of small secondary RNA termed 22G-RNAs. Sequences depleted of 22G-RNAs are enriched at nearby potential target sites that base pair imperfectly but extensively to 21U-RNAs. We show that PRG-1 is required to initiate, but not to maintain, silencing of transgenes engineered to contain complementarity to endogenous 21U-RNAs. Our findings support a model in which C. elegans piRNAs utilize their enormous repertoire of targeting capacity to scan the germline transcriptome for foreign sequences, while endogenous germline-expressed genes are actively protected from piRNA-induced silencing.
doi:10.1016/j.cell.2012.06.016
PMCID: PMC3410639  PMID: 22738724
14.  Spatio-temporal requirements for transposable element piRNA-mediated silencing during Drosophila oogenesis 
Nucleic Acids Research  2013;42(4):2512-2524.
During Drosophila oogenesis, transposable element (TE) repression involves the Piwi-interacting RNA (piRNA) pathway which ensures genome integrity for the next generation. We developed a transgenic model to study repression of the Idefix retrotransposon in the germline. Using a candidate gene KD-approach, we identified differences in the spatio-temporal requirements of the piRNA pathway components for piRNA-mediated silencing. Some of them (Aub, Vasa, Spn-E) are necessary in very early stages of oogenesis within the germarium and appear to be less important for efficient TE silencing thereafter. Others (Piwi, Ago3, Mael) are required at all stages of oogenesis. Moreover, during early oogenesis, in the dividing cysts within the germarium, Idefix anti-sense transgenes escape host control, and this is associated with very low piwi expression. Silencing of P-element-based transgenes is also strongly weakened in these cysts. This region, termed the ‘Piwiless pocket’ or Pilp, may ensure that new TE insertions occur and are transmitted to the next generation, thereby contributing to genome dynamics. In contrast, piRNA-mediated silencing is strong in germline stem cells in which TE mobilization is tightly repressed ensuring the continued production of viable germline cysts.
doi:10.1093/nar/gkt1184
PMCID: PMC3936749  PMID: 24288375
15.  Without Argonaute3, Aubergine-bound piRNAs collapse but Piwi-bound piRNAs persist 
Cell  2009;137(3):509-521.
Summary
Piwi-interacting RNAs (piRNAs) silence transposons in the germ line of animals. They are thought to derive from long primary transcripts spanning transposon-rich genomic loci, “piRNA clusters.” piRNAs are proposed to direct an auto-amplification loop in which an antisense piRNA, bound to Aubergine or Piwi protein, directs the cleavage of sense RNA, triggering production of a sense piRNA bound to the PIWI protein Argonaute3 (Ago3). In turn, the new piRNA is envisioned to direct cleavage of a cluster transcript, initiating production of a second antisense piRNA. Here, we describe strong loss-of-function mutations in ago3, allowing a direct genetic test of this model. We find that Ago3 acts to amplify piRNA pools and to enforce on them an antisense bias, increasing the number of piRNAs that can act to silence transposons. We also detect a second piRNA pathway centered on Piwi and functioning without benefit of Ago3-catalyzed amplification. Transposons targeted by this second pathway often reside in the flamenco locus, which is expressed in somatic ovarian follicle cells, suggesting a role for piRNAs beyond the germ line.
doi:10.1016/j.cell.2009.04.027
PMCID: PMC2768572  PMID: 19395009
16.  Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons 
Current biology : CB  2008;18(11):795-802.
Summary
Background
Because of the mutagenic consequences of mobile genetic elements, elaborate defenses have evolved to restrict their activity. A major system that controls the activity of transposable elements (TEs) in flies and vertebrates is mediated by Piwi-interacting RNAs (piRNAs), which are ~24–30 nucleotide RNAs that are bound by Piwi-class effectors. The piRNA system is thought to provide primarily a germline defense against TE activity.
Results
Here, we describe a second system that represses Drosophila TEs by using endogenous small interfering RNAs (si RNAs), which are 21 nucleotide, 3′-end-modified RNAs that are dependent on Dicer-2 and Argonaute-2. In contrast to piRNAs, we find that the TE-siRNA system is active in somatic tissues, and particularly so in various immortalized cell lines. Analysis of the patterns and properties of TE-derived small RNAs reveals further distinctions between TE regions and genomic loci that are converted into piRNAs and siRNAs, respectively. Finally, functional tests show that many transposon transcripts accumulate to higher levels in cells and animal tissues that are deficient for Dicer-2 or Argonaute-2.
Conclusions
Drosophila utilizes two small-RNA systems to restrict transposon activity in the germline (mostly via piRNAs) and in the soma (mostly via siRNAs).
doi:10.1016/j.cub.2008.05.006
PMCID: PMC2812477  PMID: 18501606
17.  The characterisation of piRNA-related 19mers in the mouse 
BMC Genomics  2011;12:315.
Background
Piwi interacting RNA, or piRNA, is a class of small RNA almost exclusively expressed in the germline where they serve essential roles in retrotransposon silencing. There are two types, primary and secondary piRNA, and the latter is a product of enzymatic cleavage of retrotransposons' transcripts directed by the former. Recently, a new class of 19nt long RNA was discovered that is specific to testis and appears to be linked to secondary piRNA biogenesis.
Results
We locate clusters of the testis-specific 19mers, which we call piRNA-related 19mers (pr19RNA), and characterise the transcripts from which they are derived. Most pr19RNA clusters were associated with retrotransposons and unannotated antisense transcripts overlapping piRNA clusters. At these loci the abundance of 19mers was found to be greater than that of secondary piRNAs.
Conclusion
We find that pr19RNAs are distinguished from other RNA populations by their length and flanking sequence, allowing their identification without requiring overlapping piRNAs. Using such sequence features allows identification of the source transcripts, and we suggest that these likely represent the substrates of primary piRNA-guided RNA cleavage events. While pr19RNAs appear not to bind directly to Miwi or Mili, their abundance relative to secondary piRNAs, in combination with their precise length, suggests they may be more than by-products of secondary piRNA biogenesis.
doi:10.1186/1471-2164-12-315
PMCID: PMC3143105  PMID: 21672259
18.  Gender-Specific Hierarchy in Nuage Localization of PIWI-Interacting RNA Factors in Drosophila 
PIWI-interacting RNAs (piRNAs) are germline-specific small non-coding RNAs that form piRNA-induced silencing complexes (piRISCs) by associating with PIWI proteins, a subclade of the Argonaute proteins predominantly expressed in the germline. piRISCs protect the integrity of the germline genome from invasive transposable DNA elements by silencing them. Multiple piRNA biogenesis factors have been identified in Drosophila. The majority of piRNA factors are localized in the nuage, electron-dense non-membranous cytoplasmic structures located in the perinuclear regions of germ cells. Thus, piRNA biogenesis is thought to occur in the nuage in germ cells. Immunofluorescence analyses of ovaries from piRNA factor mutants have revealed a localization hierarchy of piRNA factors in female nuage. However, whether this hierarchy is female-specific or can also be applied in male gonads remains undetermined. Here, we show by immunostaining of both ovaries and testes from piRNA factor mutants that the molecular hierarchy of piRNA factors shows gender-specificity, especially for Krimper (Krimp), a Tudor-domain-containing protein of unknown function(s): Krimp is dispensable for PIWI protein Aubergine (Aub) nuage localization in ovaries but Krimp and Aub require each other for their proper nuage localization in testes. This suggests that the functional requirement of Krimp in piRNA biogenesis may be different in male and female gonads.
doi:10.3389/fgene.2011.00055
PMCID: PMC3268608  PMID: 22303351
nuage; piRNA; PIWI; Drosophila; germline
19.  The Biogenesis and Function PIWI Proteins and piRNAs: Progress and Prospect 
The evolutionarily conserved Argonaute/PIWI (AGO/PIWI; a.k.a. PAZ-PIWI Domain, or PPD) family of proteins is crucial for the biogenesis and function of small non-coding RNAs (ncRNAs). This family can be divided into AGO and PIWI subfamilies. The AGO proteins are ubiquitously present in diverse tissues. They bind to small interfering RNAs (siRNAs) and microRNAs (miRNAs). In contrast, the PIWI proteins are predominantly present in the germline, and associate with a novel class of small RNAs known as PIWI-interacting RNAs (piRNAs). Tens of thousands of piRNA species, typically 24-32 nucleotide long, have been found in mammals, zebrafish, and Drosophila. Most piRNAs appear to be generated from a small number of long single-stranded RNA precursors that are often encoded by repetitive intergenic sequences in the genome. PIWI proteins play crucial roles during germline development and gametogenesis of many metazoan species, from germline determination and germline stem cell maintenance to meiosis, spermiogenesis, and transposon silencing. These diverse functions may involve piRNAs, and may be achieved via novel mechanisms of epigenetic and post-transcriptional regulation.
doi:10.1146/annurev.cellbio.24.110707.175327
PMCID: PMC2780330  PMID: 19575643
epigenetic regulation; germ cell; stem cell; transposon silencing; translational regulation
20.  Role of piRNAs in the Drosophila telomere homeostasis 
Mobile Genetic Elements  2011;1(4):274-278.
Drosophila telomeres are maintained as a result of transpositions of specialized telomeric retrotransposons. The abundance of telomeric retroelement transcripts, as well as the frequency of their transpositions onto the chromosome ends, is controlled by a PIWI-interacting RNA (piRNA) pathway. In our recent report, we demonstrate strong evidence of piRNA-mediated transcriptional silencing of telomeric repeats in the Drosophila germline. Telomerase-generated repeats serve as a platform for recruiting specialized DNA-binding proteins which are involved in chromosome end protection and in the telomere length control. No specific proteins are known to bind to heterogeneous long sequences of the Drosophila telomeric retrotransposons. The importance of the piRNA silencing mechanism in the formation of telomeric chromatin along the region of the retrotransposon array will be discussed. We propose that Drosophila telomeric retrotransposon HeT-A serves as a template for the piRNA-mediated assembly of the specific protein complex, which is functionally similar to the recruiting of the DNA-binding telomeric proteins by the telomerase-generated repeats. The role of the piRNA pathway components in the assembly of the telomere capping complex was recently unveiled. Taken together, these data elucidate the importance of the piRNA pathway in the Drosophila telomere homeostasis.
doi:10.4161/mge.18301
PMCID: PMC3337136  PMID: 22545238
Chromatin; Drosophila; germline; piRNA; PIWI; retrotransposon; telomere
21.  The comprehensive epigenome map of piRNA clusters 
Nucleic Acids Research  2012;41(3):1581-1590.
PIWI-interacting RNA (piRNA) clusters act as anti-transposon/retrovirus centers. Integration of selfish jumping elements into piRNA clusters generates de novo piRNAs, which in turn exert trans-silencing activity against these elements in animal gonads. To date, neither genome-wide chromatin modification states of piRNA clusters nor a mode for piRNA precursor transcription have been well understood. Here, to understand the chromatin landscape of piRNA clusters and how piRNA precursors are generated, we analyzed the transcriptome, transcription start sites (TSSs) and the chromatin landscape of the BmN4 cell line, which harbors the germ-line piRNA pathway. Notably, our epigenomic map demonstrated the highly euchromatic nature of unique piRNA clusters. RNA polymerase II was enriched for TSSs that transcribe piRNA precursors. piRNA precursors possessed 5′-cap structures as well as 3′-poly A-tails. Collectively, we envision that the euchromatic, opened nature of unique piRNA clusters or piRNA cluster-associated TSSs allows piRNA clusters to capture new insertions efficiently.
doi:10.1093/nar/gks1275
PMCID: PMC3561999  PMID: 23258708
22.  Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries 
Nucleic Acids Research  2014;42(10):6208-6218.
The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their post-transcriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression.
doi:10.1093/nar/gku268
PMCID: PMC4041442  PMID: 24782529
23.  A broadly conserved pathway generates 3' UTR-directed primary piRNAs 
Current biology : CB  2009;19(24):2066-2076.
Summary
Background
Piwi-interacting RNAs (piRNAs) are ~24–30 nucleotide regulatory RNAs that are abundant in animal gonads and early embryos. The best characterized piRNAs mediate a conserved pathway that restricts transposable elements, and these frequently engage a "ping-pong" amplification loop. Certain stages of mammalian testis also accumulate abundant piRNAs of unknown function, which derive from non-coding RNAs that are depleted in TE content and do not engage in ping-pong.
Results
We report that the 3' untranslated regions (3' UTRs) of an extensive set of messenger RNAs (mRNAs) are processed into piRNAs in Drosophila ovaries, murine testes, and Xenopus eggs. Analysis of small RNA data from different mutants and Piwi-class immunoprecipitates indicates that their biogenesis depends on primary piRNA components but not ping-pong components. Several observations suggest that mRNAs are actively selected for piRNA production. First, genic piRNAs do not accumulate in proportion to the level of their host transcripts, and many highly expressed transcripts lack piRNAs. Second, piRNA-producing mRNAs in Drosophila and mouse are enriched for specific gene ontology categories distinct from those of simply abundant transcripts. Third, the levels of Traffic Jam, whose 3' UTR generates abundant piRNAs, are increased in piwi mutant follicle clones. These data suggest that selection of cellular transcripts by the primary piRNA pathway is not fortuitous, but instead an active process with regulatory consequences.
Conclusions
Our work reveals a conserved primary piRNA pathway that selects and metabolizes the 3' UTRs of a broad set of cellular transcripts, providing insights into piRNA biogenesis and function. These data strongly increase the breadth of Argonaute-mediated small RNA systems in metazoans.
doi:10.1016/j.cub.2009.11.064
PMCID: PMC2812478  PMID: 20022248
24.  piRNA production requires heterochromatin formation in Drosophila 
Current biology : CB  2011;21(16):1373-1379.
Summary
Protecting the genome from transposable element (TE) mobilization is critical for germline development. In Drosophila, Piwi proteins and their bound small RNAs (piRNAs) provide a potent defense against TE activity. TE targeting piRNAs are processed from TE-dense heterochromatic loci termed ‘piRNA clusters’. While piRNA biogenesis from cluster precursors is beginning to be understood, little is known about piRNA cluster transcriptional regulation. Here we show that deposition of histone 3 lysine 9 by the methyltransferase dSETDB1 (egg) is required for piRNA cluster transcription. In the absence of dSETDB1, cluster precursor transcription collapses in germline and somatic gonadal cells and TEs are activated, resulting in germline loss and a block in germline stem cell differentiation. We propose that heterochromatin protects the germline by activating the piRNA pathway.
doi:10.1016/j.cub.2011.06.057
PMCID: PMC3205116  PMID: 21820311
25.  De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment 
Nucleic Acids Research  2013;41(11):5757-5768.
PIWI-interacting RNAs (piRNAs) provide defence against transposable element (TE) expansion in the germ line of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive. The aim of this study is to determine how transgenes that contain a fragment of the Long Interspersed Nuclear Elements (LINE)-like I transposon lead to an acquired TE resistance in Drosophila. We show that such transgenes, being inserted in unique euchromatic regions that normally do not produce small RNAs, become de novo bidirectional piRNA clusters that silence I-element activity in the germ line. Strikingly, small RNAs of both polarities are generated from the entire transgene and flanking genomic sequences—not only from the transposon fragment. Chromatin immunoprecipitation analysis shows that in ovaries, the trimethylated histone 3 lysine 9 (H3K9me3) mark associates with transgenes producing piRNAs. We show that transgene-derived hsp70 piRNAs stimulate in trans cleavage of cognate endogenous transcripts with subsequent processing of the non-homologous parts of these transcripts into piRNAs.
doi:10.1093/nar/gkt310
PMCID: PMC3675497  PMID: 23620285

Results 1-25 (945442)