Search tips
Search criteria

Results 1-25 (521810)

Clipboard (0)

Related Articles

1.  Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes 
BMC Biology  2012;10:81.
Vetulicolians are a group of Cambrian metazoans whose distinctive bodyplan continues to present a major phylogenetic challenge. Thus, we see vetulicolians assigned to groups as disparate as deuterostomes and ecdysozoans. This divergence of opinions revolves around a strikingly arthropod-like body, but one that also bears complex lateral structures on its anterior section interpreted as pharyngeal openings. Establishing the homology of these structures is central to resolving where vetulicolians sit in metazoan phylogeny.
New material from the Chengjiang Lagerstätte helps to resolve this issue. Here, we demonstrate that these controversial structures comprise grooves with a series of openings. The latter are oval in shape and associated with a complex anatomy consistent with control of their opening and closure. Remains of what we interpret to be a musculature, combined with the capacity for the grooves to contract, indicate vetulicolians possessed a pumping mechanism that could process considerable volumes of seawater. Our observations suggest that food captured in the anterior cavity was transported to dorsal and ventral gutters, which then channeled material to the intestine. This arrangement appears to find no counterpart in any known fossil or extant arthropod (or any other ecdysozoan). Anterior lateral perforations, however, are diagnostic of deuterostomes.
If the evidence is against vetulicolians belonging to one or other group of ecdysozoan, then two phylogenetic options seem to remain. The first is that such features as vetulicolians possess are indicative of either a position among the bilaterians or deuterostomes but apart from the observation that they themselves form a distinctive and recognizable clade current evidence can permit no greater precision as to their phylogenetic placement. We argue that this is too pessimistic a view, and conclude that evidence points towards vetulicolians being members of the stem-group deuterostomes; a group best known as the chordates (amphioxus, tunicates, vertebrates), but also including the ambulacrarians (echinoderms, hemichordates), and xenoturbellids. If the latter, first they demonstrate that these members of the stem group show few similarities to the descendant crown group representatives. Second, of the key innovations that underpinned deuterostome success, the earliest and arguably most seminal was the evolution of openings that define the pharyngeal gill slits of hemichordates (and some extinct echinoderms) and chordates.
PMCID: PMC3517509  PMID: 23031545
2.  A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group 
BMC Evolutionary Biology  2014;14(1):214.
Vetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum. Mounting evidence suggests that vetulicolians are deuterostomes, but affinities to crown-group phyla are unresolved.
A new vetulicolian from the Emu Bay Shale Konservat-Lagerstätte, South Australia, Nesonektris aldridgei gen. et sp. nov., preserves an axial, rod-like structure in the posterior body region that resembles a notochord in its morphology and taphonomy, with notable similarity to early decay stages of the notochord of extant cephalochordates and vertebrates. Some of its features are also consistent with other structures, such as a gut or a coelomic cavity.
Phylogenetic analyses resolve a monophyletic Vetulicolia as sister-group to tunicates (Urochordata) within crown Chordata, and this holds even if they are scored as unknown for all notochord characters. The hypothesis that the free-swimming vetulicolians are the nearest relatives of tunicates suggests that a perpetual free-living life cycle was primitive for tunicates. Characters of the common ancestor of Vetulicolia + Tunicata include distinct anterior and posterior body regions – the former being non-fusiform and used for filter feeding and the latter originally segmented – plus a terminal mouth, absence of pharyngeal bars, the notochord restricted to the posterior body region, and the gut extending to the end of the tail.
Electronic supplementary material
The online version of this article (doi:10.1186/s12862-014-0214-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4203957  PMID: 25273382
Deuterostomes; Chordata; Vetulicolia; Tunicata; Cambrian; Emu Bay Shale
3.  Modularity of gene-regulatory networks revealed in sea-star development 
BMC Biology  2011;9:6.
Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star), but in a completely different developmental context (the animal-vegetal axis). This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor.
See research article:
PMCID: PMC3032766  PMID: 21281525
4.  The earliest history of the deuterostomes: the importance of the Chengjiang Fossil-Lagerstätte 
While the broad framework of deuterostome evolution is now clear, the remarkable diversity of extant forms within this group has rendered the nature of the ancestral types problematic: what, for example, does the common ancestor of a sea urchin and lamprey actually look like? The answer to such questions can be addressed on the basis of remarkably well-preserved fossils from Cambrian Lagerstätten, not least the celebrated Chengjiang Lagerstätte (Yunnan, China). This deposit is particularly important because of its rich diversity of deuterostomes. These include some of the earliest known representatives, among which are the first vertebrates, as well as more enigmatic groups, notably the vetulicolians and yunnanozoans. The latter groups, in particular, have been the subject of some radical divergences in opinion as to their exact phylogenetic placements. Here, we both review the known diversity of Chengjiang deuterostomes and in particular argue that the vetulicolians and yunnanozoans represent very primitive deuterostomes. Moreover, in the latter case we present new data to indicate that the yunnanozoans are unlikely to be any sort of chordate.
PMCID: PMC2842668  PMID: 19439437
Chengjiang; deuterostomes; yunnanozoans; vetulicolians; Cambrian; metazoan evolution
5.  Prospects for automated diagnosis of verbal autopsies 
BMC Medicine  2014;12:18.
Verbal autopsy is a method for assessing probable causes of death from lay reporting of signs, symptoms and circumstances by family members or caregivers of a deceased person. Several methods of automated diagnoses of causes of death from standardized verbal autopsy questionnaires have been developed recently (Inter-VA, Tariff, Random Forest and King-Lu). Their performances have been assessed in a series of papers in BMC Medicine. Overall, and despite high specificity, the current strategies of automated computer diagnoses lead to relatively low sensitivity and positive predictive values, even for causes which are expected to be easily assessed by interview. Some methods have even abnormally low sensitivity for selected diseases of public health importance and could probably be improved. Ways to improve the current strategies are proposed: more detailed questionnaires; using more information on disease duration; stratifying for large groups of causes of death by age, sex and main category; using clusters of signs and symptoms rather than quantitative scores or ranking; separating indeterminate causes; imputing unknown cause with appropriate methods.
Please see related articles:;;;;;
PMCID: PMC3912493  PMID: 24495788
Cause of death; Verbal autopsy; Automated diagnosis; Health information system; Evaluation of health programs; Public health
6.  Regeneration review reprise 
Journal of Biology  2010;9(2):15.
There have been notable advances in the scientific understanding of regeneration within the past year alone, including two recently published in BMC Biology. Increasingly, progress in the regeneration field is being inspired by comparisons with stem cell biology and enabled by newly developed techniques that allow simultaneous examination of thousands of genes and proteins.
See research articles and
PMCID: PMC2871519  PMID: 20236485
7.  The architecture of RNA polymerase fidelity 
BMC Biology  2010;8:85.
The basis for transcriptional fidelity by RNA polymerase is not understood, but the 'trigger loop', a conserved structural element that is rearranged in the presence of correct substrate nucleotides, is thought to be critical. A study just published in BMC Biology sheds new light on the ways in which the trigger loop may promote selection of correct nucleotide triphosphate substrates.
See research article
PMCID: PMC2889878  PMID: 20598112
8.  Ethylene and the regulation of plant development 
BMC Biology  2012;10:9.
Often considered an 'aging' hormone due to its role in accelerating such developmental processes as ripening, senescence, and abscission, the plant hormone ethylene also regulates many aspects of growth and development throughout the life cycle of the plant. Multiple mechanisms have been identified by which transcriptional output from the ethylene signaling pathway can be tailored to meet the needs of particular developmental pathways. Of special interest is the report by Lumba et al. in BMC Biology on how vegetative transitions are regulated through the effect of the transcription factor FUSCA3 on ethylene-controlled gene expression, providing an elegant example of how hormonal control can be integrated into a developmental pathway.
See research article
One of the amazing qualities of plants is their phenotypic plasticity. Consider, for example, how a pine tree will grow to a towering hundreds of feet in height in Yosemite Valley, but to only a gnarled few feet in height up near the timberline. This diversity of form, though originating from the same genotype, points to the degree to which plant growth and development can be modulated. Much of this control is mediated by a small group of plant hormones that include auxin, cytokinin, gibberellin, abscisic acid, brassinosteroid, jasmonic acid, and ethylene [1]. These are often considered 'classical' plant hormones because they were discovered decades ago; indeed, the presence of some was inferred over a century ago. Their early discovery is no doubt due in part to their general function throughout the life cycle of the plant. More recently, and in the remarkably short period of time since the advent of Arabidopsis as a genetic model, key elements in the primary signaling pathways of these plant hormones have been uncovered. The important question is no longer simply how are these hormones perceived, but how are the hormonal signals integrated into the control of particular developmental pathways? In pursuing such a question, Lumba et al. [2] have now uncovered a role for the plant hormone ethylene in regulating the conversion of juvenile to adult leaves. These new data, in combination with prior research implicating the plant hormones abscisic acid and gibberellin in this transition [3], form an important step in defining how a hormonal network regulates a key developmental process.
PMCID: PMC3282650  PMID: 22348804
9.  Isomin: a novel cytoplasmic intermediate filament protein from an arthropod species 
BMC Biology  2011;9:17.
The expression of intermediate filaments (IFs) is a hallmark feature of metazoan cells. IFs play a central role in cell organization and function, acting mainly as structural stress-absorbing elements. There is growing evidence to suggest that these cytoskeletal elements are also involved in the integration of signalling networks. According to their fundamental functions, IFs show a widespread phylogenetic expression, from simple diblastic animals up to mammals, and their constituent proteins share the same molecular organization in all species so far analysed. Arthropods represent a major exception in this scenario. Only lamins, the nuclear IF proteins, have so far been identified in the model organisms analysed; on this basis, it has been considered that arthropods do not express cytoplasmic IFs.
Here, we report the first evidence for the expression of a cytoplasmic IF protein in an arthropod - the basal hexapod Isotomurus maculatus. This new protein, we named it isomin, is a component of the intestinal terminal web and shares with IFs typical biochemical properties, molecular features and reassembly capability. Sequence analysis indicates that isomin is mostly related to the Intermediate Filament protein C (IFC) subfamily of Caenorhabditis elegans IF proteins, which are molecular constituents of the nematode intestinal terminal web. This finding is coherent with, and provides further support to, the most recent phylogenetic views of arthropod ancestry. Interestingly, the coil 1a domain of isomin appears to have been influenced by a substantial molecular drift and only the aminoterminal part of this domain, containing the so-called helix initiation motif, has been conserved.
Our results set a new basis for the analysis of IF protein evolution during arthropod phylogeny. In the light of this new information, the statement that the arthropod phylum lacks cytoplasmic IFs is no longer tenable.
See commentary article:
PMCID: PMC3065449  PMID: 21356109
10.  Genome of a songbird unveiled 
Journal of Biology  2010;9(3):19.
An international collaborative effort has recently uncovered the genome of the zebra finch, a songbird model that has provided unique insights into an array of biological phenomena.
See research articles,, and
PMCID: PMC2871510  PMID: 20359317
11.  The water flea Daphnia - a 'new' model system for ecology and evolution? 
Journal of Biology  2010;9(2):21.
Daphnia pulex is the first crustacean to have its genome sequenced. Availability of the genome sequence will have implications for research in aquatic ecology and evolution in particular, as addressed by a series of papers published recently in BMC Evolutionary Biology and BMC Genomics.
See research articles,,,,,, and
PMCID: PMC2871515  PMID: 20478012
12.  Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda 
Nature Communications  2012;3:1261-.
Cambrian lobopodians are important for understanding the evolution of arthropods, but despite their soft-bodied preservation, the organization of the cephalic region remains obscure. Here we describe new material of the early Cambrian lobopodian Onychodictyon ferox from southern China, which reveals hitherto unknown head structures. These include a proboscis with a terminal mouth, an anterior arcuate sclerite, a pair of ocellus-like eyes and branched, antenniform appendages associated with this ocular segment. These findings, combined with a comparison with other lobopodians, suggest that the head of the last common ancestor of fossil lobopodians and extant panarthropods comprized a single ocular segment with a proboscis and terminal mouth. The lack of specialized mouthparts in O. ferox and the involvement of non-homologous mouthparts in onychophorans, tardigrades and arthropods argue against a common origin of definitive mouth openings among panarthropods, whereas the embryonic stomodaeum might well be homologous at least in Onychophora and Arthropoda.
Lobopodians include stem-group arthropods and panarthropods, and date back to the early Cambrian. Ou et al. describe specimens of the early Cambrian lobopodian Onychodictyon ferox, revealing new head structures such as modified appendages, eyes, a terminal mouth and a sucking pharynx.
PMCID: PMC3535342  PMID: 23232391
13.  Top dogs: wolf domestication and wealth 
Journal of Biology  2010;9(2):10.
A phylogeographic analysis of gene sequences important in determining body size in dogs, recently published in BMC Biology, traces the appearance of small body size to the Neolithic Middle East. This finding strengthens the association of this event with the development of sedentary societies, and perhaps even has implications for the inception of human social inequality.
See research article
PMCID: PMC2871521  PMID: 20236496
14.  Krüppel-like transcription factors and control of pluripotency 
BMC Biology  2010;8:125.
Recent papers have demonstrated a role for Krüppel-like transcription factors 2, 4 and 5 in the control of mouse embryonic stem cell pluripotency. However, it is not clear whether each factor has a unique role or whether they are functionally redundant. A paper by Parisi and colleagues in BMC Biology now sheds light on the mechanism by which Klf5 regulates pluripotency.
See research article
PMCID: PMC2946285  PMID: 20875146
15.  Proteasome inhibition, the pursuit of new cancer therapeutics, and the adaptor molecule p130Cas 
BMC Biology  2011;9:72.
Current interest in proteasome inhibitors for cancer therapy has stimulated considerable research efforts to identify the molecular pathway to their cytotoxicity with a view to identifying the mechanisms of sensitivity and resistance as well as informing the development of new drugs. Zhao and Vuori describe this month in BMC Biology experiments indicating a novel role of the adaptor protein p130Cas in sensitivity to apoptosis induced not only by proteasome inhibitors but also by the unrelated drug doxorubicin.
See research article: http://
PMCID: PMC3203852  PMID: 22034840
16.  The THO complex as a key mRNP biogenesis factor in development and cell differentiation 
Journal of Biology  2010;9(1):6.
The THO complex is a key component in the co-transcriptional formation of messenger ribonucleoparticles that are competent to be exported from the nucleus, yet its precise function is unknown. A recent study in BMC Biology on the role of the THOC5 subunit in cell physiology and mouse development provides new clues to the role of the THO complex in cell differentiation.
See research article
PMCID: PMC2871528  PMID: 20236444
17.  Scale-eating cichlids: from hand(ed) to mouth 
Journal of Biology  2010;9(2):11.
Two recent studies in BMC Biology and Evolution raise important questions about a textbook case of frequency-dependent selection in scale-eating cichlid fishes. They also suggest a fascinating new line of research testing the effects of handed behavior on morphological asymmetry.
See research article
PMCID: PMC2871516  PMID: 20236497
18.  Oestrogen shuts the door on SOX9 
BMC Biology  2010;8:110.
Oestrogen exerts a robust yet imperfectly understood effect on sexual development in vertebrate embryos. New work by Pask and colleagues in BMC Biology indicates that it may interfere with male development by preventing nuclear localization of SOX9, a master regulator of the testis differentiation pathway.
See research article
PMCID: PMC2930626  PMID: 20828373
19.  The bridge helix coordinates movements of modules in RNA polymerase 
BMC Biology  2010;8:141.
The RNA polymerase 'bridge helix' is a metastable α-helix that spans the leading edge of the enzyme active-site cleft. A new study published in BMC Biology reveals surprising tolerance to helix-disrupting changes in a region previously thought crucial for translocation, and suggests roles for two hinge-like segments of the bridge helix in coordinating modules that move during the nucleotide-addition cycle.
See Research article:
PMCID: PMC2993669  PMID: 21114873
20.  How the vertebrates were made: selective pruning of a double-duplicated genome 
BMC Biology  2010;8:144.
Vertebrates are the result of an ancient double duplication of the genome. A new study published in BMC Biology explores the selective retention of genes after this event, finding an extensive enrichment of signaling proteins and transcription factors. Analysis of their expression patterns, interactions and subsequent history reflect the forces that drove their evolution, and with it the evolution of vertebrate complexity.
See research article:
PMCID: PMC3001425  PMID: 21144066
21.  DNA replication: archaeal oriGINS 
BMC Biology  2011;9:36.
GINS is an essential eukaryotic DNA replication factor that is found in a simplified form in Archaea. A new study in this issue of BMC Biology reveals the first structure of the archaeal GINS complex. The structure reveals the anticipated similarity to the previously determined eukaryotic complex but also has some intriguing differences in the relative disposition of subunit domains.
See research article:
PMCID: PMC3104950  PMID: 21627856
22.  Inferring the Tree of Life: chopping a phylogenomic problem down to size? 
BMC Biology  2011;9:59.
The combination of molecular sequence data and bioinformatics has revolutionized phylogenetic inference over the past decade, vastly increasing the scope of the evolutionary trees that we are able to infer. A recent paper in BMC Biology describing a new phylogenomic pipeline to help automate the inference of evolutionary trees from public sequence databases provides another important tool in our efforts to derive the Tree of Life.
See research article:
PMCID: PMC3176480  PMID: 21933452
23.  Constrained evolution drives limited influenza diversity 
BMC Biology  2012;10:43.
H3N2 influenza A viruses have been widely circulating in human populations since the pandemic of 1968. A striking feature of the evolutionary development of this strain has been its 'canalized' nature, with narrow evolutionary trees dominated by long trunks with few branching, or bifurcation events and a consequent lack of standing diversity at any single point. This is puzzling, as one might expect that the strong human immune response against the virus would create an environment encouraging more diversity, not less. Previous models have used various assumptions in order to account for this finding. A new analysis published in BMC Biology suggests that this processive evolution down a single path can be recapitulated by a relatively simple model incorporating only two primary parameters - the mutation rate of the virus, and the immunological distance created by each mutation - so long as these parameters are within a particular narrow but biologically plausible range.
See research article:
PMCID: PMC3357320  PMID: 22613866
24.  How a bird is an island 
BMC Biology  2012;10:53.
Replicate adaptive radiations occur when lineages repeatedly radiate and fill new but similar niches and converge phenotypically. While this is commonly seen in traditional island systems, it may also be present in host-parasite relationships, where hosts serve as islands. In a recent article in BMC Biology, Johnson and colleagues have produced the most extensive phylogeny of the avian lice (Ischnocera) to date, and find evidence for this pattern. This study opens the door to exploring adaptive radiations from a novel host-parasite perspective.
See research article:
PMCID: PMC3379931  PMID: 22715854
25.  Somatic and visceral nervous systems - an ancient duality 
BMC Biology  2013;11:54.
The vertebrate nervous system is deeply divided into ‘somatic’ and ‘visceral’ subsystems that respond to external and internal stimuli, respectively. Molecular characterization of neurons in different groups of mollusks by Nomaksteinsky and colleagues, published in this issue of BMC Biology, reveals that the viscero-somatic duality is evolutionarily ancient, predating Bilateria.
See research article:
PMCID: PMC3639815  PMID: 23631570

Results 1-25 (521810)