Search tips
Search criteria

Results 1-25 (1158770)

Clipboard (0)

Related Articles

1.  Many Multiple Myelomas: Making More of the Molecular Mayhem 
Multiple myeloma (MM) is malignancy of isotype-switched, BM-localized plasma cells that frequently results in bone destruction, BM failure, and death. Important molecular subgroups are identified by three classes of recurrent immunoglobulin gene translocations and hyperdiploidy, both of which affect disease course. From a clinical standpoint, it is critical to identify MM patients carrying the t(4;14) translocation, which is present in 15% of myelomas and is associated with dysregulation of WHSC1/MMSET and often FGFR3. These patients should all receive bortezomib as part of their initial induction treatment because this has been shown to significantly prolong survival. In contrast, patients with translocations affecting the MAF family of transcription factors, del17p, or gene-expression profiling (GEP)–defined high-risk disease appear to have a worse prognosis that is not dramatically improved by any intervention. These patients should be enrolled in innovative clinical trials. The remaining patients with cyclin D translocations or hyperdiploidy do well with most therapies, and the goal should be to control disease while minimizing toxicity.
PMCID: PMC3903307  PMID: 22160056
2.  Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3 
Nature genetics  1997;16(3):260-264.
Dysregulation of oncogenes by translocation to the IgH locus (14q32) is a seminal event in the pathogenesis of B-cell tumours1. In multiple myeloma (MM), translocations to the IgH locus have been reported at an incidence of 20–60%. For most translocations, the partner chromosome is unknown (14q+); for the others, a diverse array of chromosomal partners have been identified, with 11q13 (cyclin D1) the only chromosome that is frequently involved2–6. Recently, we developed a Southern-blot assay that detects translocation breakpoint fragments in most MM tumours, including those with no translocation detected by conventional karyotyping6. In a continuing analysis of translocations in 21 myeloma cell lines and primary tumours, we show that the novel, karyotypically silent translocation t(4;14)(p16.3;q32.3) is present in five lines and at least three of ten primary tumours. The chromosome-4 breakpoints are clustered in a 70-kb region centromeric to the fibroblast growth factor receptor 3 gene (FGFR3), the apparent dysregulated oncogene. Two lines and one primary tumour with this translocation selectively express an FGFR3 allele containing activating mutations identified previously in thanatophoric dwarfism. We propose that after the t(4;14) translocation, somatic mutation during tumour progression frequently generates an FGFR3 protein that is active in the absence of ligand.
PMCID: PMC3901950  PMID: 9207791
3.  Ectopic expression of wild-type FGFR3 cooperates with MYC to accelerate development of B-cell lineage neoplasms 
Leukemia  2010;24(6):1171-1178.
The t(4;14) translocation in multiple myeloma (MM) simultaneously dysregulates two apparent oncogenes: fibroblast growth factor receptor 3 (FGFR3) controlled by the 3′ immunoglobulin heavy chain enhancer on der(14) and MMSET controlled by the intronic Eμ enhancer on der(4). Although all MM tumors and cell lines with a t(4;14) translocation have dysregulated MMSET, about 25% do not express FGFR3. Therefore, the function of dysregulated wild-type (WT) FGFR3 in the pathogenesis of MM remains unclear. We developed a murine transgenic (TG) model in which WT FGFR3 is over-expressed in B lymphoid cells. Although high levels of FGFR3 resulted in lymphoid hyperplasia in about one-third of older mice, no increase in tumorigenesis was observed. However, double TG FGFR3/Myc mice develop mature B lymphoma tumors that occur with a higher penetrance and shorter latency than in single TG Myc mice (P = 0.006). We conclude that expression of high levels of WT FGFR3 can be oncogenic and cooperate with MYC to generate B lymphoid tumors. This suggests that dysregulated FGFR3 expression is likely to be essential at least for the early stages of pathogenesis of MM tumors that have a t(4;14) translocation.
PMCID: PMC3118571  PMID: 20393505
FGFR3; Myc; lymphoma; multiple myeloma; oncogene
4.  Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma 
PLoS Genetics  2014;10(2):e1004135.
Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.
Author Summary
Cholangiocarcinoma is a cancer that affects the bile ducts. Unfortunately, many patients diagnosed with cholangiocarcinoma have disease that cannot be treated with surgery or has spread to other parts of the body, thus severely limiting treatment options. New advances in drug treatment have enabled treatment of these cancers with “targeted therapy” that exploits an error in the normal functioning of a tumor cell, compared to other cells in the body, thus allowing only tumor cells to be killed by the drug. We sought to identify changes in the genetic material of cholangiocarcinoma patient tumors in order to identify potential errors in cellular functioning by utilizing cutting edge genetic sequencing technology. We identified three patient tumors possessing an FGFR2 gene that was aberrantly fused to another gene. Two of these patients were able to receive targeted therapy for FGFR2 with resulting tumor shrinkage. A fourth tumor contained an error in a gene that controls a very important cellular mechanism in cancer, termed epidermal growth factor pathway (EGFR). This patient received therapy targeting this mechanism and also demonstrated response to treatment. Thus, we have been able to utilize cutting edge technology with targeted drug treatment to personalize medical treatment for cancer in cholangiocarcinoma patients.
PMCID: PMC3923676  PMID: 24550739
5.  Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice 
The Journal of Clinical Investigation  2009;119(5):1216-1229.
Overexpression of FGF receptor 3 (FGFR3) is implicated in the development of t(4;14)-positive multiple myeloma. While FGFR3 is frequently overexpressed and/or activated through mutations in bladder cancer, the functional importance of FGFR3 and its potential as a specific therapeutic target in this disease have not been elucidated in vivo. Here we report that inducible knockdown of FGFR3 in human bladder carcinoma cells arrested cell-cycle progression in culture and markedly attenuated tumor progression in xenografted mice. Further, we developed a unique antibody (R3Mab) that inhibited not only WT FGFR3, but also various mutants of the receptor, including disulfide-linked cysteine mutants. Biochemical analysis and 2.1-Å resolution crystallography revealed that R3Mab bound to a specific FGFR3 epitope that simultaneously blocked ligand binding, prevented receptor dimerization, and induced substantial conformational changes in the receptor. R3Mab exerted potent antitumor activity against bladder carcinoma and t(4;14)-positive multiple myeloma xenografts in mice by antagonizing FGFR3 signaling and eliciting antibody-dependent cell-mediated cytotoxicity (ADCC). These studies provide in vivo evidence demonstrating an oncogenic role of FGFR3 in bladder cancer and support antibody-based targeting of FGFR3 in hematologic and epithelial cancers driven by WT or mutant FGFR3.
PMCID: PMC2673861  PMID: 19381019
6.  Molecular pathogenesis of multiple myeloma: basic and clinical updates 
Multiple myeloma is divided into two distinct genetic subtypes based on chromosome content. Hyperdiploid myeloma is characterized by multiple trisomies of chromosomes 3, 5, 7, 9 11, 15, 19 and 21, and lacks recurrent immunoglobulin gene translocations. Non-hyperdiploid myeloma in contrast is characterized by chromosome translocations t(4;14), t(14;16), t(14;20), t(6;14) and t(11;14). A unifying event in the pathogenesis of multiple myeloma is the dysregulated expression of a cyclin D gene, either directly by juxtaposition to an immunoglobulin enhancer, as a result of ectopic expression of a MAF family transcription factor, or indirectly by as yet unidentified mechanisms. Secondary genetic events include rearrangements of MYC, activating mutations of NRAS, KRAS or BRAF, a promiscuous array of mutations that activate NFkB and deletions of 17p. Among the poor-risk genetic features are t(4;14), t(14;16), t(14;20), del 17p and gains of 1q. Available evidence supports the use of a risk-stratified approach to the treatment of patients with multiple myeloma, with the early and prolonged use of bortezomib particularly in patients with t(4;14) and del 17p.
PMCID: PMC3962846  PMID: 23456262
Pathogenesis; Multiple myeloma; Genetics; Prognosis; Treatment
7.  Multiple myeloma: 2012 update on diagnosis, risk-stratification, and management 
American journal of hematology  2012;87(1):78-88.
Disease overview
Multiple myeloma accounts for ~10% of all hematologic malignancies.
The diagnosis requires 10% or more clonal plasma cells on bone marrow examination or a biopsy proven plasmacytoma plus evidence of end-organ damage felt to be related to the underlying plasma-cell disorder.
Risk stratification
Patients with 17p deletion, t(14;16), t(14;20), or high-risk gene expression profiling signature have high-risk myeloma. Patients with t(4;14) translocation, karyotypic deletion 13, or hypodiploidy are considered to have intermediate-risk disease. All others are considered to have standard-risk myeloma.
Risk-adapted therapy
Standard-risk patients are treated with nonalkylator-based therapy such as lenalidomide plus low-dose dexamethasone (Rd) followed by autologous stem-cell transplantation (ASCT). An alternative strategy is to continue initial therapy after stem-cell collection, reserving ASCT for first relapse. Intermediate-risk and high-risk patients are treated with a bortezomib-based induction followed by ASCT and then bortezomib-based maintenance. Patients not eligible for ASCT can be treated with Rd for standard risk disease, or with a bortezomib-based regimen if intermediate-risk or high-risk features are present. To reduce toxicity, when using bortezomib, the once-weekly subcutaneous dose is preferred; similarly, when using dexamethasone, the low-dose approach (40 mg once a week) is preferred, unless there is a need for rapid disease control.
Management of refractory disease
Patients with indolent relapse can be treated first with two-drug or three-drug combinations. Patients with more aggressive relapse often require therapy with a combination of multiple active agents. The most promising new agents in development are pomalidomide and carfilizomib.
PMCID: PMC3629949  PMID: 22180161
8.  Insulin like growth factor binding protein 7 (IGFBP7) expression is linked to poor prognosis but may protect from bone disease in multiple myeloma 
Insulin like growth factor binding protein 7 (IGFBP7) is a secreted protein binding insulin like growth factor 1 (IGF-1), insulin, vascular endothelial growth factor A (VEGFA), and activin A. It antagonizes bone morphogenetic proteins and is involved in the tumour propagation of solid as well as haematological malignancies. Its role in multiple myeloma (MM) is not defined so far. We therefore aim here to investigate its prognostic and pathophysiological role in MM.
The clinical significance of IGFBP7 gene expression was investigated by gene expression profiling in two independent cohorts (n = 948) of newly-diagnosed MM patients. Methylation of the IGFBP7 promoter was analysed by pyrosequencing and treatment of MM cell lines with 5-aza-2-deoxycytidine. The impact of IGFBP7 on MM cells was studied by CCK-8 assay, BrdU assay and flow cytometry, respectively. IGFBP7 expression in bone marrow stromal cells (BMSCs) was studied by quantitative RT-PCR. For osteoblast development, immortalized and primary human BMSCs were cultured in osteogenic differentiation medium for 7–14 days in the presence of recombinant human IGFBP7 and/or activin A.
Median IGFBP7 expression is significantly lower in CD138-purified plasma cells from individuals with MGUS and MM, compared to normal bone marrow plasma cells. IGFBP7 gene expression in MM cells is regulated by methylation, shown by pyrosequencing and exposure to demethylating agents (5-aza-2-deoxycytidine). High expression of IGFBP7 in MM cells is associated with adverse survival in two independent cohorts of 247 and 701 newly-diagnosed MM patients treated with high-dose therapy and autologous stem cell transplantation. IGFBP7 is associated with prognostically adverse chromosomal aberrations (t(4;14) and gain of 1q21), MMSET expression, and higher myeloma cell proliferation. In vitro, IGFBP7 overcomes activin A induced osteoblast suppression and promotes osteogenesis. MM cells downregulate IGFBP7 in stromal cells, possibly contributing to the osteoblast suppression found in MM. Conversely, higher IGFBP7 expression is associated with a lower probability of myeloma bone disease.
Our data indicate that IGFBP7 expression is a marker for a specific methylation pattern in myeloma, linked to translocation t(4;14) associated MMSET expression, showing clinical features of adverse prognosis with absence of myeloma bone disease.
Electronic supplementary material
The online version of this article (doi:10.1186/s13045-014-0105-1) contains supplementary material, which is available to authorized users.
PMCID: PMC4333268
Multiple myeloma; IGFBP7; Microenvironment; Myeloma bone disease; Survival
9.  Fibroblast growth factor signaling and inhibition in non-small cell lung cancer and their role in squamous cell tumors 
Cancer Medicine  2014;3(3):681-692.
With the introduction of targeted agents primarily applicable to non-small cell lung cancer (NSCLC) of adenocarcinoma histology, there is a heightened unmet need in the squamous cell carcinoma population. Targeting the angiogenic fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling pathway is among the strategies being explored in squamous NSCLC; these efforts are supported by growth-promoting effects of FGF signaling in preclinical studies (including interactions with other pathways) and observations suggesting that FGF/FGFR-related aberrations may be more common in squamous versus adenocarcinoma and other histologies. A number of different anti-FGF/FGFR approaches have shown promise in preclinical studies. Clinical trials of two multitargeted tyrosine kinase inhibitors are restricting enrollment to patients with squamous NSCLC: a phase I/II trial of nintedanib added to first-line gemcitabine/cisplatin and a phase II trial of ponatinib for previously treated advanced disease, with the latter requiring not only squamous disease but also a confirmed FGFR kinase amplification or mutation. There are several ongoing clinical trials of multitargeted agents in general NSCLC populations, including but not limited to patients with squamous disease. Other FGF/FGFR-targeted agents are in earlier clinical development. While results are awaited from these clinical investigations in squamous NSCLC and other disease settings, additional research is needed to elucidate the role of FGF/FGFR signaling in the biology of NSCLC of different histologies.
PMCID: PMC4101760  PMID: 24711160
Angiogenesis inhibitors; fibroblast growth factors; non-small cell lung cancer; squamous cell carcinoma
10.  Pomalidomide: a novel drug to treat relapsed and refractory multiple myeloma 
OncoTargets and therapy  2013;6:531-538.
Multiple myeloma remains an incurable disease despite the introduction of the immunomodulatory drugs (IMiDs) thalidomide and lenalidomide and the proteasome inhibitor bortezomib that have improved the outcome of patients with both newly diagnosed and relapsed/refractory disease. However, patients who relapse after treatment with these agents or are refractory to them represent an unmet need and highlight the necessity for the development of novel anti-myeloma agents. Pomalidomide is an IMiD, structurally related to thalidomide, with enhanced antiangiogenic, antineoplastic, and anti-inflammatory properties and exhibiting potent anti-myeloma activity in vitro and in vivo. Pomalidomide has shown remarkable activity in patients who were refractory to both bortezomib and lenalidomide in Phase II and III studies. This paper reviews the chemistry and mechanisms of action of pomalidomide as well as all the available data from clinical trials on pomalidomide use in patients with refractory/relapsed multiple myeloma.
PMCID: PMC3656921  PMID: 23690693
immunomodulatory drugs; cereblon; angiogenesis; lenalidomide; refractory
11.  Treatment of newly diagnosed myeloma 
Leukemia  2008;23(3):449-456.
The introduction of thalidomide, bortezomib and lenalidomide has dramatically changed the treatment paradigm of multiple myeloma (MM). In patients eligible for autologous stem cell transplant (ASCT), combinations including thalidomide/dexamethasone (Thal/Dex) or bortezomib/dexamethasone (Bort/Dex) or lenalidomide/dexamethasone (Rev/Dex) have been introduced as induction regimens in patients eligible for ASCT. New induction regimens have significantly increased complete response rate before and after ASCT with a positive impact on progression-free survival. Maintenance therapy with thalidomide, under investigation with lenalidomide, may further prolong remission duration. In patients not eligible for ASCT, randomized studies have shown that melphalan, prednisone, thalidomide (MPT) and melphalan, prednisone and bortezomib (MPV) are both superior to melphalan and prednisone (MP), and are now considered standard of care. Ongoing trials will soon assess if MP plus lenalidomide may be considered an attractive option. More complex regimens combining thalidomide or bortezomib or lenalidomide with cyclophosphamide or doxorubicin have been also tested. In small cohorts of patients bortezomib or lenalidomide may overcome the poor prognosis induced by deletion 13 or translocation t(4;14) or deletion 17p13. If these data will be confirmed, a cytogenetically riskadapted strategy might become the most appropriate strategy.
PMCID: PMC3923468  PMID: 19005483
new drugs; therapy; diagnosis; myeloma
12.  Fibroblast Growth Factor Receptor 3 Associates with and Tyrosine Phosphorylates p90 RSK2, Leading to RSK2 Activation That Mediates Hematopoietic Transformation▿  
Molecular and Cellular Biology  2009;29(8):2105-2117.
Dysregulation of the receptor tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) plays a pathogenic role in a number of human hematopoietic malignancies and solid tumors. These include t(4;14) multiple myeloma associated with ectopic expression of FGFR3 and t(4;12)(p16;p13) acute myeloid leukemia associated with expression of a constitutively activated fusion tyrosine kinase, TEL-FGFR3. We recently reported that FGFR3 directly tyrosine phosphorylates RSK2 at Y529, which consequently regulates RSK2 activation. Here we identified Y707 as an additional tyrosine in RSK2 that is phosphorylated by FGFR3. Phosphorylation at Y707 contributes to RSK2 activation, through a putative disruption of the autoinhibitory αL-helix on the C terminus of RSK2, unlike Y529 phosphorylation, which facilitates ERK binding. Moreover, we found that FGFR3 interacts with RSK2 through residue W332 in the linker region of RSK2 and that this association is required for FGFR3-dependent phosphorylation of RSK2 at Y529 and Y707, as well as the subsequent RSK2 activation. Furthermore, in a murine bone marrow transplant assay, genetic deficiency in RSK2 resulted in a significantly delayed and attenuated myeloproliferative syndrome induced by TEL-FGFR3 as compared with wild-type cells, suggesting a critical role of RSK2 in FGFR3-induced hematopoietic transformation. Our current and previous findings represent a paradigm for tyrosine phosphorylation-dependent regulation of serine-threonine kinases.
PMCID: PMC2663316  PMID: 19223461
13.  Inhibition of cell cycle progression by dual phosphatidylinositol-3-kinase and mTOR blockade in cyclin D2 positive multiple myeloma bearing IgH translocations 
Blood Cancer Journal  2012;2(1):e50-.
Multiple myeloma (MM) is a clinically and genetically heterogenous cancer where tumour cells have dysregulated expression of a D-type cyclin, often in association with a recurrent IgH translocation. Patients whose tumour cells express cyclin D2, with the translocation t(4;14) or t(14;16), generally have more proliferative disease and inferior outcomes. The phosphatidylinositol-3-kinase (PI3K) pathway is a major regulator of D-type cyclin expression and cell cycle entry. We evaluated the effect of PI3K pathway blockade on cell cycle behaviour in MM cells, investigating differences between cyclin D2- and cyclin D1-expressing tumours. MM cell lines and primary bone marrow CD138+ MM cells were exposed to the pan-PI3K/mTOR inhibitor, PI-103, and assessed for cell cycle profiles, [3H]-thymidine uptake and cell cycle proteins. We report, in both cell lines and primary MM cells, that PI-103 induced cell cycle arrest with downregulation of cyclin D2 and CDK4/6 in MM cells expressing cyclin D2 via t(4;14) or t(14;16) translocations. Cells expressing cyclin D1 via t(11;14) were insensitive to PI-103, despite exhibiting inhibition of downstream signalling targets. In primary MM cells, PI-103 enhanced the anti-proliferative effects of anti-MM agents. Treatment paradigms including blockade of the PI3K/mTOR pathway should be targeted at patients with IgH translocations associated with cyclin D2 overexpression.
PMCID: PMC3270251  PMID: 22829234
multiple myeloma; cyclin D; cell cycle; PI3K/mTOR; PI-103
14.  NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming 
Molecular cell  2011;44(4):609-620.
The histone lysine methyltransferase NSD2 (MMSET/WHSC1) is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation upon t(4;14)-negative cells, and promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark by NSD2 initiates oncogenic programming.
PMCID: PMC3222870  PMID: 22099308
15.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma 
Science (New York, N.Y.)  2012;337(6099):1231-1235.
The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3–initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.
PMCID: PMC3677224  PMID: 22837387
16.  Bortezomib in multiple myeloma and lymphoma: a systematic review and clinical practice guideline 
Current Oncology  2006;13(5):160-172.
In patients with multiple myeloma, Waldenström macroglobulinemia, or lymphoma, what is the efficacy of bortezomib alone or in combination as measured by survival, quality of life, disease control (for example, time to progression), response duration, or response rate?
What is the toxicity associated with the use of bortezomib?
Which patients are more or less likely to benefit from treatment with bortezomib?
Evidence was selected and reviewed by two members of the Hematology Disease Site Group and by methodologists from the Program in Evidence-based Care (pebc) at Cancer Care Ontario. The practice guideline report was reviewed and approved by the Hematology Disease Site Group, which comprises hematologists, medical and radiation oncologists, and a patient representative. As part of an external review process, the report was disseminated to practitioners throughout Ontario to obtain their feedback.
Outcomes of interest were overall survival, quality of life, response rates and duration, and rates of adverse events.
A systematic search was conducted of the medline, embase, HealthStar, cinahl, and Cochrane Library databases for primary articles and practice guidelines. The resulting evidence informed the development of clinical practice recommendations. Those recommendations were appraised by a sample of practitioners in Ontario and modified in response to the feedback received. The systematic review and modified recommendations were approved by a review body w theithin pebc.
The literature review found one randomized controlled trial (rct)—the only published rct of bortezomib in relapsed myeloma. A number of phase ii studies were also retrieved, including a randomized phase ii study. No randomized trials were retrieved for lymphoma.
The rct found bortezomib to be superior to high-dose dexamethasone for median time to progression and 1-year survival in patients with relapsed myeloma, although grade 3 adverse events were more common in the bortezomib arm. Bortezomib is recommended as the preferred treatment option in patients with myeloma relapsing within 1 year of the conclusion of initial treatment; it may also be a reasonable option in patients relapsing at least 1 year after autologous stem-cell transplantation.
Practice Guideline
This evidence-based series applies to adult patients with myeloma, Waldenström macroglobulinemia, or lymphoma of any type, stage, histology, or performance status.
Based on the results of a large well-conducted rct, which represents the only published randomized study in relapsed myeloma, the Hematology Disease Site Group (dsg) offers the following recommendations:
For patients with myeloma refractory to or relapsing within 1 year of the conclusion of initial or subsequent treatment or treatments, including autologous stem-cell transplantation, and who are candidates for further chemotherapy, bortezomib is recommended as the preferred treatment option.
Bortezomib is also a reasonable option for patients relapsing at least 1 year after autologous stem-cell transplantation. The dsg is aware that thalidomide, alkylating agents, or repeat transplantation may also be options for these patients. However, evaluation of these other options is beyond the scope of this practice guideline.
For patients with myeloma relapsing at least 1 year after the conclusion of alkylating agent–based chemotherapy who are candidates for further chemotherapy, further treatment with alkylating agent–based chemotherapy is recommended.
Evidence is insufficient to support the use of bortezomib in patients with non-Hodgkin lymphoma or Waldenström macroglobulinemia outside of clinical trials.
Qualifying Statements
Limited evidence supports the appropriateness of a specific time-to-relapse period as being indicative of treatment-insensitive disease. The 1-year threshold provided in the foregoing recommendations is based on the opinion of the Hematology dsg.
For specific details related to the administration of bortezomib therapy, the dsg suggests that clinicians refer to the protocols used in major trials. Some of those details are provided here for informational purposes.
Bortezomib 1.3,g/m2 is given as a rapid intravenous bolus over 3–5 seconds on days 1, 4, 8, and 11 of a 21-day cycle; a minimum of 72 hours between doses is required to allow for recovery of normal proteasome function. Vital signs should be checked before and after each dose. A complete blood count is recommended before each dose, with blood chemistries (including electrolyte and creatinine levels) monitored at a minimum on days 1 and 8 of each cycle. The dose of bortezomib should be reduced or held immediately upon development of painful neuropathy, as described in the product monograph; dose modification may also be required for peripheral sensory neuropathy without pain or for other toxicities. Most toxicities are reversible if dose modification guidelines are followed.
Response to Treatment
Responses are usually apparent by 6 weeks (2 cycles). For patients achieving complete remission (determined by negative electrophoresis and immunofixation), bortezomib should be given for 2 additional cycles beyond the date of confirmed complete remission. In patients with progressive disease after 2 cycles or stable disease after 4 cycles, dexamethasone added to the bortezomib regimen (20 mg by mouth the day of and the day after each bortezomib dose) may produce an objective response. Bortezomib (with or without dexamethasone) should be continued in patients showing benefit from therapy (excluding those in complete remission) unless disease progression or significant toxicity is observed. Therapy should be discontinued in patients who do not respond to bortezomib alone if disease progression is seen within 2 cycles of the addition of dexamethasone.
The Hematology dsg recognizes that thalidomide is an active agent in multiple myeloma patients who have relapsed after autologous stem-cell transplantation or who are refractory to alkylating agent–based chemotherapy. To date, no reported rcts have evaluated thalidomide in this role, and specifically, no trials have compared thalidomide with bortezomib. Given these limitations, the members of the Hematology dsg regard thalidomide or bortezomib as therapy alternatives to dexamethasone.
PMCID: PMC3394599  PMID: 22792013
Bortezomib; Velcade; multiple myeloma; lymphoma; clinical practice guideline; systematic review
17.  Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3 
Molecular Biology of the Cell  2011;22(20):3861-3873.
FGFR3 is implicated in several human diseases. Following activation and endocytosis, FGFR3 undergoes sequential ectodomain and intramembrane cleavages to generate a soluble cytoplasmic fragment that can translocate to the nucleus.
Fibroblast growth factor receptor 3 (FGFR3) is a major negative regulator of bone growth that inhibits the proliferation and differentiation of growth plate chondrocytes. Activating mutations of its c isoform cause dwarfism in humans; somatic mutations can drive oncogenic transformation in multiple myeloma and bladder cancer. How these distinct activities arise is not clear. FGFR3 was previously shown to undergo proteolytic cleavage in the bovine rib growth plate, but this was not explored further. Here, we show that FGF1 induces regulated intramembrane proteolysis (RIP) of FGFR3. The ectodomain is proteolytically cleaved (S1) in response to ligand-induced receptor activation, but unlike most RIP target proteins, it requires endocytosis and does not involve a metalloproteinase. S1 cleavage generates a C-terminal domain fragment that initially remains anchored in the membrane, is phosphorylated, and is spatially distinct from the intact receptor. Ectodomain cleavage is followed by intramembrane cleavage (S2) to generate a soluble intracellular domain that is released into the cytosol and can translocate to the nucleus. We identify the S1 cleavage site and show that γ-secretase mediates the S2 cleavage event. In this way we demonstrate a mechanism for the nuclear localization of FGFR3 in response to ligand activation, which may occur in both development and disease.
PMCID: PMC3192865  PMID: 21865593
18.  Extramedullary progression of multiple myeloma despite concomitant medullary response to multiple combination therapies and autologous transplant: a case report 
Extramedullary myeloma that occurs during the clinical course of multiple myeloma is rare but is an independent poor prognostic factor with mortality of 73% and median survival of 12 months despite aggressive therapies including novel agents. The clinicopathological aspects, biology and management of extramedullary myelomas are poorly understood. Our case highlights the pathobiological aspects of this important but rare entity, and the repercussions of modern therapies.
Case presentation
A 60-year-old Caucasian man initially presented with an anterior rib fracture. Subsequent workup revealed stage IIIB immunoglobulin G lambda multiple myeloma. A bone marrow biopsy showed sheets of plasma cells, harboring unfavorable cytogenetics including deletion of 17p and t(4;14). He achieved near complete remission and resolution of karyotypic abnormalities with three cycles of induction doxorubicin, thalidomide, and dexamethasone (clinical trial). This was followed by high-dose melphalan and autologous stem cell transplant. He relapsed 1 year later. His bone marrow at that time showed only a few scattered polyclonal plasma cells. He received three cycles of bortezomib and tanespimycin (clinical trial) and achieved very good partial response. He again relapsed 1 year later with multiple large peripheral soft tissue masses and lymph nodes. Biopsies of the peripheral lesions were consistent with extramedullary myeloma, but repeat bone marrow biopsy continued to show no evidence of intramedullary disease.
This is one of the few cases reported that illustrates the differential response of extramedullary compared to intramedullary myeloma to multiple standard combination therapies including novel therapeutics and transplant, resulting in a very short survival. Several mechanisms for intra-to-extra medullary migration and hence the differential treatment response have been hypothesized. Physicians should be aware of this problem during treatment with immunomodulatory drugs and proteasome inhibitors not only in relapsed but also in front-line setting. In such cases, there is a potential role for evolving targeted therapeutics as we continue to better understand the tumor biology.
PMCID: PMC4168996  PMID: 25200389
Extramedullary; Multiple myeloma; Plasmacytoma
19.  Phase I Trial of Lenalidomide and CCI-779 in Patients With Relapsed Multiple Myeloma: Evidence for Lenalidomide–CCI-779 Interaction via P-Glycoprotein  
Journal of Clinical Oncology  2011;29(25):3427-3434.
Multiple myeloma (MM) is an incurable plasma-cell neoplasm for which most treatments involve a therapeutic agent combined with dexamethasone. The preclinical combination of lenalidomide with the mTOR inhibitor CCI-779 has displayed synergy in vitro and represents a novel combination in MM.
Patients and Methods
A phase I clinical trial was initiated for patients with relapsed myeloma with administration of oral lenalidomide on days 1 to 21 and CCI-779 intravenously once per week during a 28-day cycle. Pharmacokinetic data for both agents were obtained, and in vitro transport and uptake studies were conducted to evaluate potential drug-drug interactions.
Twenty-one patients were treated with 15 to 25 mg lenalidomide and 15 to 20 mg CCI-779. The maximum-tolerated dose (MTD) was determined to be 25 mg lenalidomide with 15 mg CCI-779. Pharmacokinetic analysis indicated increased doses of CCI-779 resulted in statistically significant changes in clearance, maximum concentrations, and areas under the concentration-time curves, with constant doses of lenalidomide. Similar and significant changes for CCI-779 pharmacokinetics were also observed with increased lenalidomide doses. Detailed mechanistic interrogation of this pharmacokinetic interaction demonstrated that lenalidomide was an ABCB1 (P-glycoprotein [P-gp]) substrate.
The MTD of this combination regimen was 25 mg lenalidomide with 15 mg CCI-779, with toxicities of fatigue, neutropenia, and electrolyte wasting. Pharmacokinetic and clinical interactions between lenalidomide and CCI-779 seemed to occur, with in vitro data indicating lenalidomide was an ABCB1 (P-gp) substrate. To our knowledge, this is the first report of a clinically significant P-gp–based drug-drug interaction with lenalidomide.
PMCID: PMC3164245  PMID: 21825263
20.  In Vitro and In Vivo Activity of a Novel Locked Nucleic Acid (LNA)-Inhibitor-miR-221 against Multiple Myeloma Cells 
PLoS ONE  2014;9(2):e89659.
Background & Aim
The miR-221/222 cluster is upregulated in malignant plasma cells from multiple myeloma (MM) patients harboring the t(4;14) translocation. We previously reported that silencing of miR-221/222 by an antisense oligonucleotide induces anti-MM activity and upregulates canonical miR-221/222 targets. The in vivo anti-tumor activity occurred when miR-221/222 inhibitors were delivered directly into MM xenografts. The aim of the present study was to evaluate the anti-MM activity of a novel phosphorothioate modified backbone 13-mer locked nucleic acid (LNA)-Inhibitor-miR-221 (LNA-i-miR-221) specifically designed for systemic delivery.
In vitro anti-MM activity of LNA-i-miR-221 was evaluated by cell proliferation and BrdU uptake assays. In vivo studies were performed with non-obese diabetic/severe combined immunodeficient (NOD.SCID) mice bearing t(4;14) MM xenografts, which were intraperitoneally or intravenously treated with naked LNA-i-miR-221. RNA extracts from retrieved tumors were analyzed for miR-221 levels and modulation of canonical targets expression. H&E staining and immunohistochemistry were performed on retrieved tumors and mouse vital organs.
In vitro, LNA-i-miR-221 exerted strong antagonistic activity against miR-221 and induced upregulation of the endogenous target p27Kip1. It had a marked anti-proliferative effect on t(4;14)-translocated MM cells but not on MM cells not carrying the translocation and not overexpressing miR-221. In vivo, systemic treatment with LNA-i-miR-221 triggered significant anti-tumor activity against t(4;14) MM xenografts; it also induced miR-221 downregulation, upregulated p27Kip1 and reduced Ki-67. No behavioral changes or organ-related toxicity were observed in mice as a consequence of treatments.
LNA-i-miR-221 is a highly stable, effective agent against t(4;14) MM cells, and is suitable for systemic use. These data provide the rationale for the clinical development of LNA-i-miR-221 for the treatment of MM.
PMCID: PMC3931823  PMID: 24586944
21.  International Myeloma Working Group molecular classification of multiple myeloma: spotlight review 
Myeloma is a malignant proliferation of monoclonal plasma cells. Although morphologically similar, several subtypes of the disease have been identified at the genetic and molecular level. These genetic subtypes are associated with unique clinico-pathological features and dissimilar outcome. At the top hierarchical level, myeloma can be divided into hyperdiploid and non-hyperdiploid subtypes. The latter is mainly composed of cases harboring IgH translocations, generally associated with more aggressive clinical features and shorter survival. The three main IgH translocations in myeloma are the t(11;14)(q13;q32), t(4;14)(p16;q32) and t(14;16)(q32;q23). Trisomies and a more indolent form of the disease characterize hyperdiploid myeloma. A number of genetic progression factors have been identified including deletions of chromosomes 13 and 17 and abnormalities of chromosome 1 (1p deletion and 1q amplification). Other key drivers of cell survival and proliferation have also been identified such as nuclear factor- B-activating mutations and other deregulation factors for the cyclin-dependent pathways regulators. Further understanding of the biological subtypes of the disease has come from the application of novel techniques such as gene expression profiling and array-based comparative genomic hybridization. The combination of data arising from these studies and that previously elucidated through other mechanisms allows for most myeloma cases to be classified under one of several genetic subtypes. This paper proposes a framework for the classification of myeloma subtypes and provides recommendations for genetic testing. This group proposes that genetic testing needs to be incorporated into daily clinical practice and also as an essential component of all ongoing and future clinical trials.
PMCID: PMC2964268  PMID: 19798094
multiple myeloma; genetics; cytogenetics; molecular; prognosis; gene expression profiling
22.  Responsiveness of cytogenetically discrete human myeloma cell lines to lenalidomide: Lack of correlation with cereblon and interferon regulatory factor 4 expression levels 
European journal of haematology  2013;91(6):10.1111/ejh.12192.
The introduction of novel immunomodulatory drugs (IMiDs) has dramatically improved the survival of patients with multiple myeloma (MM). While it has been shown that patients with specific cytogenetic subtypes, namely t(4;14), have the best outcomes when treated with bortezomib-based regimens, the relationship between cytogenetic subtypes and response to IMiDs remains unclear. Using DNA synthesis assays, we investigated the relationship between cytogenetic subtype and lenalidomide response in a representative panel of human myeloma cell lines (HMCLs). We examined HMCL protein expression levels of the lenalidomide target cereblon (CRBN) and its downstream target interferon regulatory factor 4 (IRF4), which have previously been shown to be predictive of lenalidomide response in HMCLs. Our results reveal that lenalidomide response did not correlate with specific cytogenetic translocations. There were distinct groups of lenalidomide-responsive and non-responsive HMCLs, as defined by inhibition of cellular proliferation; notably, all of the hyperdiploid HMCLs fell into the latter category. Repeated dosing of lenalidomide significantly lowered the IC50 of the responsive HMCL ALMC-1 (IC50 = 2.6 μM versus 0.005 μM, p<0.0001), but did not have an effect on the IC50 of the non-responsive DP-6 HMCL (p>0.05). Moreover, no association was found between lenalidomide responsiveness and CRBN and IRF4 expression. Our data indicate that lenalidomide sensitivity is independent of cytogenetic subtype in HMCLs. While CRBN and IRF4 have been shown to be associated with response to lenalidomide in patients, these findings do not translate back to HMCLs, which could be attributable to factors present in the bone marrow microenvironment.
PMCID: PMC3834223  PMID: 23992230
Cytogenetics; multiple myeloma; lenalidomide; CRBN; IRF4
23.  The FGF/FGFR axis as a therapeutic target in breast cancer 
Fibroblast growth factor receptor (FGFR) signaling is a vital component of both embryonic and postnatal mammary gland development, which has prompted researchers to investigate both its relevance to breast cancer and its potential as a therapeutic target. Deregulated FGFR signaling during breast cancer occurs through various mechanisms, including amplification of the receptor genes, aberrant ligand expression, receptor mutations and translocations. Recent experimental outcomes involving both animal models and human breast cancer cell lines have led to the initiation of multiple early clinical trials investigating the safety and efficacy of small molecule FGFR inhibitors. In this article we review both the most recent discoveries and the need for further investigation of the mechanisms through which FGF/FGFR signaling has emerged as an oncogenic driver.
PMCID: PMC4228698  PMID: 25400686
Breast cancer; fibroblast growth factor; fibroblast growth factor receptor; mammary gland; receptor tyrosine kinase; targeted therapies
24.  In-depth investigation of the molecular pathogenesis of bladder cancer in a unique 26-year old patient with extensive multifocal disease: a case report 
BMC Urology  2010;10:5.
The molecular characteristics and the clinical disease course of bladder cancer (BC) in young patients remain largely unresolved. All patients are monitored according to an intensive surveillance protocol and we aim to gain more insight into the molecular pathways of bladder tumors in young patients that could ultimately contribute to patient stratification, improve patient quality of life and reduce associated costs. We also determined whether a biomarker-based surveillance could be feasible.
Case Presentation
We report a unique case of a 26-year-old Caucasian male with recurrent non-muscle invasive bladder tumors occurring at a high frequency and analyzed multiple tumors (maximal pTaG2) and urine samples of this patient. Analysis included FGFR3 mutation detection, FGFR3 and TP53 immunohistochemistry, mircosatellite analysis of markers on chromosomes 8, 9, 10, 11 and 17 and a genome wide single nucleotide polymorphism-array (SNP). All analyzed tumors contained a mutation in FGFR3 and were associated with FGFR3 overexpression. None of the tumors showed overexpression of TP53. We found a deletion on chromosome 9 in the primary tumor and this was confirmed by the SNP-array that showed regions of loss on chromosome 9. Detection of all recurrences was possible by urinary FGFR3 mutation analysis.
Our findings would suggest that the BC disease course is determined by not only a patient's age, but also by the molecular characteristics of a tumor. This young patient contained typical genetic changes found in tumors of older patients and implies a clinical disease course comparable to older patients. We demonstrate that FGFR3 mutation analysis on voided urine is a simple non-invasive method and could serve as a feasible follow-up approach for this young patient presenting with an FGFR3 mutant tumor.
PMCID: PMC2843683  PMID: 20187926
25.  MMSET: Role and Therapeutic Opportunities in Multiple Myeloma 
BioMed Research International  2014;2014:636514.
Recurrent chromosomal translocations are central to the pathogenesis, diagnosis, and prognosis of hematologic malignancies. The translocation t(4; 14)(p16; q32) is one of the most common translocations in multiple myeloma (MM) and is associated with very poor prognosis. The t(4; 14) translocation leads to the simultaneous overexpression of two genes, FGFR3 (fibroblast growth factor receptor 3) and MMSET (multiple myeloma SET domain), both of which have potential oncogenic activity. However, approximately 30% of t(4; 14) MM patients do not express FGFR3 and have poor prognosis irrespective of FGFR3 expression, whereas MMSET overexpression is universal in t(4; 14) cases. In this review, we provide an overview of recent findings regarding the oncogenic roles of MMSET in MM and its functions on histone methylation. We also highlight some of MMSET partners and its downstream signalling pathways and discuss the potential therapeutics targeting MMSET.
PMCID: PMC4100374  PMID: 25093175

Results 1-25 (1158770)