PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (672089)

Clipboard (0)
None

Related Articles

1.  Beneficial Antioxidative and Antiperoxidative Effect of Cinnamaldehyde Protect Streptozotocin-Induced Pancreatic β-Cells Damage in Wistar Rats 
Biomolecules & Therapeutics  2014;22(1):47-54.
The present study was aimed to evaluate the antioxidant defense system of cinnamaldehyde in normal, diabetic rats and its possible protection of pancreatic β-cells against its gradual loss under diabetic conditions. In vitro free radical scavenging effect of cinnamaldehyde was determined using DPPH (1,1-diphenyl-2-dipicrylhydrazyl), superoxide radical, and nitric oxide radical. Streptozotocin (STZ) diabetic rats were orally administered with cinnamaldehyde at concentrations of 5, 10 and 20 mg/kg body weight for 45 days. At the end of the experiment, the levels of plasma lipid peroxides and antioxidants such as vitamin C, vitamin E, ceruloplasmin, catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase were determined. A significant increase in the levels of plasma glucose, vitamin E, ceruloplasmin, and lipid peroxides and significant decrease in the levels of plasma insulin and reduced glutathione were observed in the diabetic rats. Also the activities of pancreatic antioxidant enzymes were altered in the STZ-induced diabetic rats. The altered enzyme activities were reverted to near-normal levels after treatment with cinnamaldehyde and glibenclamide. Histopathological studies also revealed a protective effect of cinnamaldehyde on pancreatic β-cells. Cinnamaldehyde enhances the antioxidant defense against reactive oxygen species produced under hyperglycemic conditions and thus protects pancreatic β-cells against their loss and exhibits antidiabetic properties.
doi:10.4062/biomolther.2013.100
PMCID: PMC3936432  PMID: 24596621
Cinnamaldehyde; Diabetes; β-Islets; Streptozotocin; Cinnamonum zeylanicum
2.  In Vivo Assessment of Antihyperglycemic and Antioxidant Activity from Oil of Seeds of Brassica Nigra in Streptozotocin Induced Diabetic Rats 
Advanced Pharmaceutical Bulletin  2013;3(2):359-365.
Purpose: This study was made to investigate the antihyperglycemic and antioxidant potential of oil of seeds of Brassica nigra (BNO) in streptozotocin -nicotinamide (STZ) induced type 2 diabetic rats. Methods: BNO was orally administered to diabetic rats to study its effect in both acute and chronic antihyperglycemic study. The body weight, oral glucose tolerance test and biochemical parameters viz. glucose level, insulin level, liver glycogen content, glycosylated hemoglobin and antioxidant parameters were estimated for all treated groups and compared against diabetic control group. Results: Administration of BNO at a dose 500 mg/kg and 1000 mg/kg body weight p.o. to STZ diabetic rats showed reduction in blood glucose level from 335 mg/dl to 280 mg/dl at 4th h and from 330 mg/dl to 265 mg/dl respectively which was found significant (p<0.01) as compared with diabetic control. BNO (500 mg/kg and 1000 mg/kg) and glibenclamide (0.6 mg/kg) in respective groups of diabetic animals administered for 28 days reduced the blood glucose level in streptozotocin-nicotinamide induced diabetic rats. There was significant increase in body weight, liver glycogen content, plasma insulin level and decrease in glycosylated hemoglobin in test groups as compared to control group. In vivo antioxidant studies on STZ-nicotinamide induced diabetic rat’s revealed decreased malondialdehyde (MDA) and increased reduced glutathione (GSH). Conclusion: Thus the results showed that the oil of seeds of Brassica nigra has significant antihyperglycemic and antioxidant activity.
doi:10.5681/apb.2013.058
PMCID: PMC3848242  PMID: 24312861
Brassica nigra; Seeds; Streptozotocin; Essential oil; MDA
3.  Umbelliferone β-D-galactopyranoside from Aegle marmelos (L.) corr. an ethnomedicinal plant with antidiabetic, antihyperlipidemic and antioxidative activity 
Background
Aegle marmelos (L.) Corr. (Rutaceae), commonly known as bael, is used to treat fevers, abdomen pain, palpitation of the heart, urinary troubles, melancholia, anorexia, dyspepsia, diabetes and diarrhea in Indian traditional systems of medicine. The object of the present study was to evaluate the antidiabetic, antihyperlipidemic and antioxidant oxidative stress of umbelliferone β-D-galactopyranoside (UFG) from stem bark of Aegle marmelos Correa. in STZ (streptozotocin) induced diabetic rat.
Methods
Diabetes was induced in rat by single intraperitoneal injection of STZ (60 mg/kg). The rat was divided into the following groups; I – normal control, II – diabetic control, III – UFG (10 mg/kg), IV – UFG (20 mg/kg), V – UFG (40 mg/kg), VI – Glibenclamide (10 mg/kg, p.o., once a daily dose). Diabetes was measured by change the level blood glucose, plasma insulin and the oxidative stress were assessed in the liver by estimation of the level of antioxidant markers i.e. superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and Malondialdehyde (MDA) and antihyperlipidemic effect was measured by estimation of total cholesterol, triglycerides, LDL (low density lipoprotein) cholesterol, HDL (high density lipoprotein) cholesterol, VLDL (very low density lipoprotein) cholesterol. However in a study, the increased body weight was observed and utilization of glucose was in the oral glucose tolerance test.
Result
Daily oral administration of different dose of UFG for 28 days showed significantly (P < 0.001) decreased in fasting blood glucose level and improve plasma insulin level as compared to the diabetic control group. Also it significantly (P < 0.001) decreased the level of glycated hemoglobin, glucose-6-phosphatase, fructose-1-6-biphosphate and increased the level of hexokinase. UFG treatment decreased liver MDA and increased the level of SOD, GPx and CAT. UFG treatment of lipids it’s increased the level of cholesterol, triglycerides, VLDL, LDL cholesterol and decreased the level of HDL cholesterol. Histologically, inflammatory cell in blood vessels, intercalated disc, fat degeneration and focal necrosis observed in diabetic rat organ but was less obvious in UFG treated groups. The mechanism of action of UFG may be due to the increased level of pancreatic insulin secretion and effect on the antioxidant marker.
Conclusion
UFG posses an antidiabetic, antioxidant and antihyperlipidemic effect on the STZ induced diabetic rat. Hence it could be the better choice to cure the diabetes.
doi:10.1186/1472-6882-13-273
PMCID: PMC3833852  PMID: 24138888
Umbelliferone β-D-galactopyranoside; Streptozotocin; Antidiabetic; Antihyperlipidemic; Glibenclamide
4.  Paederia foetida Linn. leaf extract: an antihyperlipidemic, antihyperglycaemic and antioxidant activity 
Background
The primary objective of the present investigation is to evaluate the antidiabetic, antihyperlidemic and antioxidant activity of the methanolic extract of the Paederia foetida Linn. (PF) leaf extract in the streptozotocin induced diabetic rats.
Methods
Single intraperitoneal injection (IP) of streptozotocin (60 mg/kg body weight) was used for induction of diabetes is swiss albino (wistar strain) rats. The induction of diabetes was confirmed after 3 days as noticing the increase in blood sugar level of tested rats. PF at a once a daily dose of 100 mg/kg, 250 mg/kg, 500 mg/kg, p.o. along with glibenclamide 10 mg/kg, p.o. was also given for 28 days. On the 28th day rats from all the groups fasted overnight fasted and the blood was collected from the puncturing the retro orbit of the eye under mild anesthetic condition. There collected blood sample was used to determine the antihyperlipidemic, hypoglycemic and antioxidant parameters.
Results
The oral acute toxicity studies did not show any toxic effect till the dose at 2000 mg/kg. While oral glucose tolerance test showed better glucose tolerance in tested rats. The statistical data indicated that the different dose of the PF significantly increased the body weight, hexokinase, plasma insulin, high density lipoprotein cholesterol, superoxide dismutase, catalase and glutathione peroxides. It also decreases the level of fasting blood glucose, total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol, malonaldehyde, glucose-6-phosphate, fructose-1-6-biphosphate and glycated hemoglobin in STZ induced diabetic rats. The histopathology of STZ induce diabetic rats, as expected the test dose of PF extract considerably modulates the pathological condition of various vital organ viz. heart, kidney, liver, pancreas as shown in the histopathology examinations.
Conclusions
Our investigation has clearly indicated that the leaf extract of Paederia foetida Linn. showed remarkable antihyperglycemic activity due to its possible systematic effect involving in the pancreatic and extra pancreatic mechanism. Forever, the antihyperlipidemic activity was exerted possible by lowering the higher level of lipid profile and decreasing the intercalated disc space in the heart. The antioxidant activity of extract was due to inhibition of lipid peroxidation and increasing the SOD, GPx and CAT. It was corroborate that the extract shown the Paederia foetida Linn leaves potential to be act as antidiabetic, antihyperlipidemic and antioxidant properties.
doi:10.1186/1472-6882-14-76
PMCID: PMC3936833  PMID: 24564866
Paederia foetida; Antihyperlipedemic; Hexokinase; Antioxidative
5.  Anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of Melastoma malabathricum Linn. leaves in streptozotocin induced diabetic rats 
Background
Melastoma malabathricum (MM) Linn leaves traditionally use in the treatment of diabetic conditions. The aim of the present investigation was to evaluate the antioxidant, antihyperlipidemic and antidiabetic activity of methanolic extract taken from Melastoma malabathricum Linn (Melastomaceae).
Methods
The methanolic leaves extract of MM Linn leaves used for the study. Chemical test of different extract, acute toxicity study and oral glucose test was performed. Diabetes was induced in rat by single intra-peritoneal injection of streptozotocin (55 mg/kg). The rats were divided into following groups: Group I – normal control, Group II (Vehicle) – diabetic control, Group III (STZ-toxic) – MM I (100 mg/kg, p.o.), Group IV – MM II (250 mg/kg, p.o.), Group V – MM III (500 mg/kg, p.o.), Group VI – glibenclamide (10 mg/kg, p.o.). Bodyweight of each rat in the different groups was recorded daily. Biochemical and antioxidant enzyme parameters were determined on day 28. Histology of different organ (heart, liver, kidney, and pancreas) was performed after sacrificing the rats with euthanasia.
Results
The methanolic extract of MM did not show any acute toxicity up-to the dose of 2000 mg/kg and shown better glucose utilization in oral glucose tolerance test. Orally treatment of different doses of MM leaves extract decreased the level of serum glucose, glycated hemoglobin, glucose-6-phosphatase, fructose-1-6-biphosphate and increased the level of plasma insulin, hexokinase. MM treatment decreased liver malondialdehyde but increased the level of superoxide dismutase, catalase and glutathione peroxidase. In oral glucose tolerance test observed increased utilization of glucose. Streptozotocin induced diabetes groups rat treated with different doses of MM leaves extract and glibenclamide significantly increased the body weight. Histopathology analysis on different organ of STZ (streptozotocin) induced diabetic rat show there regenerative effect on the liver, kidney, heart and pancreas.
Conclusion
The antioxidant, antihyperlipidemic and antidiabetic effect of methanolic extract from Melastoma malabathricum Linn suggests a potential therapeutic treatment to antidiabetic conditions.
doi:10.1186/1472-6882-13-222
PMCID: PMC3847142  PMID: 24010894
Melastoma malabathricum; Streptozotocin; Antidiabetic; Antihyperlipidemic; Glibenclamide
6.  Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats 
Pharmacognosy Research  2010;2(3):195-201.
Catharanthus roseus Linn (Apocynaceae), is a traditional medicinal plant used to control diabetes, in various regions of the world. In this study we evaluated the possible antidiabetic and hypolipidemic effect of C. roseus (Catharanthus roseus) leaf powder in diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 55 mg/kg body wt) to male Wistar rats. The animals were divided into four groups: Control, control-treated, diabetic, and diabetic-treated group. Diabetic-treated and control-treated rats were treated with C. roseus leaf powder suspension in 2 ml distilled water, orally (100 mg/kg body weight/day/60 days). In diabetic rats (D-group) the plasma glucose was increased and the plasma insulin was decreased gradually. In the diabetic-treated group lowering of plasma glucose and an increase in plasma insulin were observed after 15 days and by the end of the experimental period the plasma glucose had almost reached the normal level, but insulin had not. The significant enhancement in plasma total cholesterol, triglycerides, LDL and VLDL-cholesterol, and the atherogenic index of diabetic rats were normalized in diabetic-treated rats. Decreased hepatic and muscle glycogen content and alterations in the activities of enzymes of glucose metabolism (glycogen phosphorylase, hexokinase, phosphofructokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase), as observed in the diabetic control rats, were prevented with C. roseus administration. Our results demonstrated that C. roseus with its antidiabetic and hypolipidemic properties could be a potential herbal medicine in treating diabetes.
doi:10.4103/0974-8490.65523
PMCID: PMC3141314  PMID: 21808566
Anti Catharanthus roseus; plasma insulin; plasma lipids; STZ-induced diabetes
7.  Antidiabetic and Antioxidant Properties of Triticum aestivum in Streptozotocin-Induced Diabetic Rats 
The antidiabetic and antioxidant potential of Triticum aestivum were evaluated by using in vivo methods in normal and streptozotocin-induced diabetic rats. Diabetes was induced in the Wistar strain albino rats by injecting streptozotocin at a dose of 55 mg/kg body weight. Ethanolic extracts of Triticum aestivum at doses of 100 mg/kg body weight were administered orally for 30 days. Various parameters were studied and the treatment group with the extract showed a significant increase in the liver glycogen and a significant decrease in fasting blood glucose, glycosylated hemoglobin levels, and serum marker enzyme levels. The total cholesterol and serum triglycerides levels, low density lipoprotein, and very low density lipoprotein were also significantly reduced and the high density lipoprotein level was significantly increased upon treatment with the Triticum aestivum ethanol extract. A significant decrease in the levels of lipid peroxides, superoxide dismutase, and glutathione peroxidise and increase in the levels of vitamin E, catalase, and reduced glutathione were observed in Triticum aestivum treated diabetic rats. Thus, from this study we conclude that ethanolic extract of Triticum aestivum exhibited significant antihyperglycemic, hypolipidemic, and antioxidant activities in streptozotocin-induced diabetic rats.
doi:10.1155/2013/716073
PMCID: PMC3876669  PMID: 24416041
8.  Protective effects of Phyllanthus amarus aqueous extract against renal oxidative stress in Streptozotocin -induced diabetic rats 
Indian Journal of Pharmacology  2011;43(4):414-418.
Aim and Objectives:
In the present study, we have evaluated the antihyperglycemic, hypolipidemic and antioxidant activities of aqueous extract of Phyllanthus amarus (PAAEt) in streptozotocin (STZ)-induced diabetic rats.
Materials and Methods:
PAAEt was administered at 200 mg/kg body weight/day to normal treated (NT-group) and STZ-induced diabetic treated rats (DT-group) by gavage for eight weeks. During the experimental period, blood was collected from fasted rats at 10 days intervals and plasma glucose level was estimated. The plasma lipid profile was estimated at the end of experimental period. After the treatment, period kidney lipid peroxidation (LPO), protein oxidation and reduced glutathione (GSH) were estimated and antioxidant enzymes viz., glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD) were also assayed.
Results:
The significant decrease in the body weight, hyperglycemia and hyperlipidemia observed in STZ-induced diabetic rats (D-group) were rectified with PAAEt treatment in diabetic treated group (DT-group). D-group rats showed increased renal oxidative stress with increased LPO and protein oxidation. DT-group showed a significant decrease in renal LPO, protein oxidation and a significant increase in GSH content and GR, GPx and GST activities when compared with D-group. The activities of SOD and CAT decreased significantly in D-group, but were normalized in DT-group. Normal rats treated with PAAEt (NT-rats) showed a significant decrease in lipid profile, renal LPO and protein oxidation, with significant increase in renal GSH and activities of antioxidant enzymes compared to normal rats (N-group).
Conclusion:
Our results demonstrated that PAAEt with its antidiabetic, hypolipidemic and antioxidant properties could be a potential herbal medicine in treating diabetes and renal problems.
doi:10.4103/0253-7613.83112
PMCID: PMC3153704  PMID: 21844996
Antioxidant enzymes; oxidative stress; Phyllanthus amarus; STZ-induced diabetes
9.  Enhanced glycemic control, pancreas protective, antioxidant and hepatoprotective effects by umbelliferon-α-D-glucopyranosyl-(2I → 1II)-α-D-glucopyranoside in streptozotocin induced diabetic rats 
SpringerPlus  2013;2:639.
Objective
The objective of the present study was to evaluate the effect of umbelliferon-α-D-glucopyranosyl-(2I → 1II)-α-D-glucopyranoside (UFD) from Aegle marmelos Corr. on serum glucose, lipid profile and free radical scavenging activity in normal and STZ (streptozotocin) induced diabetic rats.
Materials and methods
Diabetes was induced by single interperitoneal injecting of streptozotocin (60 mg/kg, i.p.) in the rats. All the rats were divided into following groups; I - nondiabeteic, II - nondiabetic + UFD (40 mg/kg, p.o.), III - diabetic control, IV - UFD (10 mg/kg, p.o.), V - UFD (20 mg/kg, p.o.), VI - UFD (40 mg/kg) and VII - glibenclamide (10 mg/kg, p.o.). Serum glucose level and body weight were determined periodically. Biochemical parameter, antioxidant enzyme and histopathology study were performed on the day 28. Oral glucose tolerance test study was performed to identify the glucose utilization capacity.
Results
All the doses of UFD and glibenclamide decrease the level of serum glucose, glycated hemoglobin, glucose-6-phosphatase, fructose-1-6-biphosphate and increased the level of plasma insulin, hexokinase. The UFD doses also showed effects on antioxidant enzymes viz. superoxide dismutase, catalase and glutathione peroxidase which were significantly increased and the level of malonaldehyde was markedly decreased. Histologically study, focal necrosis, deposition of fats, increased the size of the intercalated disc were observed in the diabetic rat liver, kidney, heart and pancreas but was less obvious in treated groups. The mechanism of action of the UFD emerges to be due to increase the activity of antioxidant enzyme and secretion of pancreatic insulin.
Conclusion
Reduction in the FBG (fasting blood glucose), glycated hemoglobin, glucose-6-phosphatase, fructose-1-6-biphosphate, superoxide dismutase, catalase, glutathione peroxides, cholesterol, triglyceride, LDL, VLDL levels and improvement in the level of the plasma insulin, hexokinase, HDL was observed by the UFD treated rats. The result indicates that UFD has anti-diabetic activity along with anti hyperlipidemic and antioxidant efficacy and provides a scientific rationale to be used as an Anti-diabetic agent.
Electronic supplementary material
The online version of this article (doi:10.1186/2193-1801-2-639) contains supplementary material, which is available to authorized users.
doi:10.1186/2193-1801-2-639
PMCID: PMC3862866  PMID: 24349947
Umbelliferon-α-D-glucopyranosyl-(2I → 1II)-α-D-glucopyranoside; Streptozotocin; Antidiabetic; Antihyperlipidemic; Glibenclamide
10.  Assessment of antidiabetic potential of Cinnamomum tamala leaves extract in streptozotocin induced diabetic rats 
Indian Journal of Pharmacology  2011;43(5):582-585.
Objective:
To establish the effect of Cinnamomum tamala leaves extract on diabetes and diabetes induced dyslipidemia in streptozotocin-induced diabetic rats.
Materials and Methods:
Diabetes was induced by a single intravenous injection of streptozotocin (50 mg/kg body weight). Group I and II were kept as control and diabetic control respectively. And group III was further treated with ethanolic leaf extract of C. tamala (200 mg/kg body weight, orally) for a period of 40 days. Oral glucose tolerance test was performed before starting the experiment and blood glucose level was estimated. Statistical analysis was performed using one-way Analysis of Variance (using Statistical Package for the Social Sciences [SPSS] version 10.0) and student's ‘t’- test (Sigma Plot version 8.0). The values of P < 0.05 were considered as statistically significant.
Results:
Treatment of diabetic animals with Cinnamomum tamala extract significantly lowered the blood glucose level, and maintained body weight and lipid-profile parameters towards near normal range.
Conclusion:
The extract exhibited antidiabetic and antidyslipidemic effect. Further, chemical and pharmacological investigations are required to elucidate the exact mechanism of action of this extract and to isolate the active principles responsible for these effects.
doi:10.4103/0253-7613.84977
PMCID: PMC3195132  PMID: 22022005
Cinnamomum tamala; diabetes mellitus; dyslipidemia
11.  Antidiabetic and hypolipidemic activities of Kigelia pinnata flowers extract in streptozotocin induced diabetic rats 
Objective
To evaluate antidiabetic and hypolipidemic activities of Kigelia pinnata methanolic flowers extract in streptozotocin (STZ) induced diabetic wistar rat.
Methods
Rats were made diabetic by a single dose of STZ at 60 mg/kg body weight i.p. The blood glucose level was checked before and 72 h after STZ injection to confirm the development of diabetes. The flower extract and glibenclamide were administered orally at the doses of 250 and 500 mg/kg body weight for 21 days.
Results
Daily oral treatment with the extract and standard drug for 21 days significantly reduced blood glucose, serum cholesterol and triglycerides levels. High density lipoprotein-cholesterol level was found to be improved (P<0.01) as compared to diabetic control group.
Conclusions
It is concluded that Kigellia pinnata flowers extract have significant antidiabetic and hypolipidemic effect.
doi:10.1016/S2221-1691(12)60093-8
PMCID: PMC3609338  PMID: 23569967
Antidiabetic; Kigelia pinnata; Streptozotocin
12.  Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats 
The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats.
PMCID: PMC3558175  PMID: 23407749
Diabetes mellitus; Hyperglycemia; Sesbania sesban; Streptozotocin
13.  Effect of Vitamin E and Selenium Supplement on Paraoxonase-1 Activity, Oxidized Low Density Lipoprotein and Antioxidant Defense in Diabetic Rats  
BioImpacts : BI  2011;1(2):121-128.
Introduction
The aim of the present study was to assess the effects of vitamin E and selenium supplementation on serum paraoxonase (PON1) activity, lipid peroxidation and antioxidant defense in streptozotocin-induced diabetic rats.
Methods
Thirty two female Sprague Dawley rats were divided into 3 groups: the control group (n=8) received a standard diet; streptozotocin (STZ)-induced diabetic rats (n=12), received corn oil and physiological solution; and vitamin E and selenium supplemented diabetic rats (n=12) were treated with oral administration of vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) once a day for 4 weeks.
Results
Significantly lower total antioxidant status (TAS), PON1and erythrocyte SOD activities and a higher fasting plasma glucose level were observed in the diabetic rats compared to the control. A significant increase in SOD and GPX activities in vitamin E and selenium supplemented diabetic group was observed after 5 weeks of the experiment. Compared to the normal rats, malondialdehyde (MDA) and oxidized LDL (Ox-LDL) levels were higher in the diabetic animals; however, these values reduced significantly following vitamin E and selenium supplementation.
Conclusion
Vitamin E and selenium supplementation in diabetic rats has hypolipidemic, hypoglycemic and antioxidative effects and may slow down the progression of diabetic complications through its protective effect on PON1 activity and lipoproteins oxidation.
doi:10.5681/bi.2011.016
PMCID: PMC3648954  PMID: 23678416
Streptozotocin-Induced Diabetes; Oxidative Stress; Vitamin E; Selenium; Paraoxonase 1; Oxidized LDL
14.  An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract 
Background
The MCE, Momordica charantia fruit extract Linn. (Cucurbitaceae) have been documented to elicit hypoglycemic activity on various occasions. However, due to lack of standardization of these extracts, their efficacy remains questionable. The present study was undertaken by selecting a well standardised MCE. This study reports hypoglycemic and antilipidemic activities of MCE employing relevant animal models and in vitro methods.
Methods
Diabetes was induced in Wistar rats by a s.c., subcutaneous injection of alloxan monohydrate (100 mg/kg) in acetate buffer (pH 4.5). MCE and glibenclamide were administered orally to alloxan diabetic rats at doses of 150 mg/kg, 300 mg/kg & 600 mg/kg, and 4 mg/kg respectively for 30 days, blood was withdrawn for glucose determination on 0, 7, 14, 21 and 30th days. On the 31st day, overnight fasted rats were sacrificed and blood was collected for various biochemical estimations including glycosylated haemoglobin, mean blood glucose, serum insulin, cholesterol, triglcerides, protein and glycogen content of liver. The hemidiaphragms and livers were also isolated, carefully excised and placed immediately in ice cooled perfusion solution and processed to study the glucose uptake/transfer processes. Hypolipidemic activity in old obese rats was evaluated by treating two groups with MCE (150 mg/kg & 300 mg/kg) orally for 30 days and determining total cholesterol, triglyceride and HDL-CH, LDL-CH and VLDL-CH levels from serum samples.
Results
Subchronic study of MCE in alloxan induced diabetic rats showed significant antihyperglycemic activity by lowering blood glucose and GHb%, percent glycosylated haemoglobin. Pattern of glucose tolerance curve was also altered significantly. MCE treatment enhanced uptake of glucose by hemidiaphragm and inhibited glycogenolysis in liver slices in vitro. A significant reduction in the serum cholesterol and glyceride levels of obese rats following MCE treatment was also observed.
Conclusion
Our experimental findings with respect to the mechanism of action of MCE in alloxan diabetic rats suggest that it enhances insulin secretion by the islets of Langerhans, reduces glycogenesis in liver tissue, enhances peripheral glucose utilisation and increases serum protein levels. Furthermore, MCE treatment restores the altered histological architecture of the islets of Langerhans. Hence, the biochemical, pharmacological and histopathological profiles of MCE clearly indicate its potential antidiabetic activity and other beneficial effects in amelioration of diabetes associated complications. Further, an evaluation of its antilipidemic activity in old obese rats demonstrated significant lowering of cholesterol and triglyceride levels while elevating HDL-cholesterol levels. Also, the extract lowered serum lipids in alloxan diabetic rats, suggesting its usefulness in controlling metabolic alterations associated with diabetes.
doi:10.1186/1472-6882-7-29
PMCID: PMC2048984  PMID: 17892543
15.  Direct Analysis in Real Time by Mass Spectrometric Technique for Determining the Variation in Metabolite Profiles of Cinnamomum tamala Nees and Eberm Genotypes 
The Scientific World Journal  2012;2012:549265.
Cinnamomum tamala Nees & Eberm. is an important traditional medicinal plant, mentioned in various ancient literatures such as Ayurveda. Several of its medicinal properties have recently been proved. To characterize diversity in terms of metabolite profiles of Cinnamomum tamala Nees and Eberm genotypes, a newly emerging mass spectral ionization technique direct time in real time (DART) is very helpful. The DART ion source has been used to analyze an extremely wide range of phytochemicals present in leaves of Cinnamomum tamala. Ten genotypes were assessed for the presence of different phytochemicals. Phytochemical analysis showed the presence of mainly terpenes and phenols. These constituents vary in the different genotypes of Cinnamomum tamala. Principal component analysis has also been employed to analyze the DART data of these Cinnamomum genotypes. The result shows that the genotype of Cinnamomum tamala could be differentiated using DART MS data. The active components present in Cinnamomum tamala may be contributing significantly to high amount of antioxidant property of leaves and, in turn, conditional effects for diabetic patients.
doi:10.1100/2012/549265
PMCID: PMC3373138  PMID: 22701361
16.  Effects of Aqueous Extract of Berberis integerrima Root on Some Physiological Parameters in Streptozotocin-Induced Diabetic Rats  
Diabetes mellitus is a common endocrine disorder. Anti-diabetic agents from natural and synthetic sources are available for the treatment of this disease. Berberis integerrima is a medicinal shrub used in conventional therapy for a number of diseases. The aim of the present study was to investigate the effects of aqueous extract of Berberis integerrima root (AEBI) on some physiological parameters in normal and streptozotocin-induced (STZ-induced) diabetic male Wistar rats. STZ-induced diabetic rats showed significant increases in the levels of blood glucose, triglycerides (TG), total cholesterol (TC), low density lipoprotein LDL-cholesterol (LDL-C), creatinine (Cr), urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin while body weight, high density lipoprotein HDL-cholesterol (HDL-C) and total protein levels were significantly decreased compared to normal rats. Treatment of diabetic rats with different doses of aqueous extract of Berberis integerrima root (250 and 500 mg/Kg bw) resulted in a significant decrease in blood glucose, triglycerides, cholesterol, LDL-cholesterol, ALT, AST, ALP, total bilirubin, creatinine and urea while HDL-cholesterol and total protein levels were markedly increased after six weeks compared to untreated diabetic rats. The effects of the AEBI at dose of 500 mg/Kg in all parameters except blood glucose (similar) is more than to the standard drug, glibenclamide (0.6 mg/Kg, p.o.). The results of this study indicate that the tested aqueous extract of Berberis integerrima root possesses hypoglycemic, hypolipidemic and antioxidant effects in STZ-induced diabetic rats.
PMCID: PMC3813236  PMID: 24250618
Berberis Integerrima; Streptozotocin; Hypoglycemic; Hypolipidemic; Antioxidant
17.  Hypolipidemic Activities of Ficus Racemosa Linn. Bark in Alloxan Induced Diabetic Rats 
Ficus racemosa (Moraceae family) is used in traditional system of medicine for the treatment of several disorders including diabetes mellitus. The aim of the study was to investigate the antihyperglycemic and hypolipidemic activities of ethanolic extract of Ficus racemosa bark (FrEBet) in alloxan-induced diabetic rats. A total number of 30 animals were divided into 5 groups of six each. Diabetes mellitus was induced by single intraperitoneal injection of freshly prepared solution of alloxan monohydrate (150 mg/kg bw) dissolved in physiological saline in overnight fasted wistar rats. Dose dependent studies for FrEBet (100–500mg/kg bw) was carried out to find out the effective pharmacological dose (antidiabetic and hypolipidemic) to alloxan-induced diabetic rats. Blood glucose, plasma insulin, total cholesterol, phospholipids, triglycerides, free fatty acids, HDL cholesterol and LDL cholesterol levels in plasma, erythrocyte membranes, liver and kidney were determined by specific colorimetric methods. An increase in blood glucose was accompanied by an increase in total cholesterol, phospholipids, triglycerides, FFA and decrease in HDL choleterol in diabetic rats. Oral administration of FrEBet (300mg/kg bw) to diabetic rats restrored the status of blood glucose, lipids and lipoproteins to near normal range. Our investigation thus shows that FrEBet has potent antidiabetic and hypolipidemic effects in alloxan-induced diabetic rats and these effects were much comparable to that of the standard reference drug, glibenclamide.
PMCID: PMC2816482  PMID: 20161890
Diabetes mellitus; Alloxan; Lipids; Lipoproteins
18.  Effect of Diashis, a polyherbal formulation, in streptozotocin-induced diabetic male albino rats 
This study focuses on the effect of ‘Diashis’, a polyherbal formulation composed of eight medicinal plants for the management of streptozotocin (STZ)-induced diabetes in rats. As oxidative stress is one of the consequences of diabetes, the activities of hepatic antioxidant enzymes and metabolic enzymes were evaluated. Treatment with ‘Diashis’ in STZ-induced diabetic rats resulted in a significant (P < 0.01) recovery in the activities of hepatic hexokinase, glucose-6-phosphate dehydrogenase, and glucose-6-phosphatase along with correction in the levels of fasting blood glucose, glycated hemoglobin, and liver and skeletal muscle glycogen. The oxidative stress status in the liver was corrected by ‘Diashis’ which was highlighted by the recovery in the activities of catalase, peroxidase, and glutathione-S-transferase along with the correction in the quantity of thiobarbituric acid-reactive substances and conjugated diene. ‘Diashis’ was not found to have any metabolic toxicity. The antidiabetic effects of ‘Diashis’ were compared with those of the antidiabetic drug, ‘Glibenclamide’.
doi:10.4103/0974-7788.59939
PMCID: PMC2876923  PMID: 20532093
Antihyperglycemic; antioxidative; Diashis
19.  Investigation of hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark in diabetic rats 
Objective
To investigate the hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark (AETPB) in streptozotocin (STZ)-induced diabetic rats.
Methods
Acute toxicity was studied in rats after the oral administration of AETPB to determine the dose to assess hypoglycemic activity. In rats, diabetes was induced by injection of STZ (60 mg/kg, i.p.) and diabetes was confirmed 72 h after induction, and then allowed for 14 days to stabilize blood glucose level. In diabetic rats, AETPB was orally given for 28 days and its effect on blood glucose and body weight was determined on a weekly basis. At the end of the experimental day, fasting blood sample was collected to estimate the haemoglobin (Hb), glycosylated haemoglobin (HbA1c), serum creatinine, urea, serum glutamate-pyruvate transaminase (SGPT), serum glutamate-oxaloacetate transaminase (SGOT) and insulin levels. The liver and kidney were collected to determine antioxidants levels in diabetic rats.
Results
Oral administration of AETPB did not exhibit toxicity and death at a dose of 2 000 mg/kg. AETPB treated diabetic rats significantly (P<0.001, P<0.01 and P<0.05) reduced elevated blood glucose, HbA1c, creatinine, urea, SGPT and SGOT levels when compared with diabetic control rats. The body weight, Hb, insulin and total protein levels were significantly (P<0.001, P<0.01 and P<0.05) increased in diabetic rats treated with AETPB compared to diabetic control rats. In diabetic rats, AETPB treatment significantly reversed abnormal status of antioxidants and lipid profile levels towards near normal levels compared to diabetic control rats.
Conclusions
Present study results confirm that AETPB possesses significant hypoglycemic, hypolipidemic and antioxidant activities in diabetic condition.
doi:10.1016/S2221-1691(12)60020-3
PMCID: PMC3609298  PMID: 23569911
Hypoglycemic; Streptozotocin; Terminalia paniculata; Hypolipidemic; Antioxidant; Diabetic; Antidiabetic activity; Blood glucose; SGPT; SGOT; Insulin; Haemoglobin; Antioxidant activity
20.  Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats 
Background
Hypoglycemic and/or anti-hyperglycemic activities have been recorded with numerous plants, many of which are used as traditional herbal treatments of diabetes. Albizzia Lebbeck Benth. stem bark have been used in traditional medicine along with some preliminary reports on its hypoglycemic action. The aim of present investigation was to evaluate the antidiabetic and antioxidant activities of methanolic extract of stem bark of Albizzia Lebbeck Benth. in streptozotocin induced diabetic rats.
Methods
The powdered stem bark of Albizzia Lebbeck Benth.. was extracted with methanol (MeOH) using soxhlation method and subjected to phytochemical analysis. The methanol/dichloromethane extract of Albizzia Lebbeck Benth. (ALEx) was concentrated to dryness using Rotary Evaporator. Diabetes was experimentally induced in the rats by single intraperitoneal administration of Streptozotocin (60 mg/kg). They glycemic control was measured by the blood glucose, glycated heamoglobin and plasma insulin. The oxidative stress was evaluated in the liver and kidney by level of antioxidant markers and various biochemical parameters were assessed in diabetic control and extract treated rats.
Results
Streptozotocin induced diabetic rats depicted the increased blood glucose levels, total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-c), diminished level of high density lipoprotein cholesterol (HDL-c) level and perturb level of antioxidant markers. Oral administration of MeAL at a concentration of 100, 200, 300 and 400 mg/kg b.w daily for 30 days results a momentous decrease in fasting blood glucose, glycated heamoglobin and enhancement of plasma insulin level as compared with STZ induced diabetic rats. Furthermore, it significantly (p < 0.05) decreased the level of TC, TG, and LDL-c, VLDL-c. While it increases the level of HDL-c to a significant (p < 0.05) level. The treatment also resulted in a marked increase in reduced glutathione, glutathione Peroxidase, catalase and superoxide dismutase and diminished level of lipid peroxidation in liver and kidney of STZ induced diabetic rats. Histopathological studies suggest the diminution in the pancreatic, liver and cardiac muscle damage.
Conclusion
Our research exertion clearly indicates the considerable antihyperglycemic, antihyperlipidemic, antioxidant & pancreas/renal/hepatic/cardiac protective action of ALEx.
doi:10.1186/1472-6882-14-243
PMCID: PMC4223618  PMID: 25026962
Albizzia Lebbeck Benth; Bark; Diabetes; Streptozotocin; Hypolipidemic; Antioxidant; Histopathology
21.  Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats 
Background
The present investigation was aimed at evaluating the hypoglycemic and hypolipidemic properties of the aqueous and methanolic extracts from Bersama engleriana leaves in streptozotocin/nicotinamide (STZ-NA)-induced type 2 diabetic rats.
Methods
Animals were orally treated for 4 consecutive weeks with Bersama engleriana extracts at doses of 300 or 600 mg/kg. The anti-diabetic effect was examined by measuring blood glucose (BG) at 0, 1, 14 and 28 days after STZ-NA treatment and, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG) levels at sacrifice (day 29). Glibenclamide (0.25 mg/kg) was used for comparison.
Results
STZ-NA-induced diabetic rats showed moderate to significant increases in the levels of BG, TG, TC, LDL-C while body weight, HDL-C levels and relative weights of liver and pancreas were decreased compared to controls (non diabetic rats). Administration of the plant extracts to STZ-NA diabetic rats resulted in a significant decrease in BG, TG, TC and LDL-C and the dose 600 mg/kg of the methanolic extract was the most effective; HDL-C level was markedly increased after four weeks compared to untreated diabetic rats. A dose-dependent increase in the relative weights of the diabetogenic organs was observed in the Bersama engleriana groups. It can be also noticed that the methanolic extract, especially the dose 600 mg/kg (p<0.001), produced more effects than glibenclamide and aqueous extract. Rats treated with glibenclamide (0.25 mg/kg) generally gave lower results compared to groups treated with plant extracts.
Conclusion
Results of the present study showed that Bersama engleriana extracts and especially its methanolic extract possess antidiabetogenic properties and beneficial effects on diabetic hyperlipidemia. All these effects could be due to the bioactive components revealed in the Bersama engleriana extracts such as triterpenes and phenols and which could justify its ethnomedical use.
doi:10.1186/1472-6882-12-264
PMCID: PMC3546073  PMID: 23267560
Bersama engleriana; Diabetes mellitus; Hypoglycemic; Hypolipidemic; Rat
22.  Hypolipidemic and hypoglycemic effects of Orostachys japonicus A. Berger extracts in streptozotocin-induced diabetic rats 
Nutrition Research and Practice  2011;5(4):301-307.
The hypolipidemic and hypoglycemic effects of two dietary dosages (0.1% and 0.5%) of water and 80% ethanol extracts from hot-air dried Orostachys japonicus A. Berger were evaluated in the serum and organ tissues of streptozotocin-induced diabetic rats. The STZ-induced diabetic groups supplemented with the O. japonicus extracts showed significantly higher body weight compared to a diabetic control group at the end of experiment. The extracts exhibited substantial hypoglycemic effects by significant reductions of fasting blood glucose levels at all time points tested compared to the initial stage before treatment of the extracts. Declines of serum and hepatic triglyceride levels were greater than declines of total cholesterol in the groups treated with the 0.5% O. japonicus extract (DBW2 and DBE2) when compared to the DBC group. Hepatic glycogen content was higher in the groups treated with O. japonicus extract, while lipid peroxide content was decreased in these treated groups compared to the DBC group. Hepatic antioxidant activity was significantly increased in the groups supplemented with the O. japonicus ethanol extract. The hypolipidemic and hypoglycemic effects of the O. japonicus ethanol extract were significantly greater than the effects of the water extract. Based on this study, it seems that O. japonicus ethanol extract, due to its higher phenolic and flavonoid components than the water extract, may control blood glucose and alleviate hyperlipidemia in diabetes.
doi:10.4162/nrp.2011.5.4.301
PMCID: PMC3180680  PMID: 21994524
Lipid peroxide; lipids profile; Orostachys japonicus; Sprague-Dawley rats; streptozotocin-induced diabetes
23.  Renoprotective effect of aged garlic extract in streptozotocin-induced diabetic rats 
Indian Journal of Pharmacology  2013;45(1):18-23.
Objective:
Aged garlic extract (AGE) has been proven to exhibit antioxidant, hypolipidemic, hypoglycemic and antidiabetic properties. However, its effect on diabetic nephropathy was unexplored. Therefore, the present study was designed to investigate the renoprotective effect of AGE in streptozotocin-induced diabetic rats.
Materials and Methods:
Albino Wistar rats were induced with diabetes by a single intraperitoneal injection of 45 mg/kg b.w. of streptozotocin. Commercially available AGE was supplemented orally at a dose of 500 mg/kg body weight/day. Aminoguanidine, which has been proven to be an anti-glycation agent was used as positive control and was supplemented at a dose of 1 g/L in drinking water. The serum and urinary biochemical parameters were analyzed in all the groups and at the end of 12 weeks follow up, the renal histological examination were performed using H & E and PAS staining.
Results:
The diabetic rats showed a significant change in the urine (P < 0.001) and serum (P < 0.01) constituents such as albumin, creatinine, urea nitrogen and glycated hemoglobin. In addition, the serum lipid profile of the diabetic rats were altered significantly (P < 0.05) compared to that of the control rats. However, the diabetic rats supplemented with aged garlic extract restored all these biochemical changes. The efficacy of the extract was substantiated by the histopathological changes in the kidney.
Conclusion:
From our results, we conclude that aged garlic extract has the ability to ameliorate kidney damage in diabetic rats and the renoprotective effect of AGE may be attributed to its anti-glycation and hypolipidemic activities.
doi:10.4103/0253-7613.106429
PMCID: PMC3608288  PMID: 23543654
Aged garlic extract; anti-glycation; diabetes; diabetic nephropathy; hypolipidemic; renoprotective
24.  Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats 
Background
The effects of curcumin on the activities and gene expression of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (G-ST), B-cell CLL/lymphoma 2 (Bcl-2) and insulin like growth factor-1 (IGF-1) in diabetic rats were studied.
Methods
Twenty four rats were assigned to three groups (8 rats for each). Rats of first group were non diabetic and rats of the second group were rendered diabetic by streptozotocin (STZ). Both groups received vehicle, corn oil only (5 ml/kg body weight) and served as negative and positive controls, respectively. Rats of the third group were rendered diabetic and received oral curcumin dissolved in corn oil at a dose of 15 mg/5 ml/kg body weight for 6 weeks.
Results
Diabetic rats showed significant increase of blood glucose, thiobarbituric acid reactive substances (TBARS) and activities of all antioxidant enzymes with significant reduction of reduced glutathione (GSH) compare to the control non diabetic group. Gene expression of Bcl2, SOD, CAT, GPX and GST was increased significantly in diabetic untreated rats compare to the control non diabetic group. The administration of curcumin to diabetic rats normalized significantly their blood sugar level and TBARS values and increased the activities of all antioxidant enzymes and GSH concentration. In addition, curcumin treated rats showed significant increase in gene expression of IGF-1, Bcl2, SOD and GST compare to non diabetic and diabetic untreated rats.
Conclusion
Curcumin was antidiabetic therapy, induced hypoglycemia by up-regulation of IGF-1 gene and ameliorate the diabetes induced oxidative stress via increasing the availability of GSH, increasing the activities and gene expression of antioxidant enzymes and Bcl2. Further studies are required to investigate the actual mechanism of action of curcumin regarding the up regulation of gene expression of examined parameters.
doi:10.1186/1472-6882-13-368
PMCID: PMC3877970  PMID: 24364912
Diabetes mellitus; Antioxidant enzymes; Bcl-2; Insulin like growth factor; PCR; Gene expression
25.  Antidiabetic and Hypolipidemic Activities of Curculigo latifolia Fruit:Root Extract in High Fat Fed Diet and Low Dose STZ Induced Diabetic Rats 
Curculigo latifolia fruit is used as alternative sweetener while root is used as alternative treatment for diuretic and urinary problems. The antidiabetic and hypolipidemic activities of C. latifolia fruit:root aqueous extract in high fat diet (HFD) and 40 mg streptozotocin (STZ) induced diabetic rats through expression of genes involved in glucose and lipid metabolisms were investigated. Diabetic rats were treated with C. latifolia fruit:root extract for 4 weeks. Plasma glucose, insulin, adiponectin, lipid profiles, alanine aminotransferase (ALT), gamma glutamyltransferase (GGT), urea, and creatinine levels were measured before and after treatments. Regulations of selected genes involved in glucose and lipid metabolisms were determined. Results showed the significant (P < 0.05) increase in body weight, high density lipoprotein (HDL), insulin, and adiponectin levels and decreased glucose, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), urea, creatinine, ALT, and GGT levels in diabetic rats after 4 weeks treatment. Furthermore, C. latifolia fruit:root extract significantly increased the expression of IRS-1, IGF-1, GLUT4, PPARα, PPARγ, AdipoR1, AdipoR2, leptin, LPL, and lipase genes in adipose and muscle tissues in diabetic rats. These results suggest that C. latifolia fruit:root extract exerts antidiabetic and hypolipidemic effects through altering regulation genes in glucose and lipid metabolisms in diabetic rats.
doi:10.1155/2013/601838
PMCID: PMC3671281  PMID: 23762147

Results 1-25 (672089)