Search tips
Search criteria

Results 1-25 (899563)

Clipboard (0)

Related Articles

1.  Individual Differences in the Real-Time Comprehension of Children with ASD 
Lay Abstract
Spoken language processing is related to language and cognitive skills in typically developing children, but very little is known about how children with autism spectrum disorders (ASD) comprehend words in real time. Studying this area is important because it may help us understand why many children with autism have delayed language comprehension. Thirty-four children with ASD (3–6 years old) participated in this study. They took part in a language comprehension task that involved looking at pictures on a screen and listening to questions about familiar nouns (e.g., Where’s the shoe?). Children as a group understood the familiar words, but accuracy and processing speed varied considerably across children. The children who were more accurate were also faster to process the familiar words. Children’s language processing accuracy was related to processing speed and language comprehension on a standardized test; nonverbal cognition did not explain additional information after accounting for these factors. Additionally, lexical processing accuracy at age 5½ was related to children’s vocabulary comprehension three years earlier, at age 2½. Autism severity and years of maternal education were unrelated to language processing. Words typically acquired earlier in life were processed more quickly than words acquired later. These findings point to similarities in patterns of language development in typically developing children and children with ASD. Studying real-time comprehension in children with ASD may help us better understand mechanisms of language comprehension in this population. Future work may help explain why some children with ASD develop age-appropriate language skills, whereas others experience lasting deficits.
Scientific Abstract
Many children with autism spectrum disorders (ASD) demonstrate deficits in language comprehension, but little is known about how they process spoken language as it unfolds. Real-time lexical comprehension is associated with language and cognition in children without ASD, suggesting that this may also be the case for children with ASD. This study adopted an individual differences approach to characterizing real-time comprehension of familiar words in a group of 34 three- to six-year-olds with ASD. The looking-while-listening paradigm was employed; it measures online accuracy and latency through language-mediated eye movements and has limited task demands. On average, children demonstrated comprehension of the familiar words, but considerable variability emerged. Children with better accuracy were faster to process the familiar words. In combination, processing speed and comprehension on a standardized language assessment explained 63% of the variance in online accuracy. Online accuracy was not correlated with autism severity or maternal education, and nonverbal cognition did not explain unique variance. Notably, online accuracy at age 5½ was related to vocabulary comprehension three years earlier. The words typically learned earliest in life were processed most quickly. Consistent with a dimensional view of language abilities, these findings point to similarities in patterns of language acquisition in typically developing children and those with ASD. Overall, our results emphasize the value of examining individual differences in real-time language comprehension in this population. We propose that the looking-while-listening paradigm is a sensitive and valuable methodological tool that can be applied across many areas of autism research.
PMCID: PMC3808474  PMID: 23696214
autism; comprehension; language processing; receptive vocabulary; eye-gaze methodology; individual differences
2.  Performance of Children with Autism Spectrum Disorders on the Dimension-Change Card Sort Task 
Restricted and repetitive behaviors in autism spectrum disorders have been conceptualized to reflect impaired executive functions. In the present study, we investigated the performance of 6–17-year-old children with and without an autism spectrum disorder on a dimension-change card sort task that explicitly indicated sorting rules on every trial. Diagnostic groups did not differ in speed of responses after the first rule switch or in speed or accuracy on blocks with mixed versus single sort rules. However, performance of the ASD group was significantly slower and less accurate overall than the typically-developing group. Furthermore, within the ASD group, poorer DCCS task performance did not predict more severe autism symptoms. Implications for the executive dysfunction theory of autism are discussed.
PMCID: PMC3709858  PMID: 19890707
Autism; Set shifting; Dimension-change card sort task; Repetitive behaviors; Executive functioning; Children
3.  Motor Learning Relies on Integrated Sensory Inputs in ADHD, but Over-Selectively on Proprioception in Autism Spectrum Conditions 
Autism Research  2012;5(2):124-136.
Lay Abstract
Children with autism spectrum disorder (ASD) show deficits in development of motor skills, in addition to core deficits in social skill development. In a previous study (Haswell et al., 2009) we found that children with autism show a key difference in how they learn motor actions, with a bias for relying on joint position rather than visual feedback; further, this pattern of motor learning predicted impaired motor, imitation and social abilities. We were interested in finding out whether this altered motor learning pattern was specific to autism. To do so, we examined children with Attention Deficit Hyperactivity Disorder (ADHD), who also show deficits in motor control. Children learned a novel movement and we measured rates of motor learning, generalization patterns of motor learning, and variability of motor speed during learning. We found children with ASD show a slower rate of learning and, consistent with previous findings, an altered pattern of generalization that was predictive of impaired motor, imitation, and social impairment. In contrast, children with ADHD showed a normal rate of learning and a normal pattern of generalization; instead, they (and they alone), showed excessive variability in movement speed. The findings suggest that there is a specific pattern of altered motor learning associated with autism.
Scientific Abstract
The brain builds an association between action and sensory feedback to predict the sensory consequence of self-generated motor commands. This internal model of action is central to our ability to adapt movements, and may also play a role in our ability to learn from observing others. Recently we reported that the spatial generalization patterns that accompany adaptation of reaching movements were distinct in children with Autism Spectrum Disorder (ASD) as compared to typically developing (TD) children. To test whether the generalization patterns are specific to ASD, here we compared the patterns of adaptation to those in children with Attention Deficit Hyperactivity Disorder (ADHD). Consistent with our previous observations, we found that in ASD the motor memory showed greater than normal generalization in proprioceptive coordinates compared with both TD children and children with ADHD; children with ASD also showed slower rates of adaptation compared with both control groups. Children with ADHD did not show this excessive generalization to the proprioceptive target, but did show excessive variability in the speed of movements with an increase in the exponential distribution of responses (τ) as compared with both TD children and children with ASD. The results suggest that slower rate of adaptation and anomalous bias towards proprioceptive feedback during motor learning is characteristic of autism; whereas increased variability in execution is characteristic of ADHD.
PMCID: PMC3329587  PMID: 22359275
4.  Developmental changes in face visual scanning in autism spectrum disorder as assessed by data-based analysis 
Individuals with autism spectrum disorder (ASD) present reduced visual attention to faces. However, contradictory conclusions have been drawn about the strategies involved in visual face scanning due to the various methodologies implemented in the study of facial screening. Here, we used a data-driven approach to compare children and adults with ASD subjected to the same free viewing task and to address developmental aspects of face scanning, including its temporal patterning, in healthy children, and adults. Four groups (54 subjects) were included in the study: typical adults, typically developing children, and adults and children with ASD. Eye tracking was performed on subjects viewing unfamiliar faces. Fixations were analyzed using a data-driven approach that employed spatial statistics to provide an objective, unbiased definition of the areas of interest. Typical adults expressed a spatial and temporal strategy for visual scanning that differed from the three other groups, involving a sequential fixation of the right eye (RE), left eye (LE), and mouth. Typically developing children, adults and children with autism exhibited similar fixation patterns and they always started by looking at the RE. Children (typical or with ASD) subsequently looked at the LE or the mouth. Based on the present results, the patterns of fixation for static faces that mature from childhood to adulthood in typical subjects are not found in adults with ASD. The atypical patterns found after developmental progression and experience in ASD groups appear to remain blocked in an immature state that cannot be differentiated from typical developmental child patterns of fixation.
PMCID: PMC4503892
face; eye tracking; spatial statistic; autism; development; face perception
5.  Early sex differences are not autism-specific: A Baby Siblings Research Consortium (BSRC) study 
Molecular Autism  2015;6:32.
The increased male prevalence of autism spectrum disorder (ASD) may be mirrored by the early emergence of sex differences in ASD symptoms and cognitive functioning. The female protective effect hypothesis posits that ASD recurrence and symptoms will be higher among relatives of female probands. This study examined sex differences and sex of proband differences in ASD outcome and in the development of ASD symptoms and cognitive functioning among the high-risk younger siblings of ASD probands and low-risk children.
Prior to 18 months of age, 1824 infants (1241 high-risk siblings, 583 low-risk) from 15 sites were recruited. Hierarchical generalized linear model (HGLM) analyses of younger sibling and proband sex differences in ASD recurrence among high-risk siblings were followed by HGLM analyses of sex differences and group differences (high-risk ASD, high-risk non-ASD, and low-risk) on the Mullen Scales of Early Learning (MSEL) subscales (Expressive and Receptive Language, Fine Motor, and Visual Reception) at 18, 24, and 36 months and Autism Diagnostic Observation Schedule (ADOS) domain scores (social affect (SA) and restricted and repetitive behaviors (RRB)) at 24 and 36 months.
Of 1241 high-risk siblings, 252 had ASD outcomes. Male recurrence was 26.7 % and female recurrence 10.3 %, with a 3.18 odds ratio. The HR-ASD group had lower MSEL subscale scores and higher RRB and SA scores than the HR non-ASD group, which had lower MSEL subscale scores and higher RRB scores than the LR group. Regardless of group, males obtained lower MSEL subscale scores, and higher ADOS RRB scores, than females. There were, however, no significant interactions between sex and group on either the MSEL or ADOS. Proband sex did not affect ASD outcome, MSEL subscale, or ADOS domain scores.
A 3.2:1 male:female odds ratio emerged among a large sample of prospectively followed high-risk siblings. Sex differences in cognitive performance and repetitive behaviors were apparent not only in high-risk children with ASD, but also in high-risk children without ASD and in low-risk children. Sex differences in young children with ASD do not appear to be ASD-specific but instead reflect typically occurring sex differences seen in children without ASD. Results did not support a female protective effect hypothesis.
Electronic supplementary material
The online version of this article (doi:10.1186/s13229-015-0027-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4455973  PMID: 26045943
Sex differences; High-risk siblings; Symptom severity; Development; Longitudinal
6.  Effect of Familiarity on Reward Anticipation in Children with and without Autism Spectrum Disorders 
PLoS ONE  2014;9(9):e106667.
Previous research on the reward system in autism spectrum disorders (ASD) suggests that children with ASD anticipate and process social rewards differently than typically developing (TD) children—but has focused on the reward value of unfamiliar face stimuli. Children with ASD process faces differently than their TD peers. Previous research has focused on face processing of unfamiliar faces, but less is known about how children with ASD process familiar faces. The current study investigated how children with ASD anticipate rewards accompanied by familiar versus unfamiliar faces.
The stimulus preceding negativity (SPN) of the event-related potential (ERP) was utilized to measure reward anticipation. Participants were 6- to 10-year-olds with (N = 14) and without (N = 14) ASD. Children were presented with rewards accompanied by incidental face or non-face stimuli that were either familiar (caregivers) or unfamiliar. All non-face stimuli were composed of scrambled face elements in the shape of arrows, controlling for visual properties.
No significant differences between familiar versus unfamiliar faces were found for either group. When collapsing across familiarity, TD children showed larger reward anticipation to face versus non-face stimuli, whereas children with ASD did not show differential responses to these stimulus types. Magnitude of reward anticipation to faces was significantly correlated with behavioral measures of social impairment in the ASD group.
The findings do not provide evidence for differential reward anticipation for familiar versus unfamiliar face stimuli in children with or without ASD. These findings replicate previous work suggesting that TD children anticipate rewards accompanied by social stimuli more than rewards accompanied by non-social stimuli. The results do not support the idea that familiarity normalizes reward anticipation in children with ASD. Our findings also suggest that magnitude of reward anticipation to faces is correlated with levels of social impairment for children with ASD.
PMCID: PMC4153666  PMID: 25184524
7.  Impaired Error Monitoring and Correction Function in Autism 
Journal of neurotherapy  2010;14(2):79-95.
Error monitoring and correction is one of the executive functions and is important for effective goal directed behavior. Deficient executive functioning, including reduced error monitoring ability, is one of the typical features of such neurodevelopmental disorders as autism, probably related to perseverative responding, stereotyped repetitive behaviors, and an inability to accurately monitor ongoing behavior. Our prior studies of behavioral and event-related potential (ERP) measures during performance on visual oddball tasks in high-functioning autistic (HFA) children showed that despite only minor differences in reaction times HFA children committed significantly more errors.
This study investigated error monitoring in children with autism spectrum disorder (ASD) with response-locked event-related potentials - the Error-related Negativity (ERN) and Error-related Positivity (Pe) recorded at fronto-central sites. The ERN reflects early error detection processes, while the Pe has been associated with later conscious error evaluation and attention re-allocation. Reaction times (RT) in correct trials and post-error slowing in reaction times were measured. In this study fourteen subjects with ASD and 14 age- and IQ- matched controls received a three-category visual oddball task with novel distracters.
ERN had a lower amplitude and longer latency in the ASD group but was localized in the caudal part of anterior cingulate cortex (ACC) in both groups. The Pe component was significantly prolonged in the ASD group but did not reach significance in amplitude differences compared to controls. We found significant post-error slowing in RTs in controls, and post-error acceleration in RTs in the ASD group.
The reduced ERN and altered Pe along with a lack of post-error RT slowing in autism might be interpreted as insensitivity in the detection and monitoring of response errors and a reduced ability of execute corrective actions. This might result in reduced error awareness and failure in adjustment when dealing with situations where erroneous responses may occur. This deficit might be manifested in the perseverative behaviors often seen in individuals with ASD. The results are discussed in terms of a general impairment in self-monitoring and other executive functions underlying behavioral and social disturbances in ASD.
PMCID: PMC2879653  PMID: 20523752
Autism; Executive functions; Error monitoring; Reaction time; Cingulate cortex; oddball task
8.  Redox metabolism abnormalities in autistic children associated with mitochondrial disease 
Translational Psychiatry  2013;3(6):e273-.
Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly higher 3CT levels than control subjects, suggesting that chronic inflammation was present in both groups of children with ASD. Interestingly, 3NT was found to correlate positively with several measures of cognitive function, development and behavior for the ASD/MD group, but not the ASD/NoMD group, such that higher 3NT concentrations were associated with more favourable adaptive behaviour, language and ASD-related behavior. To determine whether difference in receiving medications and/or supplements could account for the differences in redox and inflammatory biomarkers across ASD groups, we examined differences in medication and supplements across groups and their effect of redox and inflammatory biomarkers. Overall, significantly more participants in the ASD/MD group were receiving folate, vitamin B12, carnitine, co-enzyme Q10, B vitamins and antioxidants. We then determined whether folate, carnitine, co-enzyme Q10, B vitamins and/or antioxidants influenced redox or inflammatory biomarkers. Antioxidant supplementation was associated with a significantly lower GSSG, whereas antioxidants, co-enzyme Q10 and B vitamins were associated with a higher fGSH/GSSG ratio. There was no relation between folate, carnitine, co-enzyme Q10, B vitamins and antioxidants with 3NT, 3CT or fGSH. Overall, our findings suggest that ASD/MD children with a more chronic oxidized microenvironment have better development. We interpret this finding in light of the fact that more active mitochondrial can create a greater oxidized microenvironment especially when dysfunctional. Thus, compensatory upregulation of mitochondria which are dysfunctional may both increase activity and function at the expense of a more oxidized microenvironment. Although more ASD/MD children were receiving certain supplements, the use of such supplements were not found to be related to the redox biomarkers that were related to cognitive development or behavior in the ASD/MD group but could possibly account for the difference in glutathione metabolism noted between groups. This study suggests that different subgroups of children with ASD have different redox abnormalities, which may arise from different sources. A better understanding of the relationship between mitochondrial dysfunction in ASD and oxidative stress, along with other factors that may contribute to oxidative stress, will be critical to understanding how to guide treatment and management of ASD children. This study also suggests that it is important to identify ASD/MD children as they may respond differently to specific treatments because of their specific metabolic profile.
PMCID: PMC3693408  PMID: 23778583
autism; inflammation; endophenotypes; mitochondrial disease; oxidative stress
9.  Abnormality in face scanning by children with autism spectrum disorder is limited to the eye region: Evidence from multi-method analyses of eye tracking data 
Journal of Vision  2013;13(10):5.
There has been considerable controversy regarding whether children with autism spectrum disorder (ASD) and typically developing children (TD) show different eye movement patterns when processing faces. We investigated ASD and age- and IQ-matched TD children's scanning of faces using a novel multi-method approach. We found that ASD children spent less time looking at the whole face generally. After controlling for this difference, ASD children's fixations of the other face parts, except for the eye region, and their scanning paths between face parts were comparable either to the age-matched or IQ-matched TD groups. In contrast, in the eye region, ASD children's scanning differed significantly from that of both TD groups: (a) ASD children fixated significantly less on the right eye (from the observer's view); (b) ASD children's fixations were more biased towards the left eye region; and (c) ASD children fixated below the left eye, whereas TD children fixated on the pupil region of the eye. Thus, ASD children do not have a general abnormality in face scanning. Rather, their abnormality is limited to the eye region, likely due to their strong tendency to avoid eye contact.
PMCID: PMC3739407  PMID: 23929830
autism spectrum disorder; face processing; face recognition; eye movements; eye tracking
10.  Brain function and gaze-fixation during facial emotion processing in fragile-X and autism 
This research focuses on the relationship between fragile X syndrome (FXS) and autism spectrum disorders (ASD). Both of these populations have a tendency to avoid looking others in the eye, along with difficulties in communication with others and tend to be socially withdrawn. While it is clear that FXS and ASD share some common abnormal behaviors, the underlying brain mechanisms associated with the social and emotional deficits in these groups remain unclear. We showed pictures of emotional and non-emotional human faces to these groups while in a magnetic resonance scanner (MRI). We collected images of brain function along with measures of where on the faces the individuals were looking (e.g. eyes or mouth). The FXS group showed a similar yet less abnormal pattern of where they were looking on the face compared to the ASD group. The FXS group also showed a similar pattern of decreased brain function in the area of the brain typically used when looking at faces, the fusiform gyrus (FG). The amount of activation in the FG was associated with how much time the FXS and ASD individuals looked at the eyes, the more they looked at the eyes, the greater the FG activation. The FXS group also displayed more brain activation than both the ASD group and a group of typically developing control subjects in brain areas that might suggest increased task difficulty for the FXS group. These group differences in brain activation are important as they suggest there is some overlap in areas of brain function in FXS and ASD when looking at faces, but that these two groups also have unique activation in other brain areas. These findings largely support the idea that ASD characteristics in FXS are associated with partially different patterns of brain activation when looking at human faces compared to individuals with ASD.
Fragile X syndrome (FXS) is the most commonly known genetic disorder associated with autism spectrum disorder (ASD). Overlapping features in these populations include gaze aversion, communication deficits, and social withdrawal. Although the association between FXS and ASD has been well documented at the behavioral level, the underlying neural mechanisms associated with the social/emotional deficits in these groups remain unclear.
We collected functional brain images and eye-gaze fixations from 9 individuals with FXS and 14 individuals with idiopathic ASD, as well as 15 typically developing (TD) individuals, while they performed a facial-emotion discrimination task.
The FXS group showed a similar yet less aberrant pattern of gaze-fixations compared to the ASD group. The FXS group also showed fusiform gyrus (FG) hypoactivation compared to the TD control group. Activation in FG was strongly and positively associated with average eye fixation and negatively associated with ASD characteristics in the FXS group. The FXS group displayed significantly greater activation than both the TD control and ASD groups in the left hippocampus (HIPP), left superior temporal gyrus (STG), right insula (INS), and left post-central gyrus (PCG).
These group differences in brain activation are important as they suggest unique underlying face-processing neural circuitry in FXS versus idiopathic ASD, largely supporting the hypothesis that ASD characteristics in FXS and idiopathic ASD reflect partially divergent impairments at the neural level, at least in FXS individuals without a co-morbid diagnosis of ASD.
PMCID: PMC2679695  PMID: 19360673
fragile X syndrome; autism; face processing; brain function; fMRI
11.  Comparing social attention in autism and amygdala lesions: Effects of stimulus and task condition 
Social Neuroscience  2011;6(5-6):420-435.
The amygdala plays a critical role in orienting gaze and attention to socially salient stimuli. Previous work has demonstrated that SM a patient with rare bilateral amygdala lesions, fails to fixate and make use of information from the eyes in faces. Amygdala dysfunction has also been implicated as a contributing factor in autism spectrum disorders (ASD), consistent with some reports of reduced eye fixations in ASD. Yet, detailed comparisons between ASD and patients with amygdala lesions have not been undertaken. Here we carried out such a comparison, using eye tracking to complex social scenes that contained faces. We presented participants with three task conditions. In the Neutral task, participants had to determine what kind of room the scene took place in. In the Describe task, participants described the scene. In the Social Attention task, participants inferred where people in the scene were directing their attention. SM spent less time looking at the eyes and much more time looking at the mouths than control subjects, consistent with earlier findings. There was also a trend for the ASD group to spend less time on the eyes, although this depended on the particular image and task. Whereas controls and SM looked more at the eyes when the task required social attention, the ASD group did not. This pattern of impairments suggests that SM looks less at the eyes because of a failure in stimulus-driven attention to social features, whereas individuals with ASD look less at the eyes because they are generally insensitive to socially relevant information and fail to modulate attention as a function of task demands. We conclude that the source of the social attention impairment in ASD may arise upstream from the amygdala, rather than in the amygdala itself.
PMCID: PMC3275585  PMID: 21943103
Social attention; Amygdala; Autism; Scene perception; Gaze selection
12.  Portable Intermodal Preferential Looking (IPL): Investigating Language Comprehension in Typically Developing Toddlers and Young Children with Autism 
One of the defining characteristics of autism spectrum disorder (ASD) is difficulty with language and communication.1 Children with ASD's onset of speaking is usually delayed, and many children with ASD consistently produce language less frequently and of lower lexical and grammatical complexity than their typically developing (TD) peers.6,8,12,23 However, children with ASD also exhibit a significant social deficit, and researchers and clinicians continue to debate the extent to which the deficits in social interaction account for or contribute to the deficits in language production.5,14,19,25
Standardized assessments of language in children with ASD usually do include a comprehension component; however, many such comprehension tasks assess just one aspect of language (e.g., vocabulary),5 or include a significant motor component (e.g., pointing, act-out), and/or require children to deliberately choose between a number of alternatives. These last two behaviors are known to also be challenging to children with ASD.7,12,13,16
We present a method which can assess the language comprehension of young typically developing children (9-36 months) and children with autism.2,4,9,11,22 This method, Portable Intermodal Preferential Looking (P-IPL), projects side-by-side video images from a laptop onto a portable screen. The video images are paired first with a 'baseline' (nondirecting) audio, and then presented again paired with a 'test' linguistic audio that matches only one of the video images. Children's eye movements while watching the video are filmed and later coded. Children who understand the linguistic audio will look more quickly to, and longer at, the video that matches the linguistic audio.2,4,11,18,22,26
This paradigm includes a number of components that have recently been miniaturized (projector, camcorder, digitizer) to enable portability and easy setup in children's homes. This is a crucial point for assessing young children with ASD, who are frequently uncomfortable in new (e.g., laboratory) settings. Videos can be created to assess a wide range of specific components of linguistic knowledge, such as Subject-Verb-Object word order, wh-questions, and tense/aspect suffixes on verbs; videos can also assess principles of word learning such as a noun bias, a shape bias, and syntactic bootstrapping.10,14,17,21,24 Videos include characters and speech that are visually and acoustically salient and well tolerated by children with ASD.
PMCID: PMC3570064  PMID: 23271456
Medicine; Issue 70; Neuroscience; Psychology; Behavior; Intermodal preferential looking; language comprehension; children with autism; child development; autism
13.  Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder 
Translational Psychiatry  2013;3(1):e220-.
Autism spectrum disorder (ASD) has been associated with mitochondrial disease (MD). Interestingly, most individuals with ASD and MD do not have a specific genetic mutation to explain the MD, raising the possibility of that MD may be acquired, at least in a subgroup of children with ASD. Acquired MD has been demonstrated in a rodent ASD model in which propionic acid (PPA), an enteric bacterial fermentation product of ASD-associated gut bacteria, is infused intracerebroventricularly. This animal model shows validity as it demonstrates many behavioral, metabolic, neuropathologic and neurophysiologic abnormalities associated with ASD. This animal model also demonstrates a unique pattern of elevations in short-chain and long-chain acyl-carnitines suggesting abnormalities in fatty-acid metabolism. To determine if the same pattern of biomarkers of abnormal fatty-acid metabolism are present in children with ASD, the laboratory results from a large cohort of children with ASD (n=213) who underwent screening for metabolic disorders, including mitochondrial and fatty-acid oxidation disorders, in a medically based autism clinic were reviewed. Acyl-carnitine panels were determined to be abnormal if three or more individual acyl-carnitine species were abnormal in the panel and these abnormalities were verified by repeated testing. Overall, 17% of individuals with ASD demonstrated consistently abnormal acyl-carnitine panels. Next, it was determined if specific acyl-carnitine species were consistently elevated across the individuals with consistently abnormal acyl-carnitine panels. Significant elevations in short-chain and long-chain, but not medium-chain, acyl-carnitines were found in the ASD individuals with consistently abnormal acyl-carnitine panels—a pattern consistent with the PPA rodent ASD model. Examination of electron transport chain function in muscle and fibroblast culture, histological and electron microscopy examination of muscle and other biomarkers of mitochondrial metabolism revealed a pattern consistent with the notion that PPA could be interfering with mitochondrial metabolism at the level of the tricarboxylic-acid cycle (TCAC). The function of the fatty-acid oxidation pathway in fibroblast cultures and biomarkers for abnormalities in non-mitochondrial fatty-acid metabolism were not consistently abnormal across the subgroup of ASD children, consistent with the notion that the abnormalities in fatty-acid metabolism found in this subgroup of children with ASD were secondary to TCAC abnormalities. Glutathione metabolism was abnormal in the subset of ASD individuals with consistent acyl-carnitine panel abnormalities in a pattern similar to glutathione abnormalities found in the PPA rodent model of ASD. These data suggest that there are similar pathological processes between a subset of ASD children and an animal model of ASD with acquired mitochondrial dysfunction. Future studies need to identify additional parallels between the PPA rodent model of ASD and this subset of ASD individuals with this unique pattern of acyl-carnitine abnormalities. A better understanding of this animal model and subset of children with ASD should lead to better insight in mechanisms behind environmentally induced ASD pathophysiology and should provide guidance for developing preventive and symptomatic treatments.
PMCID: PMC3566723  PMID: 23340503
acyl-carnitines; autism spectrum disorder; clostridia; microbiome; mitochondrial disease; propionic acid
14.  Rating scale measures are associated with Noldus EthoVision-XT video tracking of behaviors of children on the autism spectrum 
Molecular Autism  2014;5:15.
Children with Autism Spectrum Disorder (ASD) show unusual social behaviors and repetitive behaviors. Some of these behaviors, e.g., time spent in an area or turning rate/direction, can be automatically tracked. Automated tracking has several advantages over subjective ratings including reliability, amount of information provided, and consistency across laboratories, and is potentially of importance for diagnosis, animal models and objective assessment of treatment efficacy. However, its validity for ASD has not been examined. In this exploratory study, we examined associations between rating scale data with automated tracking of children’s movements using the Noldus EthoVision XT system; i.e., tracking not involving a human observer. Based on our observations and previous research, we predicted that time spent in the periphery of the room would be associated with autism severity and that rate and direction of turning would be associated with stereotypies.
Children with and without ASD were observed in a free-play situation for 3 min before and 3 min after Autism Diagnostic Observation Scale – Generic (ADOS-G) testing. The Noldus system provided measures of the rate and direction of turning, latency to approach and time spend near the periphery or the parent.
Ratings of the severity of maladaptive social behaviors, stereotypies, autism severity, and arousal problems were positively correlated with increases in percent time spent in the periphery in the total sample and in the ASD subset. Adaptive social communication skills decreased with increases in the percentage of time spent in the periphery and increases in the latency to approach the parent in the ASD group. The rate and direction of turning was linked with stereotypies only in the group without ASD (the faster the rate of a turn to the left, the worse the rating). In the ASD group, there was a shift from a neutral turning bias prior to the ADOS assessment to a strong left turn bias after the ADOS assessment. In the entire sample, this left turn bias was associated with measures of autism severity.
Results suggest that automated tracking yields valid and unbiased information for assessing children with autism. Turning bias is an interesting and unexplored measure related to autism.
PMCID: PMC3974120  PMID: 24548743
Autism spectrum disorders; Automated tracking; Behavioral assessment; Rating scales; Thigmotaxis; Treatment measures
15.  Impaired Prefrontal Hemodynamic Maturation in Autism and Unaffected Siblings 
PLoS ONE  2009;4(9):e6881.
Dysfunctions of the prefrontal cortex have been previously reported in individuals with autism spectrum disorders (ASD). Previous studies reported that first-degree relatives of individuals with ASD show atypical brain activity during tasks associated with social function. However, developmental changes in prefrontal dysfunction in ASD and genetic influences on the phenomena remain unclear. In the present study, we investigated the change in hemoglobin concentration in the prefrontal cortex as measured with near-infrared spectroscopy, in children and adults with ASD during the letter fluency test. Moreover, to clarify the genetic influences on developmental changes in the prefrontal dysfunction in ASD, unaffected siblings of the ASD participants were also assessed.
Methodology/Principal Findings
Study participants included 27 individuals with high-functioning ASD, age- and IQ-matched 24 healthy non-affected siblings, and 27 unrelated healthy controls aged 5 to 39 years. The relative concentration of hemoglobin ([Hb]) in the prefrontal cortex was measured during the letter fluency task. For children, neither the [oxy-Hb] change during the task nor task performances differed significantly among three groups. For adults, the [oxy-Hb] increases during the task were significantly smaller in the bilateral prefrontal cortex in ASD than those in control subjects, although task performances were similar. In the adult siblings the [oxy-Hb] change was intermediate between those in controls and ASDs.
Although indirectly due to a cross-sectional design, the results of this study indicate altered age-related change of prefrontal activity during executive processing in ASD. This is a first near-infrared spectroscopy study that implies alteration in the age-related changes of prefrontal activity in ASD and genetic influences on the phenomena.
PMCID: PMC2731203  PMID: 19727389
16.  Inhibition, flexibility, working memory and planning in autism spectrum disorders with and without comorbid ADHD-symptoms 
Recent studies have not paid a great deal of attention to comorbid attention-deficit/hyperactivity disorder (ADHD) symptoms in autistic children even though it is well known that almost half of children with autism spectrum disorder (ASD) suffer from hyperactivity, inattention and impulsivity. The goal of this study was to evaluate and compare executive functioning (EF) profiles in children with ADHD and in children with ASD with and without comorbid ADHD.
Children aged 6 to 18 years old with ADHD (n = 20) or ASD (High-Functioning autism or Asperger syndrome) with (n = 20) and without (n = 20) comorbid ADHD and a typically developing group (n = 20) were compared on a battery of EF tasks comprising inhibition, flexibility, working memory and planning tasks. A MANOVA, effect sizes as well as correlations between ADHD-symptomatology and EF performance were calculated. Age- and IQ-corrected z scores were used.
There was a significant effect for the factor group (F = 1.55; dF = 42; p = .02). Post-hoc analysis revealed significant differences between the ADHD and the TD group on the inhibition task for false alarms (p = .01) and between the ADHD group, the ASD+ group (p = .03), the ASD- group (p = .02) and the TD group (p = .01) for omissions. Effect sizes showed clear deficits of ADHD children in inhibition and working memory tasks. Participants with ASD were impaired in planning and flexibility abilities. The ASD+ group showed compared to the ASD- group more problems in inhibitory performance but not in the working memory task.
Our findings replicate previous results reporting impairment of ADHD children in inhibition and working memory tasks and of ASD children in planning and flexibility abilities. The ASD + group showed similarities to the ADHD group with regard to inhibitory but not to working memory deficits. Nevertheless the heterogeneity of these and previous results shows that EF assessment is not useful for differential diagnosis between ADHD and ASD. It might be useful for evaluating strengths and weaknesses in individual children.
PMCID: PMC2276205  PMID: 18237439
17.  Early Medical and Behavioral Characteristics of NICU Infants Later Classified With ASD 
Pediatrics  2010;126(3):457-467.
Recent evidence suggests higher prevalence of autism spectrum disorder (ASD) in NICU graduates. This aim of this study was to identify retrospectively early behaviors found more frequently in NICU infants who went on to develop ASD.
Twenty-eight NICU graduates who later received a diagnosis of ASD were compared with 2169 other NICU graduates recruited from 1994 to 2005. They differed in gender, gestational age, and birth cohort. These characteristics were used to draw a matched control sample (n = 112) to determine which, if any, early behaviors discriminated subsequent ASD diagnosis. Behavioral testing at targeted ages (adjusted for gestation) included the Rapid Neonatal Neurobehavioral Assessment (hospital discharge, 1 month), Arousal-Modulated Attention (hospital discharge, 1 and 4 months), and Bayley Scales of Infant Development (multiple times, 4–25 months).
At 1 month, children with ASD but not control children had persistent neurobehavioral abnormalities and higher incidences of asymmetric visual tracking and arm tone deficits. At 4 months, children with ASD had continued visual preference for higher amounts of stimulation than did control children, behaving more like newborns. Unlike control children, children with ASD had declining mental and motor performance by 7 to 10 months, resembling infants with severe central nervous system involvement.
Differences in specific behavior domains between NICU graduates who later receive a diagnosis of ASD and matched NICU control children may be identified in early infancy. Studies with this cohort may provide insights to help understand and detect early disabilities, including ASD.
PMCID: PMC3494479  PMID: 20679296
autism; neurodevelopment; NICU; outcomes of high-risk infants; visual function; cognitive and motor impairments
18.  Cytokine profiles by peripheral blood monocytes are associated with changes in behavioral symptoms following immune insults in a subset of ASD subjects: an inflammatory subtype? 
Some children with autism spectrum disorders (ASD) are characterized by fluctuating behavioral symptoms following immune insults, persistent gastrointestinal (GI) symptoms, and a lack of response to the first-line intervention measures. These children have been categorized as the ASD-inflammatory subtype (ASD-IS) for this study. We reported a high prevalence of non-IgE mediated food allergy (NFA) in young ASD children before, but not all ASD/NFA children reveal such clinical features of ASD-IS. This study addressed whether behavioral changes of ASD-IS are associated with innate immune abnormalities manifested in isolated peripheral blood (PB) monocytes (Mo), major innate immune cells in the PB.
This study includes three groups of ASD subjects (ASD-IS subjects (N = 24), ASD controls with a history of NFA (ASD/NFA (N = 20), and ASD/non-NFA controls (N = 20)) and three groups of non-ASD controls (non-ASD/NFA subjects (N = 16), those diagnosed with pediatric acute onset-neuropsychiatric syndrome (PANS, N = 18), and normal controls without NFA or PANS (N = 16)). Functions of purified PB Mo were assessed by measuring the production of inflammatory and counter-regulatory cytokines with or without stimuli of innate immunity (lipopolysaccharide (LPS), zymosan, CL097, and candida heat extracts as a source of β-lactam). In ASD-IS and PANS subjects, these assays were done in the state of behavioral exacerbation (‘flare’) and in the stable (‘non-flare’) condition. ASD-IS children in the ‘flare’ state revealed worsening irritability, lethargy and hyperactivity.
‘Flare’ ASD-IS PB Mo produced higher amounts of inflammatory cytokines (IL-1β and IL-6) without stimuli than ‘non-flare’ ASD-IS cells. With zymosan, ‘flare’ ASD-IS cells produced more IL-1β than most control cells, despite spontaneous production of large amounts of IL-1ß. Moreover, ‘flare’ ASD-IS Mo produced less IL-10, a counterregulatory cytokine, in response to stimuli than ‘non-flare’ cells or other control cells. These changes were not observed in PANS cells.
We observed an imbalance in the production of inflammatory (IL-1ß and IL-6) and counterregulatory (IL-10) cytokines by ‘flare’ ASD-IS monocytes, which may indicate an association between intrinsic abnormalities of PB Mo and changes in behavioral symptoms in the ASD-IS subjects.
PMCID: PMC4213467  PMID: 25344730
ASD; inflammatory subtype; NFA; GI symptoms; Cytokines; Neuroimmune network
19.  Investigating the Autonomic Nervous System Response to Anxiety in Children with Autism Spectrum Disorders 
PLoS ONE  2013;8(4):e59730.
Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.
PMCID: PMC3618324  PMID: 23577072
20.  Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with ASD 
Biological psychiatry  2013;74(3):195-203.
The ability to spontaneously attend to the social overtures and activities of others is essential for the development of social cognition and communication. This ability is critically impaired in toddlers with autism spectrum disorders (ASD); however, it is not clear if prodromal symptoms in this area are already present in the first year of life of those affected by the disorder.
To examine whether 6-month-old infants later diagnosed with ASD exhibit atypical spontaneous social monitoring skills, visual responses of 67 infants at high-risk (HR) and 50 at low-risk (LR) for ASD were studied using an eye-tracking task. Based on their clinical presentation in the 3rd year, infants were divided into those with ASD, those exhibiting atypical development (HR-ATYP), and those developing typically (HR-TYP, LR-TYP).
Compared to the control groups, 6-month-old infants later diagnosed with ASD attended less to the social scene, and, when they did look at the scene, they spent less time monitoring the actress in general and her face in particular. Limited attention to the actress and her activities was not accompanied by enhanced attention to objects.
Prodromal symptoms of ASD at six months include a diminished ability to attend spontaneously to people and their activities. A limited attentional bias towards people early in development is likely to have a detrimental impact on the specialization of social brain networks and the emergence of social interaction patterns. Further investigation into its underlying mechanisms and role in psychopathology of ASD in the first year is warranted.
PMCID: PMC3646074  PMID: 23313640
autism; infants at risk; eye-tracking; visual attention; social development; spontaneous monitoring
21.  Non-Specialist Psychosocial Interventions for Children and Adolescents with Intellectual Disability or Lower-Functioning Autism Spectrum Disorders: A Systematic Review 
PLoS Medicine  2013;10(12):e1001572.
In a systematic review, Brian Reichow and colleagues assess the evidence that non-specialist care providers in community settings can provide effective interventions for children and adolescents with intellectual disabilities or lower-functioning autism spectrum disorders.
Please see later in the article for the Editors' Summary
The development of effective treatments for use by non-specialists is listed among the top research priorities for improving the lives of people with mental illness worldwide. The purpose of this review is to appraise which interventions for children with intellectual disabilities or lower-functioning autism spectrum disorders delivered by non-specialist care providers in community settings produce benefits when compared to either a no-treatment control group or treatment-as-usual comparator.
Methods and Findings
We systematically searched electronic databases through 24 June 2013 to locate prospective controlled studies of psychosocial interventions delivered by non-specialist providers to children with intellectual disabilities or lower-functioning autism spectrum disorders. We screened 234 full papers, of which 34 articles describing 29 studies involving 1,305 participants were included. A majority of the studies included children exclusively with a diagnosis of lower-functioning autism spectrum disorders (15 of 29, 52%). Fifteen of twenty-nine studies (52%) were randomized controlled trials and just under half of all effect sizes (29 of 59, 49%) were greater than 0.50, of which 18 (62%) were statistically significant. For behavior analytic interventions, the best outcomes were shown for development and daily skills; cognitive rehabilitation, training, and support interventions were found to be most effective for improving developmental outcomes, and parent training interventions to be most effective for improving developmental, behavioral, and family outcomes. We also conducted additional subgroup analyses using harvest plots. Limitations include the studies' potential for performance bias and that few were conducted in lower- and middle-income countries.
The findings of this review support the delivery of psychosocial interventions by non-specialist providers to children who have intellectual disabilities or lower-functioning autism spectrum disorders. Given the scarcity of specialists in many low-resource settings, including many lower- and middle-income countries, these findings may provide guidance for scale-up efforts for improving outcomes for children with developmental disorders or lower-functioning autism spectrum disorders.
Protocol Registration
PROSPERO CRD42012002641
Please see later in the article for the Editors' Summary
Editors' Summary
Newborn babies are helpless, but over the first few years of life, they acquire motor (movement) skills, language (communication) skills, cognitive (thinking) skills, and social (interpersonal interaction) skills. Individual aspects of these skills are usually acquired at specific ages, but children with a development disorder such as an autism spectrum disorder (ASD) or intellectual disability (mental retardation) fail to reach these “milestones” because of impaired or delayed brain maturation. Autism, Asperger syndrome, and other ASDs (also called pervasive developmental disorders) affect about 1% of the UK and US populations and are characterized by abnormalities in interactions and communication with other people (reciprocal socio-communicative interactions; for example, some children with autism reject physical affection and fail to develop useful speech) and a restricted, stereotyped, repetitive repertoire of interests (for example, obsessive accumulation of facts about unusual topics). About half of individuals with an ASD also have an intellectual disability—a reduced overall level of intelligence characterized by impairment of the skills that are normally acquired during early life. Such individuals have what is called lower-functioning ASD.
Why Was This Study Done?
Most of the children affected by developmental disorders live in low- and middle-income countries where there are few services available to help them achieve their full potential and where little research has been done to identify the most effective treatments. The development of effective treatments for use by non-specialists (for example, teachers and parents) is necessary to improve the lives of people with mental illnesses worldwide, but particularly in resource-limited settings where psychiatrists, psychologists, and other specialists are scarce. In this systematic review, the researchers investigated which psychosocial interventions for children and adolescents with intellectual disabilities or lower-functioning ASDs delivered by non-specialist providers in community settings produce improvements in development, daily skills, school performance, behavior, or family outcomes when compared to usual care (the control condition). A systematic review identifies all the research on a given topic using predefined criteria; psychosocial interventions are defined as therapy, education, training, or support aimed at improving behavior, overall development, or specific life skills without the use of drugs.
What Did the Researchers Do and Find?
The researchers identified 29 controlled studies (investigations with an intervention group and a control group) that examined the effects of various psychosocial interventions delivered by non-specialist providers to children (under 18 years old) who had a lower-functioning ASD or intellectual disability. The researchers retrieved information on the participants, design and methods, findings, and intervention characteristics for each study, and calculated effect sizes—a measure of the effectiveness of a test intervention relative to a control intervention—for several outcomes for each intervention. Across the studies, three-quarters of the effect size estimates were positive, and nearly half were greater than 0.50; effect sizes of less than 0.2, 0.2–0.5, and greater than 0.5 indicate that an intervention has no, a small, or a medium-to-large effect, respectively. For behavior analytic interventions (which aim to improve socially significant behavior by systematically analyzing behavior), the largest effect sizes were seen for development and daily skills. Cognitive rehabilitation, training, and support (interventions that facilitates the relearning of lost or altered cognitive skills) produced good improvements in developmental outcomes such as standardized IQ tests in children aged 6–11 years old. Finally, parental training interventions (which teach parents how to provide therapy services for their child) had strong effects on developmental, behavioral, and family outcomes.
What Do These Findings Mean?
Because few of the studies included in this systematic review were undertaken in low- and middle-income countries, the review's findings may not be generalizable to children living in resource-limited settings. Moreover, other characteristics of the included studies may limit the accuracy of these findings. Nevertheless, these findings support the delivery of psychosocial interventions by non-specialist providers to children who have intellectual disabilities or a lower-functioning ASD, and indicate which interventions are likely to produce the largest improvements in developmental, behavioral, and family outcomes. Further studies are needed, particularly in low- and middle-income countries, to confirm these findings, but given that specialists are scarce in many resource-limited settings, these findings may help to inform the implementation of programs to improve outcomes for children with intellectual disabilities or lower-functioning ASDs in low- and middle-income countries.
Additional Information
Please access these websites via the online version of this summary at
This study is further discussed in a PLOS Medicine Perspective by Bello-Mojeed and Bakare
The US Centers for Disease Control and Prevention provides information (in English and Spanish) on developmental disabilities, including autism spectrum disorders and intellectual disability
The US National Institute of Mental Health also provides detailed information about autism spectrum disorders, including the publication “A Parent's Guide to Autism Spectrum Disorder”
Autism Speaks, a US non-profit organization, provides information about all aspects of autism spectrum disorders and includes information on the Autism Speaks Global Autism Public Health Initiative
The National Autistic Society, a UK charity, provides information about all aspects of autism spectrum disorders and includes personal stories about living with these conditions
The UK National Health Service Choices website has an interactive guide to child development and information about autism and Asperger syndrome, including personal stories, and about learning disabilities
The UK National Institute for Health and Care Excellence provides clinical guidelines for the management and support of children with autism spectrum disorders
The World Health Organization provides information on its Mental Health Gap Action Programme (mhGAP), which includes recommendations on the management of developmental disorders by non-specialist providers; the mhGAP Evidence Resource Center provides evidence reviews for parent skills training for management of children with intellectual disabilities and pervasive developmental disorders and interventions for management of children with intellectual disabilities
PROSPERO, an international prospective register of systematic reviews, provides more information about this systematic review
PMCID: PMC3866092  PMID: 24358029
22.  Behavioural markers for autism in infancy: Scores on the Autism Observational Scale for Infants in a prospective study of at-risk siblings 
Infant Behavior & Development  2015;38:107-115.
•Behavioural atypicalities in emergent ASD in infancy include both social and non-social behaviours.•Some of these atypicalities are found in HR siblings who do not go on to have ASD, supporting the notion of an early broader autism phenotype.•Understanding the interplay between different neurodevelopmental domains across the first years of life is important to understand developmental mechanisms and to develop early interventions.
We investigated early behavioural markers of autism spectrum disorder (ASD) using the Autism Observational Scale for Infants (AOSI) in a prospective familial high-risk (HR) sample of infant siblings (N = 54) and low-risk (LR) controls (N = 50). The AOSI was completed at 7 and 14 month infant visits and children were seen again at age 24 and 36 months. Diagnostic outcome of ASD (HR-ASD) versus no ASD (HR-No ASD) was determined for the HR sample at the latter timepoint. The HR group scored higher than the LR group at 7 months and marginally but non-significantly higher than the LR group at 14 months, although these differences did not remain when verbal and nonverbal developmental level were covaried. The HR-ASD outcome group had higher AOSI scores than the LR group at 14 months but not 7 months, even when developmental level was taken into account. The HR-No ASD outcome group had scores intermediate between the HR-ASD and LR groups. At both timepoints a few individual items were higher in the HR-ASD and HR-No ASD outcome groups compared to the LR group and these included both social (e.g. orienting to name) and non-social (e.g. visual tracking) behaviours. AOSI scores at 14 months but not at 7 months were moderately correlated with later scores on the autism diagnostic observation schedule (ADOS) suggesting continuity of autistic-like behavioural atypicality but only from the second and not first year of life. The scores of HR siblings who did not go on to have ASD were intermediate between the HR-ASD outcome and LR groups, consistent with the notion of a broader autism phenotype.
PMCID: PMC4346204  PMID: 25656952
Autism; ASD; Autism observation scale for infants (AOSI); Early behavioural markers; High-risk siblings
23.  Investigating Gaze of Children with ASD in Naturalistic Settings 
PLoS ONE  2012;7(9):e44144.
Visual behavior is known to be atypical in Autism Spectrum Disorders (ASD). Monitor-based eye-tracking studies have measured several of these atypicalities in individuals with Autism. While atypical behaviors are known to be accentuated during natural interactions, few studies have been made on gaze behavior in natural interactions. In this study we focused on i) whether the findings done in laboratory settings are also visible in a naturalistic interaction; ii) whether new atypical elements appear when studying visual behavior across the whole field of view.
Methodology/Principal Findings
Ten children with ASD and ten typically developing children participated in a dyadic interaction with an experimenter administering items from the Early Social Communication Scale (ESCS). The children wore a novel head-mounted eye-tracker, measuring gaze direction and presence of faces across the child's field of view. The analysis of gaze episodes to faces revealed that children with ASD looked significantly less and for shorter lapses of time at the experimenter. The analysis of gaze patterns across the child's field of view revealed that children with ASD looked downwards and made more extensive use of their lateral field of view when exploring the environment.
The data gathered in naturalistic settings confirm findings previously obtained only in monitor-based studies. Moreover, the study allowed to observe a generalized strategy of lateral gaze in children with ASD when they were looking at the objects in their environment.
PMCID: PMC3454390  PMID: 23028494
24.  The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load 
Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI).
We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7–13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load.
Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends.
Children with ASD showed differences in activation in the frontal and parietal lobes—both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level processing, whereas controls showed activity in frontal lobes related to the classic WM network. Findings will help guide future work by localizing areas of vulnerability to developmental disturbances.
PMCID: PMC4107490  PMID: 25057329
Working memory; Autism spectrum disorder; Functional magnetic resonance imaging; Executive function; Cognitive load; Frontal lobe; Parietal lobe
25.  Executive Functions Are Employed to Process Episodic and Relational Memories in Children With Autism Spectrum Disorders 
Neuropsychology  2013;27(6):615-627.
Objective: Long-term memory functioning in autism spectrum disorders (ASDs) is marked by a characteristic pattern of impairments and strengths. Individuals with ASD show impairment in memory tasks that require the processing of relational and contextual information, but spared performance on tasks requiring more item-based, acontextual processing. Two experiments investigated the cognitive mechanisms underlying this memory profile. Method: A sample of 14 children with a diagnosis of high-functioning ASD (age: M = 12.2 years), and a matched control group of 14 typically developing (TD) children (age: M = 12.1 years), participated in a range of behavioral memory tasks in which we measured both relational and item-based memory abilities. They also completed a battery of executive function measures. Results: The ASD group showed specific deficits in relational memory, but spared or superior performance in item-based memory, across all tasks. Importantly, for ASD children, executive ability was significantly correlated with relational memory but not with item-based memory. No such relationship was present in the control group. This suggests that children with ASD atypically employed effortful, executive strategies to retrieve relational (but not item-specific) information, whereas TD children appeared to use more automatic processes. Conclusions: The relational memory impairment in ASD may result from a specific impairment in automatic associative retrieval processes with an increased reliance on effortful and strategic retrieval processes. Our findings allow specific neural predictions to be made regarding the interactive functioning of the hippocampus, prefrontal cortex, and posterior parietal cortex in ASD as a neural network supporting relational memory processing.
PMCID: PMC3907063  PMID: 24245930
autism spectrum disorder; relational memory; hippocampus; posterior parietal cortex; executive functions

Results 1-25 (899563)