PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (488277)

Clipboard (0)
None

Related Articles

1.  Assembly of bacteriophage 80α capsids in a Staphylococcus aureus expression system 
Virology  2012;434(2):242-250.
80α is a temperate, double-stranded DNA bacteriophage of Staphylococcus aureus that can act as a “helper” for the mobilization of S. aureus pathogenicity islands (SaPIs), including SaPI1. When SaPI1 is mobilized by 80α, the SaPI genomes are packaged into capsids that are composed of phage proteins, but that are smaller than those normally formed by the phage. This size determination is dependent on SaPI1 proteins CpmA and CpmB. Here, we show that co-expression of the 80α capsid and scaffolding proteins in S. aureus, but not in E. coli, leads to the formation of procapsid-related structures, suggesting that a host co-factor is required for assembly. The capsid and scaffolding proteins also undergo normal N-terminal processing upon expression in S. aureus, implicating a host protease. We also find that SaPI1 proteins CpmA and CpmB promote the formation of small capsids upon co-expression with 80α capsid and scaffolding proteins in S. aureus.
doi:10.1016/j.virol.2012.08.031
PMCID: PMC3518739  PMID: 22980502
molecular piracy; virus assembly; size determination; procapsid; electron microscopy; scaffolding protein; ribosomal protein L27; co-expression; Staphylococcus aureus pathogenicity island 1
2.  The complete genomes of Staphylococcus aureus bacteriophages 80 and 80α– implications for the specificity of SaPI mobilization 
Virology  2010;407(2):381-390.
Staphylococcus aureus pathogenicity islands (SaPIs) are mobile elements that are induced by a helper bacteriophage to excise and replicate and to be encapsidated in phage-like particles smaller than those of the helper, leading to high-frequency transfer. SaPI mobilization is helper phage specific; only certain SaPIs can be mobilized by a particular helper phage. Staphylococcal phage 80α can mobilize every SaPI tested thus far, including SaPI1, SaPI2 and SaPIbov1. Phage 80, on the other hand, cannot mobilize SaPI1, and φ11 mobilizes only SaPIbov1. In order to better understand the relationship between SaPIs and their helper phages, the genomes of phages 80 and 80α were sequenced, compared with other staphylococcal phage genomes, and analyzed for unique features that may be involved in SaPI mobilization.
doi:10.1016/j.virol.2010.08.036
PMCID: PMC2952651  PMID: 20869739
3.  Capsid size determination by Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of SaPI1 proteins into procapsids 
Journal of molecular biology  2008;380(3):465-475.
The Staphylococcus aureus pathogenicity island SaPI1 carries the gene for the toxic shock syndrome toxin TSST-1 and can be mobilized by infection with S. aureus helper phage 80α. SaPI1 depends on the helper phage for excision, replication and genome packaging. The SaPI1 transducing particles are comprised of proteins encoded by the helper phage, but have a smaller capsid commensurate with the smaller size of the SaPI1 genome. Previous studies identified only 80α-encoded proteins in mature SaPI1 virions, implying that the presumptive SaPI1 capsid size determination function(s) must act transiently during capsid assembly or maturation. In this study, 80α and SaPI1 procapsids were produced by induction of phage mutants lacking functional 80α or SaPI1 small terminase subunits. By cryo-electron microscopy, these procapsids have a rounded shape and an internal scaffolding core. Mass spectrometry (MS) was used to identify all 80α-encoded structural proteins in 80α and SaPI1 procapsids, including several that had not previously been found in the mature capsids. In addition, SaPI1 procapsids contained at least one SaPI1-encoded protein that has been implicated genetically in capsid size determination. MS on full-length phage proteins showed that the major capsid protein and the scaffolding protein are N-terminally processed in both 80α and SaPI1 procapsids.
doi:10.1016/j.jmb.2008.04.065
PMCID: PMC2562889  PMID: 18565341
mass spectrometry; cryo; electron microscopy; bacteriophage; assembly; scaffolding protein
4.  Specificity of staphylococcal phage and SaPI DNA packaging as revealed by integrase and terminase mutations 
Molecular microbiology  2009;72(1):98-108.
SaPI1 and SaPIbov1 are chromosomal pathogenicity islands in S. aureus that carry tst and other superantigen genes. They are induced to excise and replicate by certain phages, are efficiently encapsidated in SaPI-specific small particles composed of phage virion proteins and are transferred at very high frequencies. In this study, we have analyzed 3 SaPI genes that are important for the phage-SaPI interaction, int (integrase) terS (phage terminase small subunit homolog), and pif (phage interference function). SaPI1 int is required for SaPI excision, replication and packaging in a donor strain, and is required for integration in a recipient. A SaPI1 int mutant, following phage induction, produces small SaPI-specific capsids which are filled with partial phage genomes. SaPIbov1 DNA is efficiently packaged into full-sized phage heads as well as into SaPI-specific small ones, whereas SaPI1 DNA is found almost exclusively in the small capsids. TerS, however, determines DNA packaging specificity but not the choice of large vs. small capsids. This choice is influenced by SaPIbov1 gene 12, which prevents phage DNA packaging into small capsids, and which is also primarily responsible for interference by SaPIbov1 with phage reproduction.
PMCID: PMC3885990  PMID: 19347993
5.  The Staphylococcus aureus pathogenicity island 1 protein gp6 functions as an internal scaffold during capsid size determination 
Journal of molecular biology  2011;412(4):710-722.
Staphylococcus aureus pathogenicity island 1 (SaPI1) is a mobile genetic element that carries genes for several superantigen toxins. SaPI1 is normally stably integrated into the host genome, but can become mobilized by “helper” bacteriophage 80α, leading to the packaging of SaPI1 genomes into phage-like transducing particles that are composed of structural proteins supplied by the helper phage, but having smaller capsids. We show that the SaPI1-encoded protein gp6 is necessary for efficient formation of small capsids. The NMR structure of gp6 reveals a dimeric protein with a helix-loop-helix motif similar to that of bacteriophage scaffolding proteins. The gp6 dimer matches internal densities that bridge capsid subunits in cryo-EM reconstructions of SaPI1 procapsids, suggesting that gp6 acts as an internal scaffolding protein in capsid size determination.
doi:10.1016/j.jmb.2011.07.036
PMCID: PMC3175317  PMID: 21821042
bacteriophage; mobilization; virus assembly; NMR spectroscopy; cryo-electron microscopy
6.  Staphylococcus aureus Pathogenicity Island DNA Is Packaged in Particles Composed of Phage Proteins▿ †  
Journal of Bacteriology  2008;190(7):2434-2440.
Staphylococcus aureus pathogenicity islands (SaPIs) have an intimate relationship with temperate staphylococcal phages. During phage growth, SaPIs are induced to replicate and are efficiently encapsidated into special small phage heads commensurate with their size. We have analyzed by amino acid sequencing and mass spectrometry the protein composition of the specific SaPI particles. This has enabled identification of major capsid and tail proteins and a putative portal protein. As expected, all these proteins were phage encoded. Additionally, these analyses suggested the existence of a protein required for the formation of functional phage but not SaPI particles. Mutational analysis demonstrated that the phage proteins identified were involved only in the formation and possibly the function of SaPI or phage particles, having no role in other SaPI or phage functions.
doi:10.1128/JB.01349-07
PMCID: PMC2293202  PMID: 18223072
7.  Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands 
Nature  2010;465(7299):779-782.
Staphylococcal superantigen-carrying pathogenicity islands (SaPIs) are discrete, chromosomally integrated units of ~15 kilobases that are induced by helper phages to excise and replicate. SaPI DNA is then efficiently encapsidated in phage-like infectious particles, leading to extremely high frequencies of intra- as well as intergeneric transfer1–3. In the absence of helper phage lytic growth, the island is maintained in a quiescent prophage-like state by a global repressor, Stl, which controls expression of most of the SaPI genes4. Here we show that SaPI derepression is effected by a specific, non-essential phage protein that binds to Stl, disrupting the Stl–DNA complex and thereby initiating the excision-replication-packaging cycle of the island. Because SaPIs require phage proteins to be packaged5,6, this strategy assures that SaPIs will be transferred once induced. Several different SaPIs are induced by helper phage 80α and, in each case, the SaPI commandeers a different non-essential phage protein for its derepression. The highly specific interactions between different SaPI repressors and helper-phage-encoded antirepressors represent a remarkable evolutionary adaptation involved in pathogenicity island mobilization.
doi:10.1038/nature09065
PMCID: PMC3518041  PMID: 20473284
8.  Crystallization and preliminary crystallographic analysis of dUTPase from the ϕ11 helper phage of Staphylococcus aureus  
The cloning, purification, crystallization and preliminary X-ray diffraction analysis of a novel staphylococcal phage dUTPase is reported. This protein contains a specific polypeptide insertion that is potentially responsible for modulation of expression of superantigenicity island genes.
Staphylococcus aureus superantigen-carrying pathogenicity islands (SaPIs) play a determinant role in spreading virulence genes among bacterial populations that constitute a major health hazard. Repressor (Stl) proteins are responsible for the transcriptional regulation of pathogenicity island genes. Recently, a derepressing interaction between the repressor Stl SaPIbov1 and dUTPase from the ϕ11 helper phage has been suggested [Tormo-Más et al. (2010 ▶), Nature (London), 465, 779–782]. Towards elucidation of the molecular mechanism of this interaction, this study reports the expression, purification and X-ray analysis of ϕ11 dUTPase, which contains a phage-specific polypeptide segment that is not present in other dUTPases. Crystals were obtained using the hanging-drop vapour-diffusion method at room temperature. Data were collected to 2.98 Å resolution from one type of crystal. The crystal of ϕ11 dUTPase belonged to the cubic space group I23, with unit-cell parameters a = 98.16 Å, α = β = γ = 90.00°.
doi:10.1107/S1744309111034580
PMCID: PMC3212463  PMID: 22102244
ϕ11 helper phage; dUTPases
9.  A conformational switch involved in maturation of Staphylococcus aureus bacteriophage 80α capsids 
Journal of molecular biology  2010;405(3):863-876.
Bacteriophages are involved in many aspects of the spread and establishment of virulence factors in Staphylococcus aureus, including the mobilization of genetic elements known as pathogenicity islands (SaPIs), which carry genes for superantigen toxins and other virulence factors. SaPIs are packaged into phage-like transducing particles using proteins supplied by the helper phage. We have used cryo-electron microscopy and icosahedral reconstruction to determine the structure of the procapsid and the mature capsid of 80α, a bacteriophage that can mobilize several different SaPIs. The 80α capsid has T = 7 icosahedral symmetry with the capsid protein organized into pentameric and hexameric clusters that interact via prominent trimeric densities. The 80α capsid protein was modeled based on the capsid protein fold of bacteriophage HK97, and fitted into the 80α reconstructions. The models show that the trivalent interactions are mediated primarily by a 22-residue β hairpin structure called the P loop that is not found in HK97. Capsid expansion is associated with a conformational switch in the spine helix that is propagated throughout the subunit, unlike the domain rotation mechanism in phages HK97 or P22.
doi:10.1016/j.jmb.2010.11.047
PMCID: PMC3017672  PMID: 21129380
procapsid; structure; assembly; three-dimensional reconstruction; pathogenicity island
10.  Role of Staphylococcal Phage and SaPI Integrase in Intra- and Interspecies SaPI Transfer▿  
Journal of Bacteriology  2007;189(15):5608-5616.
SaPIbov2 is a member of the SaPI family of staphylococcal pathogenicity islands and is very closely related to SaPIbov1. Typically, certain temperate phages can induce excision and replication of one or more of these islands and can package them into special small phage-like particles commensurate with their genome sizes (referred to as the excision-replication-packaging [ERP] cycle). We have studied the phage-SaPI interaction in some depth using SaPIbov2, with special reference to the role of its integrase. We demonstrate here that SaPIbov2 can be induced to replicate by different staphylococcal phages. After replication, SaPIbov2 is efficiently encapsidated and transferred to recipient organisms, including different non-Staphylococcus aureus staphylococci, where it integrates at a SaPI-specific attachment site, attC, by means of a self-coded integrase (Int). Phages that cannot induce the SaPIbov2 ERP cycle can transfer the island by recA-dependent classical generalized transduction and can also transfer it by a novel mechanism that requires the expression of SaPIbov2 int in the recipient but not in the donor. It is suggested that this mechanism involves the encapsidation of standard transducing fragments containing the intact island followed by int-mediated excision, circularization, and integration in the recipient.
doi:10.1128/JB.00619-07
PMCID: PMC1951805  PMID: 17545290
11.  The roles of SaPI1 proteins gp7 (CpmA) and gp6 (CpmB) in capsid size determination and helper phage interference 
Virology  2012;432(2):277-282.
SaPIs are molecular pirates that exploit helper bacteriophages for their own high frequency mobilization. One striking feature of helper exploitation by SaPIs is redirection of the phage capsid assembly pathway to produce smaller phage-like particles with T=4 icosahedral symmetry rather than T=7 bacteriophage capsids. Small capsids can accommodate the SaPI genome but not that of the helper phage, leading to interference with helper propagation. Previous studies identified two proteins encoded by the prototype element SaPI1, gp6 and gp7, in SaPI1 procapsids but not in mature SaPI1 particles. Dimers of gp6 form an internal scaffold, aiding fidelity of small capsid assembly. Here we show that both SaPI1 gp6 (CpmB) and gp7 (CpmA) are necessary and sufficient to direct small capsid formation. Surprisingly, failure to form small capsids did not restore wild-type levels of helper phage growth, suggesting an additional role for these SaPI1 proteins in phage interference.
doi:10.1016/j.virol.2012.05.026
PMCID: PMC3423473  PMID: 22709958
Staphylococcus aureus pathogenicity island; procapsid; bacteriophage assembly; cryo-electron microscopy; molecular piracy
12.  Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens 
Nature Communications  2013;4:2345.
Mobile genetic elements (MGEs) encoding virulence and resistance genes are widespread in bacterial pathogens, but it has remained unclear how they occasionally jump to new host species. Staphylococcus aureus clones exchange MGEs such as S. aureus pathogenicity islands (SaPIs) with high frequency via helper phages. Here we report that the S. aureus ST395 lineage is refractory to horizontal gene transfer (HGT) with typical S. aureus but exchanges SaPIs with other species and genera including Staphylococcus epidermidis and Listeria monocytogenes. ST395 produces an unusual wall teichoic acid (WTA) resembling that of its HGT partner species. Notably, distantly related bacterial species and genera undergo efficient HGT with typical S. aureus upon ectopic expression of S. aureus WTA. Combined with genomic analyses, these results indicate that a ‘glycocode’ of WTA structures and WTA-binding helper phages permits HGT even across long phylogenetic distances thereby shaping the evolution of Gram-positive pathogens.
Horizontal gene transfer of mobile genetic elements contributes to bacterial evolution and emergence of new pathogens. Here the authors demonstrate that the highly diverse structure of wall teichoic acid polymers governs horizontal gene transfer among Gram-positive pathogens, even across long phylogenetic distances.
doi:10.1038/ncomms3345
PMCID: PMC3903184  PMID: 23965785
13.  Fatal S. aureus Hemorrhagic Pneumonia: Genetic Analysis of a Unique Clinical Isolate Producing both PVL and TSST-1 
PLoS ONE  2011;6(11):e27246.
In 2008, an unusual strain of methicillin-sensitive Staphylococcus aureus (MSSA68111), producing both Panton-Valentine leukocidin (PVL) and toxic shock syndrome toxin-1 (TSST-1), was isolated from a fatal case of necrotizing pneumonia. Because PVL/TSST-1 co-production in S. aureus is rare, we characterized the molecular organization of these toxin genes in strain 68111. MSSA68111 carries the PVL genes within a novel temperate prophage we call ФPVLv68111 that is most similar, though not identical, to phage ФPVL – a phage type that is relatively rare worldwide. The TSST-1 gene (tst) in MSSA68111 is carried on a unique staphylococcal pathogenicity island (SaPI) we call SaPI68111. Features of SaPI68111 suggest it likely arose through multiple major recombination events with other known SaPIs. Both ФPVLv68111 and SaPI68111 are fully mobilizable and therefore transmissible to other strains. Taken together, these findings suggest that hypervirulent S. aureus have the potential to emerge worldwide.
doi:10.1371/journal.pone.0027246
PMCID: PMC3207839  PMID: 22110621
14.  The phage-related chromosomal islands of Gram-positive bacteria 
Nature reviews. Microbiology  2010;8(8):541-551.
The phage-related chromosomal islands (PRCIs) were first identified in Staphylococcus aureus as highly mobile, superantigen-encoding genetic elements known as the S. aureus pathogenicity islands (SaPIs). These elements are characterized by a specific set of phage-related functions that enable them to use the phage reproduction cycle for their own transduction and inhibit phage reproduction in the process. SaPIs produce many phage-like infectious particles; their streptococcal counterparts have a role in gene regulation but may not be infectious. These elements therefore represent phage satellites or parasites, not defective phages. In this Review, we discuss the shared genetic content of PRCIs, their life cycle and their ability to be transferred across large phylogenetic distances.
doi:10.1038/nrmicro2393
PMCID: PMC3522866  PMID: 20634809
15.  Pirates of the Caudovirales 
Virology  2012;434(2):210-221.
Molecular piracy is a biological phenomenon in which one replicon (the pirate) uses the structural proteins encoded by another replicon (the helper) to package its own genome and thus allow its propagation and spread. Such piracy is dependent on a complex web of interactions between helper and pirate that occur at several levels, from transcriptional control to macromolecular assembly. The best characterized examples of molecular piracy are from the E. coli P2/P4 system and the S. aureus SaPI pathogenicity island/helper system. In both of these cases, the pirate element is mobilized and packaged into phage-like transducing particles assembled from proteins supplied by a helper phage that belongs to the Caudovirales order of viruses (tailed, dsDNA bacteriophages). In this review we will summarize and compare the processes that are involved in molecular piracy in these two systems.
doi:10.1016/j.virol.2012.10.028
PMCID: PMC3518693  PMID: 23131350
molecular piracy; bacteriophage 80α; Staphylococcus aureus pathogenicity island mobilization; bacteriophage P2; satellite phage P4; capsid assembly; size determination; derepression; transactivation; interference; DNA packaging; SaPI
16.  An Enterotoxin-Bearing Pathogenicity Island in Staphylococcus epidermidis▿† 
Journal of Bacteriology  2011;193(8):1854-1862.
Cocolonization of human mucosal surfaces causes frequent encounters between various staphylococcal species, creating opportunities for the horizontal acquisition of mobile genetic elements. The majority of Staphylococcus aureus toxins and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs). Horizontal movement of SaPIs between S. aureus strains plays a role in the evolution of virulent clinical isolates. Although there have been reports of the production of toxic shock syndrome toxin 1 (TSST-1), enterotoxin, and other superantigens by coagulase-negative staphylococci, no associated pathogenicity islands have been found in the genome of Staphylococcus epidermidis, a generally less virulent relative of S. aureus. We show here the first evidence of a composite S. epidermidis pathogenicity island (SePI), the product of multiple insertions in the genome of a clinical isolate. The taxonomic placement of S. epidermidis strain FRI909 was confirmed by a number of biochemical tests and multilocus sequence typing. The genome sequence of this strain was analyzed for other unique gene clusters and their locations. This pathogenicity island encodes and expresses staphylococcal enterotoxin C3 (SEC3) and staphylococcal enterotoxin-like toxin L (SElL), as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and immunoblotting. We present here an initial characterization of this novel pathogenicity island, and we establish that it is stable, expresses enterotoxins, and is not obviously transmissible by phage transduction. We also describe the genome sequence, excision, replication, and packaging of a novel bacteriophage in S. epidermidis FRI909, as well as attempts to mobilize the SePI element by this phage.
doi:10.1128/JB.00162-10
PMCID: PMC3133018  PMID: 21317317
17.  Transducing Particles of Staphylococcus aureus Pathogenicity Island SaPI1 Are Comprised of Helper Phage-Encoded Proteins▿ †  
Journal of Bacteriology  2007;189(20):7520-7524.
The relationship between the composition of SaPI1 transducing particles and those of helper phage 80α was investigated by direct comparison of virion proteins. Twelve virion proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry; all were present in both 80α and SaPI1 virions, and all were encoded by 80α. No SaPI1-encoded proteins were detected. This confirms the prediction that SaPI1 is encapsidated in a virion assembled from helper phage-encoded proteins.
doi:10.1128/JB.00738-07
PMCID: PMC2168463  PMID: 17693489
18.  Shuffling of mobile genetic elements (MGEs) in successful healthcare-associated MRSA (HA-MRSA) 
Mobile Genetic Elements  2012;2(5):239-243.
Methicillin-resistant Staphylococcus aureus (MRSA) CC22 SCCmecIV is a successful hospital-associated (HA-) MRSA, widespread throughout the world, and now the dominant clone in UK hospitals. We have recently shown that MRSA CC22 is a particularly fit clone, and it rose to dominance in a UK hospital at the same time as it began acquiring an increased range of antibiotic resistances. These resistances were not accumulated by individual CC22 isolates, but appear to shuffle frequently between isolates of the MRSA CC22 population. Resistances are often encoded on mobile genetic elements (MGEs) that include plasmids, transposons, bacteriophage and S. aureus pathogenicity islands (SaPIs). Using multi-strain whole genome microarrays, we show that there is enormous diversity of MGE carried within a MRSA CC22 SCCmecIV population, even among isolates from the same hospital and time period. MGE profiles were so variable that they could be used to track the spread of variant isolates within the hospital. We exploited this to show that the majority of patients colonised with MRSA at hospital admission that subsequently became infected were infected with their own colonising isolate. Our studies reveal MGE spread, stability, selection and clonal adaptation to the healthcare setting may be key to the success of HA-MRSA clones, presumably by allowing rapid adaptation to antibiotic exposure and new hosts.
doi:10.4161/mge.22085
PMCID: PMC3575432  PMID: 23446976
Staphylococcus aureus; MRSA; Mobile genetic element; Fitness; Evolution
19.  Structure-function analysis of the SaPIbov1 replication origin in Staphylococcus aureus 
Plasmid  2012;67(2):183-190.
The SaPIs and their relatives are phage satellites and are unique among the known bacterial pathogenicity islands in their ability to replicate autonomously. They possess a phage-like replicon, which is organized as two sets of iterons arrayed symmetrically to flank an AT-rich region that is driven to melt by the binding of a SaPI-specific initiator (Rep) to the flanking iterons. Extensive deletion analysis has revealed that Rep can bind to a single iteron, generating a simple shift in a gel mobility assay; when bound on both sides, a second retarded band is seen, suggesting independent binding. Binding to both sites of the ori is necessary but not sufficient to melt the AT-rich region and initiate replication. For these processes, virtually the entire origin must be present. Since SaPI replication can be initiated on linear DNA, it is suggested that bilateral binding may be necessary to constrain the intervening DNA to enable Rep-driven melting.
doi:10.1016/j.plasmid.2012.01.006
PMCID: PMC3804134  PMID: 22281159
pathogenicity island; replication origin; replication initiation; SaPI
20.  Characterization of a Putative Pathogenicity Island from Bovine Staphylococcus aureus Encoding Multiple Superantigens 
Journal of Bacteriology  2001;183(1):63-70.
Previous studies have demonstrated that a proportion of Staphylococcus aureus isolates from bovine mastitis coproduce toxic shock syndrome toxin (TSST) and staphylococcal enterotoxin C (SEC). In this study, molecular genetic analysis of one such strain, RF122, revealed the presence of a 15,891-bp putative pathogenicity island (SaPIbov) encoding the genes for TSST (tst), the SEC bovine variant (sec-bovine), and a gene (sel) which encodes an enterotoxin-like protein. The island contains 21 open reading frames specifying hypothetical proteins longer than 60 amino acids including an integrase-like gene. The element is bordered by 74-bp direct repeats at the left and right junctions, and the integration site lies adjacent to the 3′ end of the GMP synthase gene (gmps) in the S. aureus chromosome. SaPIbov contains a central region of sequence identity with the previously characterized tst pathogenicity island SaPI1 (J. A. Lindsay et al., Mol. Microbiol. 29:527–543, 1998). A closely related strain, RF120, of the same multilocus enzyme electrophoretic type, random amplified polymorphic DNA type, and ribotype, does not contain the island, implying that the element is mobile and that a recent insertion/deletion event has taken place. TSST and TSST/SEC-deficient mutants of S. aureus strain RF122 were constructed by allele replacement. In vitro bovine Vβ-specific lymphocyte expansion analysis by culture supernatants of wild-type strains and of tst and sec-bovine allele replacement mutants revealed that TSST stimulates BTB13-specific T cells whereas SEC-bovine stimulates BTB93-specific T cells. This suggests that the presence of SaPIbov may contribute to modulation of the bovine immune response.
doi:10.1128/JB.183.1.63-70.2001
PMCID: PMC94850  PMID: 11114901
21.  Methicillin Susceptible Staphylococcus aureus (MSSA) of Clonal Complex CC398, t571 from Infections in Humans Are Still Rare in Germany 
PLoS ONE  2013;8(12):e83165.
Methicillin-susceptible Staphylococcus aureus (MSSA) attributed to clonal complex (CC) 398 and exhibiting spa-type t571 received attention in Europe and in the USA for being associated with severe infections in humans. As this spa-type is exhibited by livestock-associated (LA) Methicillin-resistant S. aureus (MRSA) as well, it is important to discriminate LA- and human-derived strains by easy to perform, PCR-based methods. MSSA t571 contain phage int3 carrying scn and chp, whereas LA-MRSA t571 lack these markers. In contrast, pathogenicity island SaPIbov5 (detected by PCR bridging vwbbov and scn) is contained by LA-MRSA t571 and absent in the human MSSA subpopulation. Furthermore, MSSA t571 contain erm(T), the particular genomic arrangement of which was assessed by a PCR bridging erm(T) and the adjacent transposase gene. MSSA t571 are rare so far in Germany among isolates from infections in humans (0.14%) as well as among isolates from nasal colonization (0.13%). LA-MRSA t571 are also infrequent among MRSA isolated from carriage at admission to hospitals (0.1%) and also among isolates from infections in humans (0.013%).
doi:10.1371/journal.pone.0083165
PMCID: PMC3867410  PMID: 24367584
22.  Novel Cassette-Based Shuttle Vector System for Gram-Positive Bacteria 
Applied and Environmental Microbiology  2004;70(10):6076-6085.
Our understanding of staphylococcal pathogenesis depends on reliable genetic tools for gene expression analysis and tracing of bacteria. Here, we have developed and evaluated a series of novel versatile Escherichia coli-staphylococcal shuttle vectors based on PCR-generated interchangeable cassettes. Advantages of our module system include the use of (i) staphylococcal low-copy-number, high-copy-number, thermosensitive and theta replicons and selectable markers (choice of erythromycin, tetracycline, chloramphenicol, kanamycin, or spectinomycin); (ii) an E. coli replicon and selectable marker (ampicillin); and (iii) a staphylococcal phage fragment that allows high-frequency transduction and an SaPI fragment that allows site-specific integration into the Staphylococcus aureus chromosome. The staphylococcal cadmium-inducible Pcad-cadC and constitutive PblaZ promoters were designed and analyzed in transcriptional fusions to the staphylococcal β-lactamase blaZ, the Vibrio fischeri luxAB, and the Aequorea victoria green fluorescent protein reporter genes. The modular design of the vector system provides great flexibility and variety. Questions about gene dosage, complementation, and cis-trans effects can now be conveniently addressed, so that this system constitutes an effective tool for studying gene regulation of staphylococci in various ecosystems.
doi:10.1128/AEM.70.10.6076-6085.2004
PMCID: PMC522135  PMID: 15466553
23.  The Distribution of Mobile Genetic Elements (MGEs) in MRSA CC398 Is Associated with Both Host and Country 
Genome Biology and Evolution  2011;3:1164-1174.
Methicillin-resistant Staphylococcus aureus clonal complex (CC) 398 has emerged from pigs to cause human infections in Europe and North America. We used a new 62-strain S. aureus microarray (SAM-62) to compare genomes of isolates from three geographical areas (Belgium, Denmark, and Netherlands) to understand how CC398 colonizes different mammalian hosts. The core genomes of 44 pig isolates and 32 isolates from humans did not vary. However, mobile genetic element (MGE) distribution was variable including SCCmec. φ3 bacteriophage and human specificity genes (chp, sak, scn) were found in invasive human but not pig isolates. SaPI5 and putative ruminant specificity gene variants (vwb and scn) were common but not pig specific. Virulence and resistance gene carriage was host associated but country specific. We conclude MGE exchange is frequent in CC398 and greatest among populations in close contact. This feature may help determine epidemiological associations among isolates of the same lineage.
doi:10.1093/gbe/evr092
PMCID: PMC3205603  PMID: 21920902
methicillin-resistant Staphylococcus aureus; host specificity; mobile genetic elements; zoonoses; bacteriophages
24.  Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion 
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.
doi:10.1128/MMBR.68.3.560-602.2004
PMCID: PMC515249  PMID: 15353570
25.  Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands▿  
Journal of Bacteriology  2007;190(1):300-310.
Strains of Staphylococcus aureus, an important human pathogen, display up to 20% variability in their genome sequence, and most sequence information is available for human clinical isolates that have not been subjected to genetic analysis of virulence attributes. S. aureus strain Newman, which was also isolated from a human infection, displays robust virulence properties in animal models of disease and has already been extensively analyzed for its molecular traits of staphylococcal pathogenesis. We report here the complete genome sequence of S. aureus Newman, which carries four integrated prophages, as well as two large pathogenicity islands. In agreement with the view that S. aureus Newman prophages contribute important properties to pathogenesis, fewer virulence factors are found outside of the prophages than for the highly virulent strain MW2. The absence of drug resistance genes reflects the general antibiotic-susceptible phenotype of S. aureus Newman. Phylogenetic analyses reveal clonal relationships between the staphylococcal strains Newman, COL, NCTC8325, and USA300 and a greater evolutionary distance to strains MRSA252, MW2, MSSA476, N315, Mu50, JH1, JH9, and RF122. However, polymorphism analysis of two large pathogenicity islands distributed among these strains shows that the two islands were acquired independently from the evolutionary pathway of the chromosomal backbones of staphylococcal genomes. Prophages and pathogenicity islands play central roles in S. aureus virulence and evolution.
doi:10.1128/JB.01000-07
PMCID: PMC2223734  PMID: 17951380

Results 1-25 (488277)