PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (788516)

Clipboard (0)
None

Related Articles

1.  Enalapril treatment discloses an early role of angiotensin II in inflammation- and oxidative stress-related muscle damage in dystrophic mdx mice☆ 
Pharmacological Research  2011;64(5):482-492.
Graphical abstract
Highlights
► An early treatment with enalapril was performed in exercised mdx mice. ► In vivo, enalapril increased mouse fore limb strength dose-dependently. ► Ex vivo, enalapril reduced muscular markers of oxidative stress and inflammation. ► Results corroborate an early role of angiotensin II in muscular dystrophy. ► Pre-clinical evidences of therapeutic interest of ACE inhibitors for therapy of DMD.
Inhibitors of angiotensin converting enzymes (ACE) are clinically used to control cardiomyopathy in patients of Duchenne muscular dystrophy. Various evidences suggest potential usefulness of long-term treatment with ACE inhibitors to reduce advanced fibrosis of dystrophic muscle in the mdx mouse model. However, angiotensin II is known to exert pro-inflammatory and pro-oxidative actions that might contribute to early events of dystrophic muscle degeneration. The present study has been aimed at evaluating the effects of an early treatment with enalapril on the pathology signs of exercised mdx mouse model. The effects of 1 and 5 mg/kg enalapril i.p. for 4–8 weeks have been compared with those of 1 mg/kg α-methyl-prednisolone (PDN), as positive control. Enalapril caused a dose-dependent increase in fore limb strength, the highest dose leading to a recovery score similar to that observed with PDN. A dose-dependent reduction of superoxide anion production was observed by dihydroethidium staining in tibialis anterior muscle of enalapril-treated mice, approaching the effect observed with PND. In parallel, a significant reduction of the activated form of the pro-inflammatory Nuclear Factor-kB has been observed in gastrocnemious muscle. Histologically, 5 mg/kg enalapril reduced the area of muscle necrosis in both gastrocnemious muscle and diaphragm, without significant effect on non-muscle area. In parallel no significant changes have been observed in both muscle TGF-β1 and myonuclei positive to phosphorylated Smad2/3. Myofiber functional indices were also monitored by microelectrodes recordings. A dose-dependent recovery of macroscopic chloride conductance has been observed upon enalapril treatment in EDL muscle, with minor effects being exerted in diaphragm. However a modest effect, if any, was found on mechanical threshold, a functional index of calcium homeostasis. No recovery was observed in creatine kinase and lactate dehydrogenase. Finally the results suggest the ability of enalapril to blunt angiotensin-II dependent activation of pro-inflammatory and pro-oxidant pathways which may be earlier events with respect to the pro-fibrotic ones, and may in part account for both functional impairment and muscle necrosis. The PDN-like profile may corroborate the combined use of the two classes of drugs in DMD patients so to potentiate the beneficial effects at skeletal muscle level, while reducing both spontaneous and PDN-aggravated cardiomyopathy.
doi:10.1016/j.phrs.2011.06.002
PMCID: PMC3184479  PMID: 21689754
DMD, Duchenne muscular dystrophy; ACE, angiotensin converting enzyme; RAS, renin-angiotensin system; Ang II, angiotensin II; PDN, α-methylprednisolone; NF-kB, nuclear factor-kB; TGF-β1, trasforming growth factor β1; EDL, extensor digitorum longus; CK, creatine kinase; LDH, lactate dehydrogenase; gCl, sarcolemmal chloride conductance; gK, sarcolemmal potassium conductance; MT, mechanical threshold; Muscular dystrophy; Pre-clinical pharmacological tests; Angiotensin-II; Inflammation; Oxidative stress
2.  Early Treatment with Lisinopril and Spironolactone Preserves Cardiac and Skeletal Muscle in Duchenne Muscular Dystrophy Mice 
Circulation  2011;124(5):582-588.
Background
Nearly-universal cardiomyopathy in Duchenne muscular dystrophy (DMD) contributes to heart failure and death. As DMD patients show myocardial fibrosis well before functional impairment, we postulated that earlier treatment using drugs with anti-fibrotic effect may be beneficial.
Methods and Results
Three groups of 10 utrn+/−;mdx or “het” mice with skeletal myopathy and cardiomyopathy that closely mimics clinical DMD were studied. One het group received spironolactone and lisinopril starting at 8 weeks-of-life (het-treated-8), a second received the same starting at 4 weeks-of-life (het-treated-4), and the third het group was untreated. At 20 weeks, all mice had normal EFs though circumferential strain rate was abnormal (−0.21±0.08) in untreated hets. This improved to −0.40±0.07 in het-treated-8 mice (p=0.003), and further improved to −0.56±0.10 in het-treated-4 mice (p=0.014 for het-treated-4 vs. het-treated-8). Treated mice showed less cardiomyocyte damage, with a 44% reduction in intra-cardiomyocyte serum IgG localization in het-treated-8 mice (p<0.0001), and further 53% reduction in het-treated-4 mice (p=0.0003 vs. het-treated-8); matrix metalloproteinases were similarly reduced. Cardiac, limb and diaphragm function by ex vivo muscle testing remained at 80% of normal with early treatment compared to a decline to 40% of normal skeletal muscle function without treatment.
Conclusions
These findings offer clinically-available medications with proven anti-fibrotic effect as a new therapeutic strategy in DMD. Early initiation greatly attenuated myocardial disease and, for the first time with these drugs, improved skeletal myopathy. Thus, early initiation of such agents warrants further clinical evaluation to maintain ambulatory, respiratory and cardiac function for DMD and related myopathies.
doi:10.1161/CIRCULATIONAHA.111.031716
PMCID: PMC3150227  PMID: 21768542
cardiomyopathy; muscles; aldosterone antagonist
3.  Physical training in boys with Duchenne Muscular Dystrophy: the protocol of the No Use is Disuse study 
BMC Pediatrics  2010;10:55.
Background
"Use it or lose it" is a well known saying which is applicable to boys with Duchenne Muscular Dystrophy (DMD). Besides the direct effects of the muscular dystrophy, the increasing effort to perform activities, the fear of falling and the use of personal aids indirectly impair leg and arm functions as a result of disuse. Physical training could oppose this secondary physical deterioration. The No Use is Disuse (NUD) study is the first study in human subjects with DMD that will examine whether a low-intensity physical training is beneficial in terms of preservation of muscle endurance and functional abilities. The study consists of two training intervention studies: study 1 "Dynamic leg and arm training for ambulant and recently wheelchair-dependent boys with DMD and, study 2 "Functional training with arm support for boys with DMD who have been confined to a wheelchair for several years". This paper describes the hypotheses and methods of the NUD study.
Methods
Study 1 is an explorative randomized controlled trial with multiple baseline measurements. Thirty boys with a DNA-established diagnosis of DMD will be included. The intervention consists of a six-months physical training during which boys train their legs and arms with active and/or assisted cycling training equipment. The primary study outcomes are muscle endurance and functional abilities, assessed with a Six-Minute Bicycle Test and the Motor Function Measure. Study 2 has a within-group repeated measurements design and will include ten boys with DMD who have already been confined to a wheelchair for several years. The six-months physical training program consists of 1) a computer-assisted training and 2) a functional training with an arm support. The primary study outcome is functional abilities of the upper extremity, assessed with the Action Research Arm Test.
Discussion
The NUD study will fill part of the gap in the current knowledge about the possible effects of training in boys with DMD and will increase insight into what type of exercise should be recommended to boys with DMD. The study will finish at the end of 2010 and results are expected in 2011.
Trial registration
The Netherlands National Trial Register1631
doi:10.1186/1471-2431-10-55
PMCID: PMC2929216  PMID: 20691042
4.  Autologous bone marrow mononuclear cell transplantation in Duchenne muscular dystrophy – a case report 
Patient: Male, 9
Final Diagnosis: Duchenne muscular dystrophy
Symptoms: Hyporeflexia • hypotonia • weaknes of lower limbs
Medication: —
Clinical Procedure: —
Specialty: Neurology
Objective:
Congenital defects/diseases
Background:
Duchenne muscular dystrophy (DMD) is a fatal, genetic, progressive, degenerating muscle disorder. Current treatment options are palliative. Newer options of cellular therapy promise to alter the disease process. Preclinical studies have successfully tested myogenic, neurogenic potential and dystrophin expression of bone marrow mononuclear cells.
Case Report:
We treated a 9-year-old boy suffering from DMD with serial autologous bone marrow mononuclear cell transplantations followed by multidisciplinary rehabilitation. Brooke-Vignos score was 10 and he was wheelchair-bound. Over 36 months, gradual progressive improvement was noticed in muscle strength, ambulation with assistive devices, fine motor movements, Brooke-Vignos score, and functional independence measure score. Nine months after the transplantation, electromyography findings showed development of new normal motor unit potentials of the vastus medialis muscle.
Conclusions:
Magnetic resonance imaging scan of musculoskeletal systems showed no increase in fatty infiltration. This case report provides early investigative findings or the restorative effects of cellular therapy in DMD.
doi:10.12659/AJCR.890078
PMCID: PMC3976215  PMID: 24711886
Stem Cell Transplantation; Autologous Bone Marrow Mono Nuclear Cells; Electromyography; Muscular Dystrophy; Duchenne – congenital
5.  Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy 
Disease Models & Mechanisms  2013;7(1):41-54.
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.
doi:10.1242/dmm.013631
PMCID: PMC3882047  PMID: 24077965
HDAC; S1P; THI; dys; Dystrophin; mdx
6.  Preclinical Studies in the mdx Mouse Model of Duchenne Muscular Dystrophy with the Histone Deacetylase Inhibitor Givinostat 
Molecular Medicine  2013;19(1):79-87.
Previous work has established the existence of dystrophin–nitric oxide (NO) signaling to histone deacetylases (HDACs) that is deregulated in dystrophic muscles. As such, pharmacological interventions that target HDACs (that is, HDAC inhibitors) are of potential therapeutic interest for the treatment of muscular dystrophies. In this study, we explored the effectiveness of long-term treatment with different doses of the HDAC inhibitor givinostat in mdx mice—the mouse model of Duchenne muscular dystrophy (DMD). This study identified an efficacy for recovering functional and histological parameters within a window between 5 and 10 mg/kg/d of givinostat, with evident reduction of the beneficial effects with 1 mg/kg/d dosage. The long-term (3.5 months) exposure of 1.5-month-old mdx mice to optimal concentrations of givinostat promoted the formation of muscles with increased cross-sectional area and reduced fibrotic scars and fatty infiltration, leading to an overall improvement of endurance performance in treadmill tests and increased membrane stability. Interestingly, a reduced inflammatory infiltrate was observed in muscles of mdx mice exposed to 5 and 10 mg/kg/d of givinostat. A parallel pharmacokinetic/pharmacodynamic analysis confirmed the relationship between the effective doses of givinostat and the drug distribution in muscles and blood of treated mice. These findings provide the preclinical basis for an immediate translation of givinostat into clinical studies with DMD patients.
doi:10.2119/molmed.2013.00011
PMCID: PMC3667212  PMID: 23552722
7.  Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis 
Skeletal Muscle  2014;4:6.
Background
Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy.
Methods
mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice.
Results
mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells.
Conclusions
These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.
doi:10.1186/2044-5040-4-6
PMCID: PMC4021597  PMID: 24655808
Andrographolide; mdx; DMD; Fibrosis; Skeletal muscle; Cell therapy
8.  Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice 
Skeletal Muscle  2013;3:20.
Background
Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice.
Methods
We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles.
Results
Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function.
Conclusions
These data show that S1P is beneficial for muscle regeneration and functional gain in dystrophic mice, and that THI, or other pharmacological agents that raise S1P levels systemically, may be developed into an effective treatment for improving muscle function and reducing the pathology of DMD.
doi:10.1186/2044-5040-3-20
PMCID: PMC3750760  PMID: 23915702
9.  Functional Substitution by TAT-Utrophin in Dystrophin-Deficient Mice 
PLoS Medicine  2009;6(5):e1000083.
James Ervasti and colleagues show that injection of a truncated form of utrophin transduced all tissues examined, integrated with members of the dystrophin complex, and reduced serum levels of creatine kinase in a mouse model of muscular dystrophy.
Background
The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or ΔR4-21 “micro” utrophin (μUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.
Methods and Findings
Recombinant TAT-Utr and TAT-μUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-μUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290±920 U versus 5,950±1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%±5% versus 37%±4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%±5% versus 40%±8% drop; PBS versus TAT), and increased specific force production (9.7±1.1 N/cm2 versus 12.8±0.9 N/cm2; PBS versus TAT).
Conclusions
These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.
Editors' Summary
Background
Muscular dystrophies are genetic (inherited) diseases in which the body's muscles gradually weaken and degenerate. The commonest and most severe muscular dystrophy—Duchenne muscular dystrophy—affects 1 in 3,500 boys (girls can be carriers of the disease but rarely have any symptoms). At birth, these boys seem normal but the symptoms of their disease begin to appear in early childhood. Affected children may initially have difficulty walking or find it to hard to sit or stand independently. As they age, their muscle strength progressively declines and most affected boys are confined to a wheelchair by the time they are 12 years old. The muscles involved in breathing also weaken and the heart muscle becomes enlarged. Few boys with Duchenne muscular dystrophy live beyond their early 20 s, usually dying from breathing or heart problems. At present there is no cure for Duchenne muscular dystrophy. However, physical therapy and treatment with steroids can prolong the ability of patients to walk, and assisted ventilation can help with their breathing.
Why Was This Study Done?
In all muscular dystrophies, one of the proteins needed to build and maintain healthy muscles is missing or nonfunctional because of a genetic change (mutation). In Duchenne muscular dystrophy the mutation is in dystrophin, a protein that is involved in the formation of the dystrophin–glycoprotein complex. This complex normally sits in the membranes that surround muscle fibers and protects these membranes from damage during muscle contraction. Consequently, in Duchenne muscular dystrophy, the muscle fiber membranes become damaged and eventually the muscle fibers die. Thus, if functional dystrophin could be introduced into the muscles of patients with Duchenne muscular dystrophy, it might be possible to reduce their symptoms and prolong their lives. Indeed, the effects of dystrophin deficiency in the dystrophin-deficient mdx mouse can be reduced by the introduction of an artificial gene that expresses dystrophin or the closely related protein utrophin. Unfortunately, this gene therapy approach has not yet been effectively demonstrated in humans. In this study, therefore, the researchers investigate whether utrophin protein can be introduced directly into dystrophin-deficient mouse muscles by exposing the muscle cells to utrophin fused to the protein transduction domain of the HIV-1 TAT protein. Most proteins will not cross cell membranes, but proteins fused to this cell-penetrating domain readily enter many cell types, including muscle cells.
What Did the Researchers Do and Find?
The researchers injected full-length utrophin fused to the TAT protein transduction domain (TAT-Utr) and a short, “micro” version of utrophin fused to the same domain (TAT-μUtr) into the abdomens of mdx mice and looked to see where the proteins ended up. After two injections, both proteins were present in a wide range of tissues and organs, including several types of muscle. However, the levels of TAT-Utr were much lower than those of TAT-μUtr. Next, the researchers injected another group of mdx mice with TAT-μUtr six times over three weeks. Again, TAT-μUtr was present in all the tissues that the researchers examined. Furthermore, μUtr–glycoprotein complexes formed in the TAT-μUtr injected mdx mice and the membrane integrity and overall health of the dystrophin-deficient muscles of the mdx mice improved compared to mdx mice treated with saline. Finally, the researchers report, TAT-μUtr injections greatly improved the contractile performance of the muscles of the mdx mice.
What Do These Findings Mean?
These findings provide the first demonstration that injection of TAT-utrophin protein fusions may provide a way to treat muscular dystrophies caused by the loss of dystrophin. However, although this direct protein-replacement therapy looks hopeful, approaches that work in animals do not necessarily work in people. In particular, for this approach to work in patients with muscular dystrophy, it would be necessary to give frequent, high-dose injections of the TAT-μUtr fusion protein, a process that could eventually trigger a deleterious immune response. Nevertheless, the researchers suggest that by combining this novel approach with other approaches that also increase utrophin expression, it might be possible to prevent or delay the development of the symptoms of Duchenne muscular dystrophy.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000085.
The US National Institute of Neurological Disorders and Stroke provides information on muscular dystrophy and ongoing research into possible treatments (in English and Spanish)
The US National Human Genome Research Institute also provides basic information on Duchenne muscular dystrophy and links to additional resources
The UK National Health Service Choices Web site has pages for patients and caregivers on muscular dystrophy
The Nemours Foundation provides information about muscular dystrophy for parents, children, and teenagers
For links to further resources on muscular dystrophy, see also MedlinePlus
doi:10.1371/journal.pmed.1000083
PMCID: PMC2680620  PMID: 19478831
10.  Exclusive skeletal muscle correction does not modulate dystrophic heart disease in the aged mdx model of Duchenne cardiomyopathy 
Human Molecular Genetics  2013;22(13):2634-2641.
Duchenne muscular dystrophy (DMD) is characterized by severe degeneration and necrosis of both skeletal and cardiac muscle. While many experimental therapies have shown great promise in treating skeletal muscle disease, an effective therapy for Duchenne cardiomyopathy remains a challenge in large animal models and human patients. The current views on cardiac consequences of skeletal muscle-centered therapy are controversial. Studies performed in young adult mdx mice (a mild DMD mouse model) have yielded opposing results. Since mdx mice do not develop dystrophic cardiomyopathy until ≥21 months of age, we reasoned that old mdx mice may represent a better model to assess the impact of skeletal muscle rescue on dystrophic heart disease. Here, we aged skeletal muscle-specific micro-dystrophin transgenic mdx mice to 23 months and examined the cardiac phenotype. As expected, transgenic mdx mice had minimal skeletal muscle disease and they also outperformed original mdx mice on treadmill running. On cardiac examination, the dystrophin-null heart of transgenic mdx mice displayed severe cardiomyopathy matching that of non-transgenic mdx mice. Specifically, both the strains showed similar heart fibrosis and cardiac function deterioration in systole and diastole. Cardiac output and ejection fraction were also equally compromised. Our results suggest that skeletal muscle rescue neither aggravates nor alleviates cardiomyopathy in aged mdx mice. These findings underscore the importance of treating both skeletal and cardiac muscles in DMD therapy.
doi:10.1093/hmg/ddt112
PMCID: PMC3674804  PMID: 23459935
11.  Muscle Structure Influences Utrophin Expression in mdx Mice 
PLoS Genetics  2014;10(6):e1004431.
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin−/− mice. An ∼2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin−/−, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD.
Author Summary
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. Utrophin is structurally similar to dystrophin and improving its expression can prevent skeletal muscle necrosis in the mdx mouse model of DMD. Consequently, improving utrophin expression is a primary therapeutic target for treating DMD. While the downstream mechanisms that influence utrophin expression and stability are well described, the upstream mechanisms are less clear. Here, we found that perturbing the highly ordered structure of striated muscle by genetically deleting desmin from mdx mice increased utrophin expression to levels that prevented skeletal muscle necrosis. Thus, the mdx:desmin double knockout mice may prove valuable in determining the upstream mechanisms that influence utrophin expression to develop a therapy for DMD.
doi:10.1371/journal.pgen.1004431
PMCID: PMC4055409  PMID: 24922526
12.  Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor 
Duchenne muscular dystrophy (DMD) is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β) is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5). Antisense oligonucleotides (AONs) were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.
doi:10.1038/mtna.2014.7
PMCID: PMC4011125  PMID: 24691207
ALK5; antisense oligonucleotides; Duchenne muscular dystrophy
13.  Non-Invasive MRI and Spectroscopy of mdx Mice Reveal Temporal Changes in Dystrophic Muscle Imaging and in Energy Deficits 
PLoS ONE  2014;9(11):e112477.
In Duchenne muscular dystrophy (DMD), a genetic disruption of dystrophin protein expression results in repeated muscle injury and chronic inflammation. Magnetic resonance imaging shows promise as a surrogate outcome measure in both DMD and rehabilitation medicine that is capable of predicting clinical benefit years in advance of functional outcome measures. The mdx mouse reproduces the dystrophin deficiency that causes DMD and is routinely used for preclinical drug testing. There is a need to develop sensitive, non-invasive outcome measures in the mdx model that can be readily translatable to human clinical trials. Here we report the use of magnetic resonance imaging and spectroscopy techniques for the non-invasive monitoring of muscle damage in mdx mice. Using these techniques, we studied dystrophic mdx muscle in mice from 6 to 12 weeks of age, examining both the peak disease phase and natural recovery phase of the mdx disease course. T2 and fat-suppressed imaging revealed significant levels of tissue with elevated signal intensity in mdx hindlimb muscles at all ages; spectroscopy revealed a significant deficiency of energy metabolites in 6-week-old mdx mice. As the mdx mice progressed from the peak disease stage to the recovery stage of disease, each of these phenotypes was either eliminated or reduced, and the cross-sectional area of the mdx muscle was significantly increased when compared to that of wild-type mice. Histology indicates that hyper-intense MRI foci correspond to areas of dystrophic lesions containing inflammation as well as regenerating, degenerating and hypertrophied myofibers. Statistical sample size calculations provide several robust measures with the ability to detect intervention effects using small numbers of animals. These data establish a framework for further imaging or preclinical studies, and they support the development of MRI as a sensitive, non-invasive outcome measure for muscular dystrophy.
doi:10.1371/journal.pone.0112477
PMCID: PMC4229202  PMID: 25390038
14.  Anti-Dystrophin T Cell Responses in Duchenne Muscular Dystrophy: Prevalence and a Glucocorticoid Treatment Effect 
Human Gene Therapy  2013;24(9):797-806.
Abstract
Duchenne muscular dystrophy (DMD) typically occurs as a result of truncating mutations in the DMD gene that result in a lack of expression of the dystrophin protein in muscle fibers. Various therapies under development are directed toward restoring dystrophin expression at the subsarcolemmal membrane, including gene transfer. In a trial of intramuscular adeno-associated virus (AAV)-mediated delivery of a therapeutic minidystrophin construct, we identified in two of six subjects the presence of a population of T cells that had been primed to recognize dystrophin epitopes before transgene delivery. As the presence of preexisting T cell immunity may have a significant effect on the success of therapeutic approaches for restoring dystrophin, we sought to determine the prevalence of such immunity within a DMD cohort from our Muscular Dystrophy Association clinic. Dystrophin-specific T cell immunity was evaluated in subjects with DMD who were either receiving the glucocorticoid steroid prednisone (n=24) or deflazacort (n=29), or who were not receiving steroids (n=17), as well as from normal age-matched control subjects (n=21). We demonstrate that increasing age correlates with an increased risk for the presence of anti-dystrophin T cell immunity, and that treatment with either corticosteroid decreases risk compared with no treatment, suggesting that steroid therapy in part may derive some of its benefit through modulation of T cell responses. The frequency of dystrophin-specific T cells detected by enzyme-linked immunospot assay was lower in subjects treated with deflazacort versus prednisone, despite similar overall corticosteroid exposure, suggesting that the effects of the two corticosteroids may not be identical in patients with DMD. T cells targeted epitopes upstream and downstream of the dystrophin gene mutation and involved the CD4+ helper and/or CD8+ cytotoxic subsets. Our data confirm the presence of preexisting circulating T cell immunity to dystrophin in a sizable proportion of patients with DMD, and emphasize the need to consider this in the design and interpretation of clinical gene therapy trials.
Flanigan and colleagues characterize the prevalence of preexisting dystrophin-specific T cells in Duchenne muscular dystrophy (DMD) patients. They identify CD4+ and CD8+ T cell populations targeting epitopes upstream and downstream of dystrophin mutations in a significant fraction of patients. They further demonstrate a lower frequency of dystrophin-specific T cells in patients receiving glucocorticoid therapy. These findings suggest important considerations for future DMD gene therapy trials and offer new insight into the mechanism of glucocorticoid therapy for DMD.
doi:10.1089/hum.2013.092
PMCID: PMC3768239  PMID: 24010700
15.  Prednisolone Attenuates Improvement of Cardiac and Skeletal Contractile Function and Histopathology by Lisinopril and Spironolactone in the mdx Mouse Model of Duchenne Muscular Dystrophy 
PLoS ONE  2014;9(2):e88360.
Duchenne muscular dystrophy (DMD) is an inherited disease that causes striated muscle weakness. Recently, we showed therapeutic effects of the combination of lisinopril (L), an angiotensin converting enzyme (ACE) inhibitor, and spironolactone (S), an aldosterone antagonist, in mice lacking dystrophin and haploinsufficient for utrophin (utrn+/−;mdx, het mice); both cardiac and skeletal muscle function and histology were improved when these mice were treated early with LS. It was unknown to what extent LS treatment is effective in the most commonly used DMD murine model, the mdx mouse. In addition, current standard-of-care treatment for DMD is limited to corticosteroids. Therefore, potentially useful alternative or additive drugs need to be both compared directly to corticosteroids and tested in presence of corticosteroids. We evaluated the effectiveness of this LS combination in the mdx mouse model both compared with corticosteroid treatment (prednisolone, P) or in combination (LSP). We tested the additional combinatorial treatment containing the angiotensin II receptor blocker losartan (T), which is widely used to halt and treat the developing cardiac dysfunction in DMD patients as an alternative to an ACE inhibitor. Peak myocardial strain rate, assessed by magnetic resonance imaging, showed a negative impact of P, whereas in both diaphragm and extensor digitorum longus (EDL) muscle contractile function was not significantly impaired by P. Histologically, P generally increased cardiac damage, estimated by percentage area infiltrated by IgG as well as by collagen staining. In general, groups that only differed in the presence or absence of P (i.e. mdx vs. P, LS vs. LSP, and TS vs. TSP) demonstrated a significant detrimental impact of P on many assessed parameters, with the most profound impact on cardiac pathology.
doi:10.1371/journal.pone.0088360
PMCID: PMC3923790  PMID: 24551095
16.  Poloxomer 188 Has a Deleterious Effect on Dystrophic Skeletal Muscle Function 
PLoS ONE  2014;9(3):e91221.
Duchenne muscular dystrophy (DMD) is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188) is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control). The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA) muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001). Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered.
doi:10.1371/journal.pone.0091221
PMCID: PMC3958340  PMID: 24642557
17.  The Polyproline Site in Hinge 2 Influences the Functional Capacity of Truncated Dystrophins 
PLoS Genetics  2010;6(5):e1000958.
Mutations in dystrophin can lead to Duchenne muscular dystrophy or the more mild form of the disease, Becker muscular dystrophy. The hinge 3 region in the rod domain of dystrophin is particularly prone to deletion mutations. In-frame deletions of hinge 3 are predicted to lead to BMD, however the severity of disease can vary considerably. Here we performed extensive structure-function analyses of truncated dystrophins with modified hinges and spectrin-like repeats in mdx mice. We found that the polyproline site in hinge 2 profoundly influences the functional capacity of a microdystrophinΔR4-R23/ΔCT with a large deletion in the hinge 3 region. Inclusion of polyproline in microdystrophinΔR4-R23/ΔCT led to small myofibers (12% smaller than wild-type), Achilles myotendinous disruption, ringed fibers, and aberrant neuromuscular junctions in the mdx gastrocnemius muscles. Replacing hinge 2 of microdystrophinΔR4-R23/ΔCT with hinge 3 significantly improved the functional capacity to prevent muscle degeneration, increase muscle fiber area, and maintain the junctions. We conclude that the rigid α-helical structure of the polyproline site significantly impairs the functional capacity of truncated dystrophins to maintain appropriate connections between the cytoskeleton and extracellular matrix.
Author Summary
Dystrophin functions like a large molecular spring between the muscle cytoskeleton and the extracellular matrix in order to protect the membrane from contraction-induced injury. Mutations in dystrophin can lead to a severe muscle wasting disease called Duchenne muscular dystrophy (DMD) in young boys. DMD patients are typically wheelchair bound by 9–13 years of age and die at approximately 30 years. There are also mutations within the dystrophin gene that lead to internal truncations of non-essential regions, such as the internal rod domain that leads to a mild form of the disease called Becker Muscular Dystrophy. However, these internal truncations frequently occur at a “hot spot” within the rod domain where the resulting disease severity is difficult to predict. Here we found that consecutive proline residues, that function much like a molecular ruler, can dramatically influence the function of these internally truncated dystrophins within skeletal muscles. Using this information, we designed a dystrophin mini-gene that can accommodate the limited packaging size of recombinant adeno-associated virus. This virus can deliver the dystrophin mini-gene to most muscles throughout a dystrophic mouse to prevent muscle degeneration and partially restore muscle function.
doi:10.1371/journal.pgen.1000958
PMCID: PMC2873924  PMID: 20502633
18.  Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy 
PLoS ONE  2010;5(6):e11220.
Background
The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.
Methodology/Principal Findings
In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.
Conclusions/Significance
These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.
doi:10.1371/journal.pone.0011220
PMCID: PMC2888587  PMID: 20574530
19.  Arginine Metabolism by Macrophages Promotes Cardiac and Muscle Fibrosis in mdx Muscular Dystrophy 
PLoS ONE  2010;5(5):e10763.
Background
Duchenne muscular dystrophy (DMD) is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD.
Methodology
We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have been reported as beneficial effects of short-term treatments.
Conclusions/Significance
Our findings demonstrate that arginine metabolism by arginase promotes fibrosis of muscle in muscular dystrophy and contributes to kyphosis. Our findings also show that long-term, dietary supplementation with arginine exacerbates fibrosis of dystrophic heart and muscles. Thus, commonly-practiced dietary supplementation with arginine by DMD patients has potential risk for increasing pathology when performed for long periods, despite reports of benefits acquired with short-term supplementation.
doi:10.1371/journal.pone.0010763
PMCID: PMC2874011  PMID: 20505827
20.  A Mathematical Model of Skeletal Muscle Disease and Immune Response in the mdx Mouse 
BioMed Research International  2014;2014:871810.
Duchenne muscular dystrophy (DMD) is a genetic disease that results in the death of affected boys by early adulthood. The genetic defect responsible for DMD has been known for over 25 years, yet at present there is neither cure nor effective treatment for DMD. During early disease onset, the mdx mouse has been validated as an animal model for DMD and use of this model has led to valuable but incomplete insights into the disease process. For example, immune cells are thought to be responsible for a significant portion of muscle cell death in the mdx mouse; however, the role and time course of the immune response in the dystrophic process have not been well described. In this paper we constructed a simple mathematical model to investigate the role of the immune response in muscle degeneration and subsequent regeneration in the mdx mouse model of Duchenne muscular dystrophy. Our model suggests that the immune response contributes substantially to the muscle degeneration and regeneration processes. Furthermore, the analysis of the model predicts that the immune system response oscillates throughout the life of the mice, and the damaged fibers are never completely cleared.
doi:10.1155/2014/871810
PMCID: PMC4071953  PMID: 25013809
21.  Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy 
Matrix metalloproteinases (MMPs) are secreted proteinases that have physiologic roles in degradation and remodeling of extracellular matrix (ECM) in almost all tissues. However, their excessive production in disease conditions leads to many pathological features including tissue breakdown, inflammation, cell death, and fibrosis. Duchenne Muscular dystrophy (DMD) is a devastating genetic muscle disorder caused by partial or complete loss of cytoskeletal protein dystrophin. Progressive muscle wasting in DMD is accompanied by myofiber necrosis followed by cycles of regeneration and degeneration and inflammation that eventually result in replacement of myofiber by connective and adipose tissues. Emerging evidence suggests that gene expression and the activity of various MMPs are aberrantly regulated in muscle biopsies from DMD patients and in skeletal muscle of animal models of DMD. Moreover, a few studies employing genetic mouse models have revealed that different MMPs play distinct roles in disease progression in DMD. Modulation of the activity of MMPs improves myofiber regeneration and enhances the efficacy of transplantation and engraftment of muscle progenitor cells in dystrophic muscle in mouse models of DMD. Furthermore, recent reports also suggest that some MMPs especially MMP-9 can serve as a biomarker for diagnosis and prognosis of DMD. In this article, we provide a succinct overview of the regulation of various MMPs and their therapeutic importance in DMD.
doi:10.3389/fcell.2014.00011
PMCID: PMC4207008  PMID: 25364719
skeletal muscle; matrix metalloproteinases; TIMPs; NF-κB; macrophages; inflammation; fibrosis
22.  Histone Deacetylase Inhibitors in the Treatment of Muscular Dystrophies: Epigenetic Drugs for Genetic Diseases 
Molecular Medicine  2011;17(5-6):457-465.
Histone deacetylases inhibitors (HDACi) include a growing number of drugs that share the ability to inhibit the enzymatic activity of some or all the HDACs. Experimental and preclinical evidence indicates that these epigenetic drugs not only can be effective in the treatment of malignancies, inflammatory diseases and degenerative disorders, but also in the treatment of genetic diseases, such as muscular dystrophies. The ability of HDACi to counter the progression of muscular dystrophies points to HDACs as a crucial link between specific genetic mutations and downstream determinants of disease progression. It also suggests the contribution of epigenetic events to the pathogenesis of muscular dystrophies. Here we describe the experimental evidence supporting the key role of HDACs in the control of the transcriptional networks underlying the potential of dystrophic muscles either to activate compensatory regeneration or to undergo fibroadipogenic degeneration. Studies performed in mouse models of Duchenne muscular dystrophy (DMD) indicate that dystrophin deficiency leads to deregulated HDAC activity, which perturbs downstream networks and can be restored directly, by HDAC blockade, or indirectly, by reexpression of dystrophin. This evidence supports the current view that HDACi are emerging candidate drugs for pharmacological interventions in muscular dystrophies, and reveals unexpected common beneficial outcomes of pharmacological treatment or gene therapy.
doi:10.2119/molmed.2011.00049
PMCID: PMC3105131  PMID: 21308150
23.  Motor Physical Therapy Affects Muscle Collagen Type I and Decreases Gait Speed in Dystrophin-Deficient Dogs 
PLoS ONE  2014;9(4):e93500.
Golden Retriever Muscular Dystrophy (GRMD) is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD) in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT) is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD) underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD) maintained their routine of activities of daily living. At t0 (pre) and t1 (post-physical therapy), collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy), mediolateral (Fz) and craniocaudal (Fx) ground reaction forces (GRF) were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000). The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function.
doi:10.1371/journal.pone.0093500
PMCID: PMC3979701  PMID: 24713872
24.  Extensive and Prolonged Restoration of Dystrophin Expression with Vivo-Morpholino-Mediated Multiple Exon Skipping in Dystrophic Dogs 
Nucleic Acid Therapeutics  2012;22(5):306-315.
Duchenne muscular dystrophy (DMD) is a severe and the most prevalent form of muscular dystrophy, characterized by rapid progression of muscle degeneration. Antisense-mediated exon skipping is currently one of the most promising therapeutic options for DMD. However, unmodified antisense oligos such as morpholinos require frequent (weekly or bi-weekly) injections. Recently, new generation morpholinos such as vivo-morpholinos are reported to lead to extensive and prolonged dystrophin expression in the dystrophic mdx mouse, an animal model of DMD. The vivo-morpholino contains a cell-penetrating moiety, octa-guanidine dendrimer. Here, we sought to test the efficacy of multiple exon skipping of exons 6–8 with vivo-morpholinos in the canine X-linked muscular dystrophy, which harbors a splice site mutation at the boundary of intron 6 and exon 7. We designed and optimized novel antisense cocktail sequences and combinations for exon 8 skipping and demonstrated effective exon skipping in dystrophic dogs in vivo. Intramuscular injections with newly designed cocktail oligos led to high levels of dystrophin expression, with some samples similar to wild-type levels. This is the first report of successful rescue of dystrophin expression with morpholino conjugates in dystrophic dogs. Our results show the potential of phosphorodiamidate morpholino oligomer conjugates as therapeutic agents for DMD.
doi:10.1089/nat.2012.0368
PMCID: PMC3464409  PMID: 22888777
25.  T2 mapping provides multiple approaches to characterize muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15 year old boys with Duchenne Muscular Dystrophy 
NMR in biomedicine  2012;26(3):320-328.
Purpose
Skeletal muscles of children with Duchenne muscular dystrophy (DMD) have enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in magnetic resonance proton transverse relaxation time (T2). Therefore, examining T2 changes in individual muscles may be useful for monitoring disease progression in DMD. In this study we utilized mean T2, percent elevated pixels, and T2 heterogeneity to assess changes in composition of dystrophic muscles. In addition, we used fat saturation (fatsat) to distinguish T2 changes due to edema and inflammation from fat infiltration in muscles.
Methods
Thirty subjects with DMD and 15 age-matched controls underwent T2-weighted imaging of their lower leg using 3-T MR system. T2 maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). Mean T2 of the traced regions of interest (ROI), width of T2 histograms, and percent-elevated pixels were calculated.
Results
We found that even in young children with DMD, muscles had elevated mean T2, were more heterogeneous, and had a greater percent-elevated pixels in the lower leg muscles than controls. T2 measures decreased with fat saturation, but were still higher (p<0.05) in dystrophic muscles than controls. Further, T2 measures showed positive correlations with timed functional tests (r=0.23–0.79).
Conclusion
The elevated T2 measures with and without fat saturation in all ages of DMD examined (5–15 years) compared to unaffected controls indicate that the dystrophic muscles have increased regions of damage, edema, and fat infiltration. This study shows that T2 mapping provides multiple approaches that can be effectively utilized to characterize muscle tissue in children with DMD even in the early stages of the disease. Therefore, T2 mapping may prove clinically useful in monitoring muscle changes due to disease process or therapeutic interventions in DMD.
doi:10.1002/nbm.2851
PMCID: PMC3573223  PMID: 23044995
Duchenne muscular dystrophy; skeletal muscle; MRI; proton transverse relaxation time; T2 mapping; heterogeneity; biomarker

Results 1-25 (788516)