Search tips
Search criteria

Results 1-25 (1142007)

Clipboard (0)

Related Articles

1.  A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults 
BMJ Open  2011;1(2):e000223.
Control of the tuberculosis (TB) epidemic is a global health priority and one that is likely to be achieved only through vaccination. The critical overlap with the HIV epidemic requires any effective TB vaccine regimen to be safe in individuals who are infected with HIV. The objectives of this clinical trial were to evaluate the safety and immunogenicity of a leading candidate TB vaccine, MVA85A, in healthy, HIV-infected adults.
This was an open-label Phase I trial, performed in 20 healthy HIV-infected, antiretroviral-naïve subjects. Two different doses of MVA85A were each evaluated as a single immunisation in 10 subjects, with 24 weeks of follow-up. The safety of MVA85A was assessed by clinical and laboratory markers, including regular CD4 counts and HIV RNA load measurements. Vaccine immunogenicity was assessed by ex vivo interferon γ (IFN-γ) ELISpot assays and flow-cytometric analysis.
MVA85A was safe in subjects with HIV infection, with an adverse-event profile comparable with historical data from previous trials in HIV-uninfected subjects. There were no clinically significant vaccine-related changes in CD4 count or HIV RNA load in any subjects, and no evidence from qPCR analyses to indicate that MVA85A vaccination leads to widespread preferential infection of vaccine-induced CD4 T cell populations. Both doses of MVA85A induced an antigen-specific IFN-γ response that was durable for 24 weeks, although of a lesser magnitude compared with historical data from HIV-uninfected subjects. The functional quality of the vaccine-induced T cell response in HIV-infected subjects was remarkably comparable with that observed in healthy HIV-uninfected controls, but less durable.
MVA85A is safe and immunogenic in healthy adults infected with HIV. Further safety and efficacy evaluation of this candidate vaccine in TB- and HIV-endemic areas is merited.
Article summary
Article focus
HIV infection increases susceptibility to TB, and globally, TB is the cause of death in up to half of AIDS deaths.
There is an urgent need for a safe and effective TB vaccine in HIV-infected people.
Key messages
MVA85A, a leading candidate TB vaccine, is safe and well tolerated in HIV-infected people and does not induce changes in either CD4 count or HIV RNA load.
MVA85A is immunogenic in HIV-infected people, and induces a similar immune profile to that seen in HIV-uninfected people, but the immunogenicity is less durable in HIV-infected people.
Strengths and limitations of this study
This is a Phase I study with 20 subjects, and further studies are needed in TB endemic countries in this important target population.
PMCID: PMC3221299  PMID: 22102640
2.  Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial 
The Lancet. Respiratory Medicine  2015;3(3):190-200.
HIV-1 infection is associated with increased risk of tuberculosis and a safe and effective vaccine would assist control measures. We assessed the safety, immunogenicity, and efficacy of a candidate tuberculosis vaccine, modified vaccinia virus Ankara expressing antigen 85A (MVA85A), in adults infected with HIV-1.
We did a randomised, double-blind, placebo-controlled, phase 2 trial of MVA85A in adults infected with HIV-1, at two clinical sites, in Cape Town, South Africa and Dakar, Senegal. Eligible participants were aged 18–50 years, had no evidence of active tuberculosis, and had baseline CD4 counts greater than 350 cells per μL if they had never received antiretroviral therapy or greater than 300 cells per μL (and with undetectable viral load before randomisation) if they were receiving antiretroviral therapy; participants with latent tuberculosis infection were eligible if they had completed at least 5 months of isoniazid preventive therapy, unless they had completed treatment for tuberculosis disease within 3 years before randomisation. Participants were randomly assigned (1:1) in blocks of four by randomly generated sequence to receive two intradermal injections of either MVA85A or placebo. Randomisation was stratified by antiretroviral therapy status and study site. Participants, nurses, investigators, and laboratory staff were masked to group allocation. The second (booster) injection of MVA85A or placebo was given 6–12 months after the first vaccination. The primary study outcome was safety in all vaccinated participants (the safety analysis population). Safety was assessed throughout the trial as defined in the protocol. Secondary outcomes were immunogenicity and vaccine efficacy against Mycobacterium tuberculosis infection and disease, assessed in the per-protocol population. Immunogenicity was assessed in a subset of participants at day 7 and day 28 after the first and second vaccination, and M tuberculosis infection and disease were assessed at the end of the study. The trial is registered with, number NCT01151189.
Between Aug 4, 2011, and April 24, 2013, 650 participants were enrolled and randomly assigned; 649 were included in the safety analysis (324 in the MVA85A group and 325 in the placebo group) and 645 in the per-protocol analysis (320 and 325). 513 (71%) participants had CD4 counts greater than 300 cells per μL and were receiving antiretroviral therapy; 136 (21%) had CD4 counts above 350 cells per μL and had never received antiretroviral therapy. 277 (43%) had received isoniazid prophylaxis before enrolment. Solicited adverse events were more frequent in participants who received MVA85A (288 [89%]) than in those given placebo (235 [72%]). 34 serious adverse events were reported, 17 (5%) in each group. MVA85A induced a significant increase in antigen 85A-specific T-cell response, which peaked 7 days after both vaccinations and was primarily monofunctional. The number of participants with negative QuantiFERON-TB Gold In-Tube findings at baseline who converted to positive by the end of the study was 38 (20%) of 186 in the MVA85A group and 40 (23%) of 173 in the placebo group, for a vaccine efficacy of 11·7% (95% CI −41·3 to 44·9). In the per-protocol population, six (2%) cases of tuberculosis disease occurred in the MVA85A group and nine (3%) occurred in the placebo group, for a vaccine efficacy of 32·8% (95% CI −111·5 to 80·3).
MVA85A was well tolerated and immunogenic in adults infected with HIV-1. However, we detected no efficacy against M tuberculosis infection or disease, although the study was underpowered to detect an effect against disease. Potential reasons for the absence of detectable efficacy in this trial include insufficient induction of a vaccine-induced immune response or the wrong type of vaccine-induced immune response, or both.
European & Developing Countries Clinical Trials Partnership (IP.2007.32080.002), Aeras, Bill & Melinda Gates Foundation, Wellcome Trust, and Oxford-Emergent Tuberculosis Consortium.
PMCID: PMC4648060  PMID: 25726088
3.  Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults 
Vaccine  2012;30(38):5616-5624.
► We compared 3 doses of a the candidate TB vaccine MVA85A. ► All doses of the vaccine were safe and induced a Th1 type immune response. ► The strongest and most sustained response was seen with the highest dose of MVA85A. ► A high dose of 1 × 108 PFU of MVA85A is safe and induces sustained immunity.
A non-randomised, open-label, Phase I safety and immunogenicity dose-finding study to assess the safety and immunogenicity of the candidate TB vaccine Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) from Mycobacterium tuberculosis (MTB) in healthy adult volunteers previously vaccinated with BCG.
Healthy BCG-vaccinated volunteers were vaccinated with either 1 × 107 or 1 × 108 PFU of MVA85A. All adverse events were documented and antigen specific T cell responses were measured using an ex vivo IFN-γ ELISPOT assay. Safety and immunogenicity were compared between the 2 dose groups and with a previous trial in which a dose of 5 × 107 PFU MVA85A had been administered.
There were no serious adverse events recorded following administration of either 1 × 107 or 1 × 108 PFU of MVA85A. Systemic adverse events were more frequently reported following administration of 1 × 108 PFU of MVA85A when compared to either 5 × 107 or 1 × 107 PFU of MVA85A but were mild or moderate in severity and resolved completely within 7 days of immunisation. Antigen specific T cell responses as measured by the IFN-γ ELISPOT were significantly higher following immunisation in adults receiving 1 × 108 PFU compared to the 5 × 107 and 1 × 107 doses. Additionally, a broader range of Ag85A epitopes are detected following 1 × 108 PFU of MVA85A.
A higher dose of 1 × 108 PFU of MVA85A is well-tolerated, increases the frequency of IFN-γ secreting T cells detected following immunisation and broadens the range of Ag85A epitopes detected.
PMCID: PMC3424417  PMID: 22789508
Tuberculosis; Vaccine; BCG; MVA
4.  Safety and Immunogenicity of a New Tuberculosis Vaccine, MVA85A, in Mycobacterium tuberculosis–infected Individuals 
Rationale: An effective new tuberculosis (TB) vaccine regimen must be safe in individuals with latent TB infection (LTBI) and is a priority for global health care.
Objectives: To evaluate the safety and immunogenicity of a leading new TB vaccine, recombinant Modified Vaccinia Ankara expressing Antigen 85A (MVA85A) in individuals with LTBI.
Methods: An open-label, phase I trial of MVA85A was performed in 12 subjects with LTBI recruited from TB contact clinics in Oxford and London or by poster advertisements in Oxford hospitals. Patients were assessed clinically and had blood samples drawn for immunological analysis over a 52-week period after vaccination with MVA85A. Thoracic computed tomography scans were performed at baseline and at 10 weeks after vaccination. Safety of MVA85A was assessed by clinical, radiological, and inflammatory markers. The immunogenicity of MVA85A was assessed by IFNγ and IL-2 ELISpot assays and FACS.
Measurements and Main Results: MVA85A was safe in subjects with LTBI, with comparable adverse events to previous trials of MVA85A. There were no clinically significant changes in inflammatory markers or thoracic computed tomography scans after vaccination. MVA85A induced a strong antigen-specific IFN-γ and IL-2 response that was durable for 52 weeks. The magnitude of IFN-γ response was comparable to previous trials of MVA85A in bacillus Calmette-Guérin–vaccinated individuals. Antigen 85A–specific polyfunctional CD4+ T cells were detectable prior to vaccination with statistically significant increases in cell numbers after vaccination.
Conclusions: MVA85A is safe and highly immunogenic in individuals with LTBI. These results will facilitate further trials in TB-endemic areas.
Clinical trial registered with (NCT00456183).
PMCID: PMC2858810  PMID: 19151191
human; latent TB; vaccine; Koch
5.  The Candidate TB Vaccine, MVA85A, Induces Highly Durable Th1 Responses 
PLoS ONE  2014;9(2):e87340.
Vaccination against tuberculosis (TB) should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb). The current TB vaccine, Bacille Calmette-Guerin (BCG), protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone.
We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011.
Of 252 potential participants, 183 (72.6%) consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA−CCR7+ central memory or CD45RA−CCR7− effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3–5 years after vaccination.
MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not enhance BCG-induced protection against TB in infants.
PMCID: PMC3911992  PMID: 24498312
6.  Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania☆,☆☆ 
Vaccine  2011;29(46):8417-8428.
We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania.
Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1 mg intradermally (id), n = 20, or 3.8 mg intramuscularly (im), n = 20, or placebo, n = 20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (108 pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21.
The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8+ and CD4+ T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01 AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested.
This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher and broader cell-mediated immune responses to Env after HIV-MVA boost compared to a higher HIV-DNA priming dose given im. Three HIV-DNA priming immunizations followed by two HIV-MVA boosts efficiently induced Env-antibody responses.
PMCID: PMC4795940  PMID: 21864626
HIV vaccine; DNA prime; MVA boost
7.  A first-in-human phase 1 trial to evaluate the safety and immunogenicity of the candidate tuberculosis vaccine MVA85A-IMX313, administered to BCG-vaccinated adults 
Vaccine  2016;34(11):1412-1421.
There is an urgent need for a new and effective tuberculosis vaccine because BCG does not sufficiently prevent pulmonary disease. IMX313 is a novel carrier protein designed to improve cellular and humoral immunity. MVA85A-IMX313 is a novel vaccine candidate designed to boost immunity primed by bacillus Calmette-Guérin (BCG) that has been immunogenic in pre-clinical studies. This is the first evaluation of IMX313 delivered as MVA85A-IMX313 in humans.
In this phase 1, open-label first-in-human trial, 30 healthy previously BCG-vaccinated adults were enrolled into three treatment groups and vaccinated with low dose MVA85A-IMX313 (group A), standard dose MVA85A-IMX313 (group B), or MVA85A (group C). Volunteers were followed up for 6 months for safety and immunogenicity assessment.
The majority of adverse events were mild and there were no vaccine-related serious AEs. Both MVA85A-IMX313 and MVA85A induced a significant increase in IFN-γ ELISpot responses. There were no significant differences between the Ag85A ELISpot and intracellular cytokine responses between the two study groups B (MVA85A-IMX313) and C (MVA85A) at any time point post-vaccination.
MVA85A-IMX313 was well tolerated and immunogenic. There was no significant difference in the number of vaccine-related, local or systemic adverse reactions between MVA85A and MVA85A-IMX313 groups. The mycobacteria-specific cellular immune responses induced by MVA85A-IMX313 were not significantly different to those detected in the MVA85A group. In light of this encouraging safety data, further work to improve the potency of molecular adjuvants like IMX313 is merited.
This trial was registered on ref. NCT01879163.
PMCID: PMC4786162  PMID: 26854906
Tuberculosis; Vaccine; IMX313; MVA85A; Immunogenicity
8.  HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial 
PLoS ONE  2015;10(6):e0131748.
We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers.
HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA.
The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients.
Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use.
Trial Registration
International Standard Randomised Controlled Trial Number (ISRCTN) 60284968
PMCID: PMC4486388  PMID: 26121679
9.  A Phase I, Open-Label Trial, Evaluating the Safety and Immunogenicity of Candidate Tuberculosis Vaccines AERAS-402 and MVA85A, Administered by Prime-Boost Regime in BCG-Vaccinated Healthy Adults 
PLoS ONE  2015;10(11):e0141687.
MVA85A and AERAS-402 are two clinically advanced viral vectored TB vaccine candidates expressing Mycobacterium tuberculosis antigens designed to boost BCG-induced immunity. Clinical trials with candidate malaria vaccines have demonstrated that adenoviral vector based priming immunisation, followed by MVA vector boost, induced high levels of immunity. We present the safety and immunogenicity results of the first clinical trial to evaluate this immunisation strategy in TB.
In this phase 1, open-label trial, 40 healthy previously BCG-vaccinated participants were enrolled into three treatment groups and vaccinated with 1 or 2 doses of AERAS-402 followed by MVA85A; or 3 doses of AERAS-402.
Most related adverse events (AEs) were mild and there were no vaccine related serious AEs. Boosting AERAS-402 with MVA85A significantly increased Ag85A-specific T-cell responses from day of vaccination. Two priming doses of AERAS-402 followed by MVA85A boost, resulted in a significantly higher AUC post-peak Ag85A response compared to three doses of AERAS-402 and historical data with MVA85A vaccination alone. The frequency of CD8+ T-cells producing IFN-γ, TNF-α and IL-2 was highest in the group receiving two priming doses of AERAS-402 followed by MVA85A.
Vaccination with AERAS-402 followed by MVA85A was safe and increased the durability of antigen specific T-cell responses and the frequency and polyfunctionality of CD8+ T-cells, which may be important in protection against TB. Further clinical trials with adenoviral prime-MVA85A boost regimens are merited to optimise vaccination intervals, dose and route of immunisation and to evaluate this strategy in the target population in TB high burden countries.
Trial Registration NCT01683773.
PMCID: PMC4631471  PMID: 26529238
10.  Phase I Safety and Immunogenicity Evaluation of MVA-CMDR, a Multigenic, Recombinant Modified Vaccinia Ankara-HIV-1 Vaccine Candidate 
PLoS ONE  2010;5(11):e13983.
We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand.
Methodology/Principal Findings
MVA-CMDR or placebo was administered intra-muscularly (IM; 107 or 108 pfu) or intradermally (ID; 106 or 107 pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a 51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/106 PBMC at 108 pfu IM), but high in response rate (70% 51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 108 pfu IM); (ii) predominantly HIV Env-specific CD4+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 108 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 108 pfu IM).
MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses.
Trial Registration NCT00376090
PMCID: PMC2981570  PMID: 21085591
11.  Boosting BCG with Recombinant Modified Vaccinia Ankara Expressing Antigen 85A: Different Boosting Intervals and Implications for Efficacy Trials 
PLoS ONE  2007;2(10):e1052.
To investigate the safety and immunogenicity of boosting BCG with modified vaccinia Ankara expressing antigen 85A (MVA85A), shortly after BCG vaccination, and to compare this first with the immunogenicity of BCG vaccination alone and second with a previous clinical trial where MVA85A was administered more than 10 years after BCG vaccination.
There are two clinical trials reported here: a Phase I observational trial with MVA85A; and a Phase IV observational trial with BCG. These clinical trials were all conducted in the UK in healthy, HIV negative, BCG naïve adults. Subjects were vaccinated with BCG alone; or BCG and then subsequently boosted with MVA85A four weeks later (short interval). The outcome measures, safety and immunogenicity, were monitored for six months. The immunogenicity results from this short interval BCG prime–MVA85A boost trial were compared first with the BCG alone trial and second with a previous clinical trial where MVA85A vaccination was administered many years after vaccination with BCG.
MVA85A was safe and highly immunogenic when administered to subjects who had recently received BCG vaccination. When the short interval trial data presented here were compared with the previous long interval trial data, there were no significant differences in the magnitude of immune responses generated when MVA85A was administered shortly after, or many years after BCG vaccination.
The clinical trial data presented here provides further evidence of the ability of MVA85A to boost BCG primed immune responses. This boosting potential is not influenced by the time interval between prior BCG vaccination and boosting with MVA85A. These findings have important implications for the design of efficacy trials with MVA85A. Boosting BCG induced anti-mycobacterial immunity in either infancy or adolescence are both potential applications for this vaccine, given the immunological data presented here.
Trial Registration NCT00427453 (short boosting interval), NCT00427830 (long boosting interval), NCT00480714 (BCG alone)
PMCID: PMC2034536  PMID: 17957238
12.  Broad Immunogenicity of a Multigene, Multiclade HIV-1 DNA Vaccine Boosted with Heterologous HIV-1 Recombinant Modified Vaccinia Virus Ankara 
The Journal of infectious diseases  2008;198(10):1482-1490.
A human immunodeficiency virus (HIV) vaccine that limits disease and transmission is urgently needed. This clinical trial evaluated the safety and immunogenicity of an HIV vaccine that combines a plasmid-DNA priming vaccine and a modified vaccinia virus Ankara (MVA) boosting vaccine.
Forty healthy volunteers were injected with DNA plasmids containing gp160 of HIV-1 subtypes A, B, and C; rev B; p17/p24 gag A and B, and RTmut B by use of a needle-free injection system. The vaccine was administered intradermally or intramuscularly, with or without recombinant granulocyte macrophage colony-stimulating factor, and boosted with a heterologous MVA containing env, gag, and pol of CRF01A_E. Immune responses were monitored with HIV-specific interferon (IFN)-γ and interleukin (IL)–2 ELISpot and lymphoproliferative assays (LPAs).
Vaccine-related adverse events were mild and tolerable. After receipt of the DNA priming vaccine, 11 (30%) of 37 vaccinees had HIV-specific IFN-γ responses. After receipt of the MVA boosting vaccine, ELISpot assays showed that 34 (92%) of 37 vaccinees had HIV-specific IFN-γ responses, 32 (86%) to Gag and 24 (65%) to Env. IFN-γ production was detected in both the CD8+ T cell compartment (5 of 9 selected vaccinees) and the CD4+ T cell compartment (9 of 9). ELISpot results showed that 25 (68%) of 37 vaccinees had a positive IL-2 response and 35 (92%) of 38 had a positive LPA response. Of 38 subjects, a total of 37 (97%) were responders. One milligram of HIV-1 DNA administered intradermally was as effective as 4 mg administered intramuscularly in priming for the MVA boosting vaccine.
This HIV-DNA priming–MVA boosting approach is safe and highly immunogenic.
Trials registration
International Standard Randomised Controlled Trial number: ISRCTN32604572.
PMCID: PMC4793972  PMID: 18808335
13.  Pre-Clinical Development of BCG.HIVACAT, an Antibiotic-Free Selection Strain, for HIV-TB Pediatric Vaccine Vectored by Lysine Auxotroph of BCG 
PLoS ONE  2012;7(8):e42559.
In the past, we proposed to develop a heterologous recombinant BCG prime-recombinant modified vaccinia virus Ankara (MVA) boost dual pediatric vaccine platform against transmission of breast milk HIV-1 and Mycobacterium tuberculosis (Mtb). In this study, we assembled an E. coli-mycobacterial shuttle plasmid pJH222.HIVACAT expressing HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism based on Operator-Repressor Titration (ORT) system for plasmid selection and maintenance in E. coli and lysine complementation in mycobacteria. This shuttle plasmid was electroporated into parental lysine auxotroph (safer) strain of BCG to generate vaccine BCG.HIVACAT. All procedures complied with Good Laboratory Practices (GLPs). We demonstrated that the episomal plasmid pJH222.HIVACAT was stable in vivo over a 20-week period, and genetically and phenotypically characterized the BCG.HIVACAT vaccine strain. The BCG.HIVACAT vaccine in combination with MVA.HIVA induced HIV-1- and Mtb-specific interferon γ-producing T-cell responses in newborn and adult BALB/c mice. On the other hand, when adult mice were primed with BCG.HIVACAT and boosted with MVA.HIVA.85A, HIV-1-specific CD8+ T-cells producing IFN-γ, TNF-α, IL-2 and CD107a were induced. To assess the biosafety profile of BCG.HIVACAT-MVA.HIVA regimen, body mass loss of newborn mice was monitored regularly throughout the vaccination experiment and no difference was observed between the vaccinated and naïve groups of animals. Thus, we demonstrated T-cell immunogenicity of a novel, safer, GLP-compatible BCG-vectored vaccine using prototype immunogen HIVA. Second generation immunogens derived from HIV-1 as well as other major pediatric pathogens can be constructed in a similar fashion to prime protective responses soon after birth.
PMCID: PMC3424164  PMID: 22927933
14.  A Phase I Randomized Clinical Trial of Candidate Human Immunodeficiency Virus type 1 Vaccine MVA.HIVA Administered to Gambian Infants 
PLoS ONE  2013;8(10):e78289.
A vaccine to decrease transmission of human immunodeficiency virus type 1 (HIV-1) during breast-feeding would complement efforts to eliminate infant HIV-1 infection by antiretroviral therapy. Relative to adults, infants have distinct immune development, potentially high-risk of transmission when exposed to HIV-1 and rapid progression to AIDS when infected. To date, there have been only three published HIV-1 vaccine trials in infants.
Trial Design
We conducted a randomized phase I clinical trial PedVacc 001 assessing the feasibility, safety and immunogenicity of a single dose of candidate vaccine MVA.HIVA administered intramuscularly to 20-week-old infants born to HIV-1-negative mothers in The Gambia.
Infants were followed to 9 months of age with assessment of safety, immunogenicity and interference with Expanded Program on Immunization (EPI) vaccines. The trial is the first stage of developing more complex prime-boost vaccination strategies against breast milk transmission of HIV-1.
From March to October 2010, 48 infants (24 vaccine and 24 no-treatment) were enrolled with 100% retention. The MVA.HIVA vaccine was safe with no difference in adverse events between vaccinees and untreated infants. Two vaccine recipients (9%) and no controls had positive ex vivo interferon-γ ELISPOT assay responses. Antibody levels elicited to the EPI vaccines, which included diphtheria, tetanus, whole-cell pertussis, hepatitis B virus, Haemophilus influenzae type b and oral poliovirus, reached protective levels for the vast majority and were similar between the two arms.
A single low-dose of MVA.HIVA administered to 20-week-old infants in The Gambia was found to be safe and without interference with the induction of protective antibody levels by EPI vaccines, but did not alone induce sufficient HIV-1-specific responses. These data support the use of MVA carrying other transgenes as a boosting vector within more complex prime-boost vaccine strategies against transmission of HIV-1 and/or other infections in this age group.
Trial Registration NCT00982579
The Pan African Clinical Trials Registry PACTR2008120000904116
PMCID: PMC3813444  PMID: 24205185
15.  HIV-1 Tat protein vaccination in mice infected with Mycobacterium tuberculosis is safe, immunogenic and reduces bacterial lung pathology 
BMC Infectious Diseases  2016;16(1):442.
The therapeutic HIV-1 Tat protein vaccine is in advanced clinical development. Tuberculosis, the main AIDS co-infection, is highly endemic in areas where AIDS prevention through vaccination is needed. However, safety and immunogenicity of Tat vaccination in the course of Mycobacterium tuberculosis (Mtb) infection is still unknown and it prevents the possibility to administer the vaccine to Mtb-infected individuals. We addressed the interplay and effects of Tat vaccination on Mtb infection in immunocompetent mice.
C57BL/6 mice were vaccinated or not with Bacillus Calmette-Guerin (BCG), the current tuberculosis vaccine, and after 5 weeks were infected with Mtb by intravenous route. The Tat protein was injected intradermally at 1, 2 and 4 weeks after Mtb challenge. Eight weeks after Mtb infection, all mice were sacrificed, and both the degree of pathology and immune responses to Mtb and Tat were evaluated. As additional control, some mice were either vaccinated or not with BCG, were not challenged with Mtb, but received the Tat protein. Statistical significances were evaluated by one-way or two-way ANOVA and Tukey’s multiple comparisons post-test.
In the lungs of Mtb-infected mice, Tat-vaccine did not favour Mtb replication and indeed reduced both area of cellular infiltration and protein levels of Interferon-γ, Chemokine (C-C motif) ligand-4 and Interleukin-1β, pathological events triggered by Mtb-infection. Moreover, the protection against Mtb infection conferred by BCG remained good after Tat protein treatment. In spleen cells of Mtb-infected mice, Tat vaccination enhanced Mtb-specific Interferon-γ and Interleukin-17 responses, which may have a protective role. Of note, Mtb infection reduced, but did not suppress, the development of anti-Tat antibodies, required for Tat vaccine efficacy and the titer of anti-Tat IgG was potentiated by BCG vaccination in Mtb-free mice. In general, Tat treatment was well tolerated in both Mtb-infected and Mtb-free mice.
Tat protein vaccine, administered in Mtb-infected mice with a protocol resembling that used in the clinical trials, was safe, immunogenic, limited the lung Mtb-associated immunopathology and did not abrogate the protective efficacy of BCG. These data provide preliminary evidence for a safe use of Tat vaccine in people vaccinated with BCG and/or suffering from tuberculosis.
PMCID: PMC4994248  PMID: 27549342
Tat vaccination; M. tuberculosis infection; Cytokines; T cell responses; Antibodies; Rodent
16.  Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial 
The Lancet. Infectious Diseases  2014;14(10):939-946.
Intradermal MVA85A, a candidate vaccine against tuberculosis, induces high amounts of Ag85A-specific CD4 T cells in adults who have already received the BCG vaccine, but aerosol delivery of this vaccine might offer immunological and logistical advantages. We did a phase 1 double-blind trial to compare the safety and immunogenicity of aerosol-administered and intradermally administered MVA85A
In this phase 1, double-blind, proof-of-concept trial, 24 eligible BCG-vaccinated healthy UK adults were randomly allocated (1:1) by sequentially numbered, sealed, opaque envelopes into two groups: aerosol MVA85A and intradermal saline placebo or intradermal MVA85A and aerosol saline placebo. Participants, the bronchoscopist, and immunologists were masked to treatment assignment. The primary outcome was safety, assessed by the frequency and severity of vaccine-related local and systemic adverse events. The secondary outcome was immunogenicity assessed with laboratory markers of cell-mediated immunity in blood and bronchoalveolar lavage samples. Safety and immunogenicity were assessed for 24 weeks after vaccination. Immunogenicity to both insert Ag85A and vector modified vaccinia virus Ankara (MVA) was assessed by ex-vivo interferon-γ ELISpot and serum ELISAs. Since all participants were randomised and vaccinated according to protocol, our analyses were per protocol. This trial is registered with, number NCT01497769.
Both administration routes were well tolerated and immunogenic. Respiratory adverse events were rare and mild. Intradermal MVA85A was associated with expected mild local injection-site reactions. Systemic adverse events did not differ significantly between the two groups. Three participants in each group had no vaccine-related systemic adverse events; fatigue (11/24 [46%]) and headache (10/24 [42%]) were the most frequently reported symptoms. Ag85A-specific systemic responses were similar across groups. Ag85A-specific CD4 T cells were detected in bronchoalveolar lavage cells from both groups and responses were higher in the aerosol group than in the intradermal group. MVA-specific cellular responses were detected in both groups, whereas serum antibodies to MVA were only detectable after intradermal administration of the vaccine.
Further clinical trials assessing the aerosol route of vaccine delivery are merited for tuberculosis and other respiratory pathogens.
The Wellcome Trust and Oxford Radcliffe Hospitals Biomedical Research Centre.
PMCID: PMC4178237  PMID: 25151225
17.  A Novel Poxvirus-Based Vaccine, MVA-CHIKV, Is Highly Immunogenic and Protects Mice against Chikungunya Infection 
Journal of Virology  2014;88(6):3527-3547.
There is a need to develop a single and highly effective vaccine against the emerging chikungunya virus (CHIKV), which causes a severe disease in humans. Here, we have generated and characterized the immunogenicity profile and the efficacy of a novel CHIKV vaccine candidate based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). MVA-CHIKV was stable in cell culture, expressed the CHIKV structural proteins, and triggered the cytoplasmic accumulation of Golgi apparatus-derived membranes in infected human cells. Furthermore, MVA-CHIKV elicited robust innate immune responses in human macrophages and monocyte-derived dendritic cells, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. After immunization of C57BL/6 mice with a homologous protocol (MVA-CHIKV/MVA-CHIKV), strong, broad, polyfunctional, and durable CHIKV-specific CD8+ T cell responses were elicited. The CHIKV-specific CD8+ T cells were preferentially directed against E1 and E2 proteins and, to a lesser extent, against C protein. CHIKV-specific CD8+ memory T cells of a mainly effector memory phenotype were also induced. The humoral arm of the immune system was significantly induced, as MVA-CHIKV elicited high titers of neutralizing antibodies against CHIKV. Remarkably, a single dose of MVA-CHIKV protected all mice after a high-dose challenge with CHIKV. In summary, MVA-CHIKV is an effective vaccine against chikungunya virus infection that induced strong, broad, highly polyfunctional, and long-lasting CHIKV-specific CD8+ T cell responses, together with neutralizing antibodies against CHIKV. These results support the consideration of MVA-CHIKV as a potential vaccine candidate against CHIKV.
IMPORTANCE We have developed a novel vaccine candidate against chikungunya virus (CHIKV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). Our findings revealed that MVA-CHIKV is a highly effective vaccine against chikungunya virus, with a single dose of the vaccine protecting all mice after a high-dose challenge with CHIKV. Furthermore, MVA-CHIKV is highly immunogenic, inducing strong innate responses: high, broad, polyfunctional, and long-lasting CHIKV-specific CD8+ T cell responses, together with neutralizing antibodies against CHIKV. This work provides a potential vaccine candidate against CHIKV.
PMCID: PMC3957920  PMID: 24403588
18.  Broad and Potent Cellular and Humoral Immune Responses After a Second Late HIV-Modified Vaccinia Virus Ankara Vaccination in HIV-DNA-Primed and HIV-Modified Vaccinia Virus Ankara-Boosted Swedish Vaccinees 
We have previously shown that an HIV vaccine regimen including three HIV-DNA immunizations and a single HIV-modified vaccinia virus Ankara (MVA) boost was safe and highly immunogenic in Swedish volunteers. A median 38 months after the first HIV-MVA vaccination, 24 volunteers received 108 plaque-forming units of HIV-MVA. The vaccine was well tolerated. Two weeks after this HIV-MVA vaccination, 18 (82%) of 22 evaluable vaccinees were interferon (IFN)-γ enzyme-linked immunospot (ELISpot) reactive: 18 to Gag and 10 (45%) to Env. A median minimal epitope count of 4 to Gag or Env was found in a subset of 10 vaccinees. Intracellular cytokine staining revealed CD4+ and/or CD8+ T cell responses in 23 (95%) of 24 vaccinees, 19 to Gag and 19 to Env. The frequency of HIV-specific CD4+ and CD8+ T cell responses was equally high (75%). A high proportion of CD4+ and CD8+ T cell responses to Gag was polyfunctional with production of three or more cytokines (40% and 60%, respectively). Of the Env-specific CD4+ T cells 40% were polyfunctional. Strong lymphoproliferative responses to Aldrithiol-2 (AT-2)-treated subtype A, B, C, and A_E virus were demonstrable in 21 (95%) of 22 vaccinees. All vaccinees developed binding antibodies to Env and Gag. Neutralizing antibodies were detected in a peripheral blood mononuclear cell (PBMC)-based assay against subtype B and CRF01_AE viruses. The neutralizing antibody response rates were influenced by the vaccine dose and/or mode of delivery used at the previous HIV-MVA vaccination. Thus, a second late HIV-MVA boost induced strong and broad cellular immune responses and improved antibody responses. The data support further exploration of this vaccine concept.
PMCID: PMC3938943  PMID: 24090081
19.  Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis 
PLoS ONE  2011;6(5):e20067.
Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the world's most devastating diseases. The first vaccine the majority of infants born in Africa receive is Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a prevention against TB. BCG protects against disseminated disease in the first 10 years of life, but provides a variable protection against pulmonary TB and enhancing boost delivered by recombinant modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of M. tuberculosis is currently in phase IIb evaluation in African neonates. If the newborn's mother is positive for human immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring HIV-1 through breastfeeding. We suggested that a vaccination consisting of recombinant BCG expressing HIV-1 immunogen administered at birth followed by a boost with rMVA sharing the same immunogen could serve as a strategy for prevention of mother-to-child transmission of HIV-1 and rMVA expressing an African HIV-1-derived immunogen HIVA is currently in phase I trials in African neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1 and TB consisting of BCG.HIVA administered at birth followed by a boost with MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed, in which the transgene transcription is driven by either modified H5 or short synthetic promoters, respectively, and tested for immunogenicity alone and in combination with BCG.HIVA222. mMVA.HIVA.85A was produced markerless and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c mice. A BCG.HIVA222–mMVA.HIVA.85A prime-boost regimen induced robust T cell responses to both HIV-1 and M. tuberculosis. Therefore, proof-of-principle for a dual anti-HIV-1/M. tuberculosis infant vaccine platform is established. Induction of immune responses against these pathogens soon after birth is highly desirable and may provide a basis for lifetime protection maintained by boosts later in life.
PMCID: PMC3094449  PMID: 21603645
20.  Two Doses of Candidate TB Vaccine MVA85A in Antiretroviral Therapy (ART) Naïve Subjects Gives Comparable Immunogenicity to One Dose in ART+ Subjects 
PLoS ONE  2013;8(6):e67177.
Tuberculosis (TB) is a global public health problem exacerbated by the HIV epidemic. Here we evaluate a candidate TB vaccine, MVA85A, in a Phase I study in HIV-infected adults in Senegal. 24 patients were enrolled: Group 1∶12, antiretroviral therapy (ART) naïve, adults, with CD4 counts >300 and HIV RNA load <100 000 copies/ml. Group 2∶12 adults, stable on ART, with CD4 counts >300, and an undetectable HIV RNA load. Safety was evaluated by occurrence of local and systemic adverse events (AEs) and by monitoring of CD4 count, HIV RNA load, haematology and biochemistry. Immunogenicity was evaluated by ex-vivo interferon-gamma ELISpot assay. 87.7% of AEs were mild; 11.6% were moderate; and 0.7% were severe. 29.2% of AEs were systemic; 70.8% were expected local AEs. There were no vaccine-related Serious Adverse Events (SAEs) or clinically significant effects on HIV RNA load or CD4 count. In ART naive subjects, the first MVA85A immunisation induced a significant immune response at 1 and 4 weeks post-immunisation, which contracted to baseline by 12 weeks. Durability of immunogenicity in subjects on ART persisted out to 24 weeks post-vaccination. A second dose of MVA85A at 12 months enhanced immunogenicity in ART naïve subjects. Subjects on ART had higher responses after the first vaccination compared with ART naïve subjects; responses were comparable after 2 immunisations. In conclusion, MVA85A is well-tolerated and immunogenic in HIV-infected subjects in Senegal. A two dose regimen in ART naïve subjects is comparable in immunogenicity to a single dose in subjects on ART. trial identifier NCT00731471.
PMCID: PMC3696007  PMID: 23840618
21.  Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa1 
The Journal of infectious diseases  2008;198(4):544-552.
The efficacy of BCG may be enhanced by heterologous vaccination strategies that boost the BCG-primed immune response. One leading booster vaccine, MVA85A, has shown promising safety and immunogenicity in UK human trials. We investigated the safety and immunogenicity of MVA85A in mycobacteria-exposed, but Mycobacterium tuberculosis-uninfected, healthy adults from a TB-endemic region of South Africa.
Twenty-four adults were vaccinated with MVA85A. All subjects were followed up for one year for adverse events and for immunological assessment.
MVA85A vaccination was well tolerated and induced potent T cell responses, measured by IFN-γ ELISPOT assay, which exceeded pre-vaccination levels up to 364 days after vaccination. BCG-specific CD4+ T cells boosted by MVA85A comprised of multiple populations expressing combinations of IFN-γ, TNF-α, IL-2 and IL-17, as measured by polychromatic flow cytometry. IFN-γ expressing and polyfunctional IFN-γ+TNF-α+IL-2+ CD4+ T cells were boosted during the peak BCG-specific response 7 days post-vaccination.
The excellent safety profile and quantitative and qualitative immunogenicity data strongly support further trials to assess the efficacy of MVA85A as a boosting vaccine in TB endemic countries.
PMCID: PMC2822902  PMID: 18582195
Vaccination; tuberculosis; T cells; MVA85A; South Africa
22.  Immunogenic Profiling in Mice of a HIV/AIDS Vaccine Candidate (MVA-B) Expressing Four HIV-1 Antigens and Potentiation by Specific Gene Deletions 
PLoS ONE  2010;5(8):e12395.
The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function.
Methodology/Principal Findings
In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env.
These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.
PMCID: PMC2927552  PMID: 20811493
23.  A neonatal oral Mycobacterium tuberculosis-SIV prime / intramuscular MVA-SIV boost combination vaccine induces both SIV and Mtb-specific immune responses in infant macaques 
Trials in vaccinology  2013;2:53-63.
Mother-to-child-transmission of HIV by breast-feeding remains a major obstacle in the eradication of HIV infection. Compared to adults, HIV-infected infants have more rapid disease and show higher susceptibility to co-infections like tuberculosis (TB). Although the Bacille Calmette-Guérin vaccine can be administered at birth to protect against TB, BCG can disseminate in HIV-infected infants and increase mortality. Thus, a pediatric combination vaccine to stop both HIV and TB infection in infants is urgently needed.
Towards the goal of developing a pediatric combination HIV-TB vaccine to prevent both oral HIV acquisition by breast-feeding and TB infection, we tested and optimized an immunization regimen using a novel live attenuated Mycobacterium tuberculosis vaccine engineered to express simian immunodeficiency (SIV) antigens followed by heterologous MVA-SIV boosting in the infant macaque model. A single oral dose of the attenuated Mtb-SIV vaccine strain mc26435 during the first week of life was sufficient to induce persistent TB-specific immune responses. SIV-specific immunity was induced at low but comparable magnitudes after oral or intradermal priming, and was enhanced following MVA-SIV boosts. T cell responses were most pronounced in intestinal tissues and oral lymph nodes. Importantly, in addition to plasma SIV-specific IgG and IgA antibodies, infant macaques developed mucosal SIV-specific IgA in saliva and intestinal IgA and IgG. While future SIV and Mtb challenge studies will be needed to determine the protective efficacy of the Mtb-SIV / MVA-SIV vaccine, infants at high risk for oral HIV acquisition by breast-feeding and TB infection could profoundly benefit from an effective combination vaccine.
PMCID: PMC3894789  PMID: 24454591
24.  Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults 
The safety and immunogenicity of a new candidate tuberculosis (TB) vaccine, FP85A was evaluated alone and in heterologous prime-boost regimes with another candidate TB vaccine, MVA85A. This was an open label, non-controlled, non-randomized Phase I clinical trial. Healthy previously BCG-vaccinated adult subjects were enrolled sequentially into three groups and vaccinated with FP85A alone, or both FP85A and MVA85A, with a four week interval between vaccinations. Passive and active data on adverse events were collected. Immunogenicity was evaluated by Enzyme Linked Immunospot (ELISpot), flow cytometry and Enzyme Linked Immunosorbent assay (ELISA). Most adverse events were mild and there were no vaccine-related serious adverse events. FP85A vaccination did not enhance antigen 85A-specific cellular immunity. When MVA85A vaccination was preceded by FP85A vaccination, cellular immune responses were lower compared with when MVA85A vaccination was the first immunisation. MVA85A vaccination, but not FP85A vaccination, induced anti-MVA IgG antibodies. Both MVA85A and FP85A vaccinations induced anti-FP9 IgG antibodies. In conclusion, FP85A vaccination was well tolerated but did not induce antigen-specific cellular immune responses. We hypothesize that FP85A induced anti-FP9 IgG antibodies with cross-reactivity for MVA85A, which may have mediated inhibition of the immune response to subsequent MVA85A. identification number: NCT00653770
PMCID: PMC3667946  PMID: 23143773
phase I clinical trial; tuberculosis vaccines; heterologous prime-boost regimes; poxvirus-vectored subunit vaccines
25.  PedVacc 002: A phase I/II randomized clinical trial of MVA.HIVA vaccine administered to infants born to human immunodeficiency virus type 1-positive mothers in Nairobi 
Vaccine  2014;32(44):5801-5808.
•MVA.HIVA vaccine was tested for the first time in HIV-1-exposed infants in Africa.•PedVacc 002 had 99% retention of infants over 48 weeks of follow-up.•MVA.HIVA was safe, but not sufficiently immunogenic.•MVA.HVA did not interfere with routine childhood vaccines except for induction of HBV antibodies.•MVA is well suited as a vaccine vector for infants under 1 year of age.
A safe, effective vaccine for breastfeeding infants born to HIV-1-positive mothers could complement antiretroviral therapy (ART) for prevention of mother-to-child transmission of HIV-1. To date, only a few HIV-1 vaccine candidates have been tested in infants.
Trial design
A phase I/II randomized controlled trial PedVacc 002 was conducted to determine the safety and immunogenicity of a single, low dose of MVA.HIVA vaccine delivered intramuscularly to healthy 20-week-old infants born to HIV-1-positive mothers in Nairobi, Kenya.
Pregnant HIV-1-positive women in the 2nd/3rd trimester of gestation were enrolled, provided with ART and self-selected their infant-feeding modality. Infants received nevirapine and cotrimoxazole prophylaxis. At 20 weeks of age, eligible HIV-1-negative infants were randomized to vaccine versus no-treatment arms and followed to 48 weeks of age for assessments of vaccine safety, HIV-1-specific T-cell responses and antibodies to routine childhood vaccines.
Between February and November 2010, 182 mothers were screened, 104 were eligible and followed on ART during pregnancy/postpartum, of whom 73 had eligible infants at 20 weeks postpartum. Thirty-six infants were randomized to vaccine and 37 to no treatment. Eighty-four percent of infants breastfed, and retention at 48 weeks was 99%. Adverse events were rare and similar between the two arms. HIV-1-specific T-cell frequencies in interferon-γ ELISPOT assay were transiently higher in the MVA.HIVA arm (p = 0.002), but not above the threshold for a positive assay. Protective antibody levels were adequate and similar between arms for all routine childhood vaccines except HBV, where 71% of MVA.HIVA subjects compared to 92% of control subjects were protected (p = 0.05).
This trial tested for the first time an MVA-vectored candidate HIV-1 vaccine in HIV-1-exposed infants in Africa, demonstrating trial feasibility and vaccine safety, low immunogenicity, and compatibility with routine childhood vaccinations. These results are reassuring for use of the MVA vector in more potent prime-boost regimens.
PMCID: PMC4414927  PMID: 25173484
Modified vaccinia virus Ankara (MVA); Infant vaccine trial in Africa; Exposed-uninfected infants; HIV-1; Pediatric HIV-1 vaccines; KEPI vaccines; EPI vaccines; rMVA, recombinant modified vaccinia virus Ankara; HIV-1, human immunodeficiency virus type 1; HEU, HIV-1-exposed uninfected; ART, antiretroviral therapy; PMTCT, prevention of mother-to-child transmission of HIV-1; ZDV, zidovudine; TDF, tenofovir; 3TC, lamivudine; LPV/RTV, lopinavir/ritonavir; EFV, efavirenz; NVP, nevirapine; HBV, hepatitis B virus; OPV, oral polio vaccine; KEPI, Kenyan Expanded Program on Immunization; Dtx, diphtheria toxin; Ttx, tetanus toxin (Ttx); Hib, Hemophilus influenzae type b; KNH, Kenyatta National Hospital; IQR, interquartile range; WAZ, weight-for-age Z-score

Results 1-25 (1142007)