Search tips
Search criteria

Results 1-25 (1105437)

Clipboard (0)

Related Articles

1.  Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors 
PLoS ONE  2009;4(2):e4653.
The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up.
PMCID: PMC2644817  PMID: 19247474
2.  Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior 
Thorgeirsson, Thorgeir E. | Gudbjartsson, Daniel F. | Surakka, Ida | Vink, Jacqueline M. | Amin, Najaf | Geller, Frank | Sulem, Patrick | Rafnar, Thorunn | Esko, Tõnu | Walter, Stefan | Gieger, Christian | Rawal, Rajesh | Mangino, Massimo | Prokopenko, Inga | Mägi, Reedik | Keskitalo, Kaisu | Gudjonsdottir, Iris H. | Gretarsdottir, Solveig | Stefansson, Hreinn | Thompson, John R. | Aulchenko, Yurii S. | Nelis, Mari | Aben, Katja K. | den Heijer, Martin | Dirksen, Asger | Ashraf, Haseem | Soranzo, Nicole | Valdes, Ana M | Steves, Claire | Uitterlinden, André G | Hofman, Albert | Tönjes, Anke | Kovacs, Peter | Hottenga, Jouke Jan | Willemsen, Gonneke | Vogelzangs, Nicole | Döring, Angela | Dahmen, Norbert | Nitz, Barbara | Pergadia, Michele L. | Saez, Berta | De Diego, Veronica | Lezcano, Victoria | Garcia-Prats, Maria D. | Ripatti, Samuli | Perola, Markus | Kettunen, Johannes | Hartikainen, Anna-Liisa | Pouta, Anneli | Laitinen, Jaana | Isohanni, Matti | Huei-Yi, Shen | Allen, Maxine | Krestyaninova, Maria | Hall, Alistair S | Jones, Gregory T. | van Rij, Andre M. | Mueller, Thomas | Dieplinger, Benjamin | Haltmayer, Meinhard | Jonsson, Steinn | Matthiasson, Stefan E. | Oskarsson, Hogni | Tyrfingsson, Thorarinn | Kiemeney, Lambertus A. | Mayordomo, Jose I. | Lindholt, Jes S | Pedersen, Jesper Holst | Franklin, Wilbur A. | Wolf, Holly | Montgomery, Grant W. | Heath, Andrew C. | Martin, Nicholas G. | Madden, Pamela A.F. | Giegling, Ina | Rujescu, Dan | Järvelin, Marjo-Riitta | Salomaa, Veikko | Stumvoll, Michael | Spector, Tim D | Wichmann, H-Erich | Metspalu, Andres | Samani, Nilesh J. | Penninx, Brenda W. | Oostra, Ben A. | Boomsma, Dorret I. | Tiemeier, Henning | van Duijn, Cornelia M. | Kaprio, Jaakko | Gulcher, Jeffrey R. | McCarthy, Mark I. | Peltonen, Leena | Thorsteinsdottir, Unnur | Stefansson, Kari
Nature genetics  2010;42(5):448-453.
Smoking is a risk factor for most of the diseases leading in mortality1. We conducted genome-wide association (GWA) meta-analyses of smoking data within the ENGAGE consortium to search for common alleles associating with the number of cigarettes smoked per day (CPD) in smokers (N=31,266) and smoking initiation (N=46,481). We tested selected SNPs in a second stage (N=45,691 smokers), and assessed some in a third sample (N=9,040). Variants in three genomic regions associated with CPD (P< 5·10−8), including previously identified SNPs at 15q25 represented by rs1051730-A (0.80 CPD,P=2.4·10−69), and SNPs at 19q13 and 8p11, represented by rs4105144-C (0.39 CPD, P=2.2·10−12) and rs6474412-T (0.29 CPD,P= 1.4·10−8), respectively. Among the genes at the two novel loci, are genes encoding nicotine-metabolizing enzymes (CYP2A6 and CYP2B6), and nicotinic acetylcholine receptor subunits (CHRNB3 and CHRNA6) highlighted in previous studies of nicotine dependence2-3. Nominal associations with lung cancer were observed at both 8p11 (rs6474412-T,OR=1.09,P=0.04) and 19q13 (rs4105144-C,OR=1.12,P=0.0006).
PMCID: PMC3080600  PMID: 20418888
3.  Genetic susceptibility to lung cancer and co-morbidities 
Journal of Thoracic Disease  2013;5(Suppl 5):S454-S462.
Lung cancer is a leading cause of cancer death and disease burden in many countries. Understanding of the biological pathways involved in lung cancer aetiology is required to identify key biomolecules that could be of significant clinical value, either as predictive, prognostic or diagnostic markers, or as targets for the development of novel therapies to treat this disease, in addition to smoking avoidance strategies. Genome-wide association studies (GWAS) have enabled significant progress in the past 5 years in investigating genetic susceptibility to lung cancer. Large scale, multi-cohort GWAS of mainly Caucasian, smoking, populations have identified strong associations for lung cancer mapped to chromosomal regions 15q [nicotinic acetylcholine receptor (nAChR) subunits: CHRNA3, CHRNA5], 5p (TERT-CLPTM1L locus) and 6p (BAT3-MSH5). Some studies in Asian populations of smokers have found similar risk loci, whereas GWAS in never smoking Asian females have identified associations in other chromosomal regions, e.g., 3q (TP63), that are distinct from smoking-related lung cancer risk loci. GWAS of smoking behaviour have identified risk loci for smoking quantity at 15q (similar genes to lung cancer susceptibility: CHRNA3, CHRNA5) and 19q (CYP2A6). Other genes have been mapped for smoking initiation and smoking cessation. In chronic obstructive pulmonary disease (COPD), which is a known risk factor for lung cancer, GWAS in large cohorts have also found CHRNA3 and CHRNA5 single nucleotide polymorphisms (SNPs) mapping at 15q as risk loci, as well as other regions at 4q31 (HHIP), 4q24 (FAM13A) and 5q (HTR4). The overlap in risk loci between lung cancer, smoking behaviour and COPD may be due to the effects of nicotine addiction; however, more work needs to be undertaken to explore the potential direct effects of nicotine and its metabolites in gene-environment interaction in these phenotypes. Goals of future genetic susceptibility studies of lung cancer should focus on refining the strongest risk loci in a wide range of populations with lung cancer, and integrating other clinical and biomarker information, in order to achieve the aim of personalised therapy for lung cancer.
PMCID: PMC3804872  PMID: 24163739
Lung cancer; genetics; pulmonary disease; chronic obstructive; genome-wide association study (GWAS)
4.  Genome-wide meta-analyses identify multiple loci associated with smoking behavior 
Nature genetics  2010;42(5):441-447.
Consistent but indirect evidence has implicated genetic factors in smoking behavior1,2. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n > 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], β = 1.03, standard error (s.e.) = 0.053, P = 2.8 × 10−73). Two 10q25 SNPs (rs1329650[G], β = 0.367, s.e. = 0.059, P = 5.7 × 10−10; and rs1028936[A], β = 0.446, s.e. = 0.074, P = 1.3 × 10−9) and one 9q13 SNP in EGLN2 (rs3733829[G], β = 0.333, s.e. = 0.058, P = 1.0 × 10−8) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04–1.08, P = 1.8 × 10−8). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08–1.18, P = 3.6 × 10−8) was significantly associated with smoking cessation.
PMCID: PMC2914600  PMID: 20418890
5.  A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci 
PLoS Genetics  2009;5(3):e1000421.
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.
Author Summary
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD), which is a heritable multi-factorial trait. Identifying the genetic determinants of COPD risk will have tremendous public health importance. This study describes the first genome-wide association study (GWAS) in COPD. We conducted a GWAS in a homogenous case-control cohort from Norway and evaluated the top 100 single nucleotide polymorphisms in the family-based International COPD Genetics Network. The polymorphisms that showed replication were further evaluated in subjects from the US National Emphysema Treatment Trial and controls from the Normative Aging Study and then in a fourth cohort of extended pedigrees from the Boston Early-Onset COPD population. Two polymorphisms in the α-nicotinic acetylcholine receptor 3/5 locus on chromosome 15 showed unambiguous evidence of association with COPD. This locus has previously been implicated in both smoking behavior and risk of lung cancer, suggesting the possibility of multiple functional polymorphisms in the region or a single polymorphism with wide phenotypic consequences. The hedgehog interacting protein (HHIP) locus on chromosome 4, which is associated with COPD, is also a significant risk locus for COPD.
PMCID: PMC2650282  PMID: 19300482
6.  Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15 
Human Molecular Genetics  2009;18(20):4007-4012.
A cluster of three nicotinic acetylcholine receptor genes on chromosome 15 (CHRNA5/CHRNA3/CHRNB4) has been shown to be associated with nicotine dependence and smoking quantity. The aim of this study was to clarify whether the variation at this locus regulates nicotine intake among smokers by using the level of a metabolite of nicotine, cotinine, as an outcome. The number of cigarettes smoked per day (CPD) and immune-reactive serum cotinine level were determined in 516 daily smokers (age 30–75 years, 303 males) from the population-based Health2000 study. Association of 21 SNPs from a 100 kb region of chromosome 15 with cotinine and CPD was examined. SNP rs1051730 showed the strongest association to both measures. However, this SNP accounted for nearly a five-fold larger proportion of variance in cotinine levels than in CPD (R2 4.3% versus 0.9%). The effect size of the SNP was 0.30 for cotinine level, whereas it was 0.13 for CPD. Variation at CHRNA5/CHRNA3/CHRNB4 cluster influences nicotine level, measured as cotinine, more strongly than smoking quantity, measured by CPD, and appears thus to be involved in regulation of nicotine levels among smokers.
PMCID: PMC2748889  PMID: 19628476
7.  Association between Genetic Variants on Chromosome 15q25 Locus and Several Nicotine Dependence Traits in Polish Population: A Case-Control Study 
BioMed Research International  2015;2015:350348.
Tobacco smoking continues to be a leading cause of disease and mortality. Recent research has confirmed the important role of nicotinic acetylcholine receptor (nAChR) gene cluster on chromosome 15q 24-25 in nicotine dependence and smoking. In this study we tested the association of smoking initiation, age at onset of daily smoking, and heaviness of smoking with five single nucleotide polymorphisms (SNPs) within the CHRNA5-CHRNA3-CHRNB4 cluster. The group of 389 adult subjects of European ancestry from the north of Poland, including 212 ever (140 current and 72 former) and 177 never smokers with mean age 49.26, was genotyped for rs16969868, rs1051730, rs588765, rs6495308, and rs578776 polymorphisms. Distributions of genotypes for rs16969868 and rs1051730 were identical so they were analyzed together. Further analysis revealed the association between rs16969868-1051730 (OR = 2.66; 95% CI: 1.30–5.42) and number of cigarettes smoked per day (CPD) with heaviness of nicotine addiction measured by the Fagerström Test for Nicotine Dependence (FTND) (OR = 2.60; 95% CI: 1.24–5.43). No association between these polymorphisms and other phenotypes was found. Similarly, the association between rs588765, rs6495308, rs578776, and analyzed phenotypes was not confirmed. This study provides strong evidence for the role of the CHRNA5-CHRNA3-CHRNB4 cluster in heaviness of nicotine addiction.
PMCID: PMC4303006  PMID: 25632390
8.  Association of the Nicotine Metabolite Ratio and CHRNA5/CHRNA3 Polymorphisms With Smoking Rate Among Treatment-Seeking Smokers 
Nicotine & Tobacco Research  2011;13(6):498-503.
Genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in the CHRNA5/A3/B4 gene cluster with heaviness of smoking. The nicotine metabolite ratio (NMR), a measure of the rate of nicotine metabolism, is associated with the number of cigarettes per day (CPD) and likelihood of cessation. We tested the potential interacting effects of these two risk factors on CPD.
Pretreatment data from three prior clinical trials were pooled for analysis. One thousand and thirty treatment seekers of European ancestry with genotype data for the CHRNA5/A3/B4 SNPs rs578776 and rs1051730 and complete data for NMR and CPD at pretreatment were included. Data for the third SNP, rs16969968, were available for 677 individuals. Linear regression models estimated the main and interacting effects of genotype and NMR on CPD.
We confirmed independent associations between the NMR and CPD as well as between the SNPs rs16969968 and rs1051730 and CPD. We did not detect a significant interaction between NMR and any of the SNPs examined.
This study demonstrates the additive and independent association of the NMR and SNPs in the CHRNA5/A3/B4 gene cluster with smoking rate in treatment-seeking smokers.
PMCID: PMC3103715  PMID: 21385908
9.  Alpha-5 and -3 nicotinic receptor gene variants predict nicotine dependence but not cessation: Findings from the COMMIT cohort 
American Journal of Medical Genetics  2012;159B(2):227-235.
Smoking many cigarettes per day (CPD) and short interval to first cigarette (TTF) after waking are two of the most heritable smoking phenotypes and comprise the Heavy Smoking Index (HSI). These phenotypes are often used as proxies for nicotine dependence (ND) and are associated with smoking cessation outcomes. Case-control and genome-wide association studies have reported links between single nucleotide polymorphisms (SNPs) in the alpha-5 and -3 nicotinic receptor subunit (CHRNA5 and CHRNA3) genes and CPD but few have examined TTF or cessation outcomes. In this study we longitudinally assessed 1301 European-American smokers at four time-points from 1988 to 2005. One CHRNA5 (rs16969968) and two CHRNA3 (rs1051703, rs6495308) SNPs were examined for their ability to predict smokers who ‘ever’ reported ND based on three phenotypic classifications: 1) 25+ CPD, 2) TTF < 10 minutes, and 3) HSI ≥ 4. In a subsample of 1157 quit attempters, we also examined each SNP’s ability to predict ‘ever’ quitting for a period of >6 months. Demographically adjusted logistic regressions showed significant allelic and genotypic associations between all three SNPs and CPD but not TTF, HSI, or smoking cessation. Carriers of both the rs16969968-AA and rs6495308-TT genotypes had approximately two-fold greater odds for ND defined using CPD or TTF. Results suggest nicotinic receptor variants are associated with greater odds of ND according to CPD and to a lesser extent TTF. Research examining the effect of nicotinic receptor genetic variation on ND phenotypes beyond CPD is warranted.
PMCID: PMC3262775  PMID: 22223462
Cholinergic; Nicotinic; Allele; Dependence; Cessation
10.  Multiple Independent Loci at Chromosome 15q25.1 Affect Smoking Quantity: a Meta-Analysis and Comparison with Lung Cancer and COPD 
PLoS Genetics  2010;6(8):e1001053.
Recently, genetic association findings for nicotine dependence, smoking behavior, and smoking-related diseases converged to implicate the chromosome 15q25.1 region, which includes the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit genes. In particular, association with the nonsynonymous CHRNA5 SNP rs16969968 and correlates has been replicated in several independent studies. Extensive genotyping of this region has suggested additional statistically distinct signals for nicotine dependence, tagged by rs578776 and rs588765. One goal of the Consortium for the Genetic Analysis of Smoking Phenotypes (CGASP) is to elucidate the associations among these markers and dichotomous smoking quantity (heavy versus light smoking), lung cancer, and chronic obstructive pulmonary disease (COPD). We performed a meta-analysis across 34 datasets of European-ancestry subjects, including 38,617 smokers who were assessed for cigarettes-per-day, 7,700 lung cancer cases and 5,914 lung-cancer-free controls (all smokers), and 2,614 COPD cases and 3,568 COPD-free controls (all smokers). We demonstrate statistically independent associations of rs16969968 and rs588765 with smoking (mutually adjusted p-values<10−35 and <10−8 respectively). Because the risk alleles at these loci are negatively correlated, their association with smoking is stronger in the joint model than when each SNP is analyzed alone. Rs578776 also demonstrates association with smoking after adjustment for rs16969968 (p<10−6). In models adjusting for cigarettes-per-day, we confirm the association between rs16969968 and lung cancer (p<10−20) and observe a nominally significant association with COPD (p = 0.01); the other loci are not significantly associated with either lung cancer or COPD after adjusting for rs16969968. This study provides strong evidence that multiple statistically distinct loci in this region affect smoking behavior. This study is also the first report of association between rs588765 (and correlates) and smoking that achieves genome-wide significance; these SNPs have previously been associated with mRNA levels of CHRNA5 in brain and lung tissue.
Author Summary
Nicotine binds to cholinergic nicotinic receptors, which are composed of a variety of subunits. Genetic studies for smoking behavior and smoking-related diseases have implicated a genomic region that encodes the alpha5, alpha3, and beta4 subunits. We examined genetic data across this region for over 38,000 smokers, a subset of which had been assessed for lung cancer or chronic obstructive pulmonary disease. We demonstrate strong evidence that there are at least two statistically independent loci in this region that affect risk for heavy smoking. One of these loci represents a change in the protein structure of the alpha5 subunit. This work is also the first to report strong evidence of association between smoking and a group of genetic variants that are of biological interest because of their links to expression of the alpha5 cholinergic nicotinic receptor subunit gene. These advances in understanding the genetic influences on smoking behavior are important because of the profound public health burdens caused by smoking and nicotine addiction.
PMCID: PMC2916847  PMID: 20700436
11.  Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency 
Respiratory Research  2012;13(1):16.
The development of COPD in subjects with alpha-1 antitrypsin (AAT) deficiency is likely to be influenced by modifier genes. Genome-wide association studies and integrative genomics approaches in COPD have demonstrated significant associations with SNPs in the chromosome 15q region that includes CHRNA3 (cholinergic nicotine receptor alpha3) and IREB2 (iron regulatory binding protein 2).
We investigated whether SNPs in the chromosome 15q region would be modifiers for lung function and COPD in AAT deficiency.
The current analysis included 378 PIZZ subjects in the AAT Genetic Modifiers Study and a replication cohort of 458 subjects from the UK AAT Deficiency National Registry. Nine SNPs in LOC123688, CHRNA3 and IREB2 were selected for genotyping. FEV1 percent of predicted and FEV1/FVC ratio were analyzed as quantitative phenotypes. Family-based association analysis was performed in the AAT Genetic Modifiers Study. In the replication set, general linear models were used for quantitative phenotypes and logistic regression models were used for the presence/absence of emphysema or COPD.
Three SNPs (rs2568494 in IREB2, rs8034191 in LOC123688, and rs1051730 in CHRNA3) were associated with pre-bronchodilator FEV1 percent of predicted in the AAT Genetic Modifiers Study. Two SNPs (rs2568494 and rs1051730) were associated with the post-bronchodilator FEV1 percent of predicted and pre-bronchodilator FEV1/FVC ratio; SNP-by-gender interactions were observed. In the UK National Registry dataset, rs2568494 was significantly associated with emphysema in the male subgroup; significant SNP-by-smoking interactions were observed.
IREB2 and CHRNA3 are potential genetic modifiers of COPD phenotypes in individuals with severe AAT deficiency and may be sex-specific in their impact.
PMCID: PMC3306733  PMID: 22356581
CHRNA3; Chronic obstructive pulmonary disease; Genetic association analysis; Genetic modifiers; IREB2
12.  Epidemiology, radiology, and genetics of nicotine dependence in COPD 
Respiratory Research  2011;12(1):9.
Cigarette smoking is the principal environmental risk factor for developing COPD, and nicotine dependence strongly influences smoking behavior. This study was performed to elucidate the relationship between nicotine dependence, genetic susceptibility to nicotine dependence, and volumetric CT findings in smokers.
Current smokers with COPD (GOLD stage ≥ 2) or normal spirometry were analyzed from the COPDGene Study, a prospective observational study. Nicotine dependence was determined by the Fagerstrom test for nicotine dependence (FTND). Volumetric CT acquisitions measuring the percent of emphysema on inspiratory CT (% of lung <-950 HU) and gas trapping on expiratory CT (% of lung <-856 HU) were obtained. Genotypes for two SNPs in the CHRNA3/5 region (rs8034191, rs1051730) previously associated with nicotine dependence and COPD were analyzed for association to COPD and nicotine dependence phenotypes.
Among 842 currently smoking subjects (335 COPD cases and 507 controls), 329 subjects (39.1%) showed high nicotine dependence. Subjects with high nicotine dependence had greater cumulative and current amounts of smoking. However, emphysema severity was negatively correlated with the FTND score in controls (ρ = -0.19, p < .0001) as well as in COPD cases (ρ = -0.18, p = 0.0008). Lower FTND score, male gender, lower body mass index, and lower FEV1 were independent risk factors for emphysema severity in COPD cases. Both CHRNA3/5 SNPs were associated with FTND in current smokers. An association of genetic variants in CHRNA3/5 with severity of emphysema was only found in former smokers, but not in current smokers.
Nicotine dependence was a negative predictor for emphysema on CT in COPD and control smokers. Increased inflammation in more highly addicted current smokers could influence the CT lung density distribution, which may influence genetic association studies of emphysema phenotypes.
Trial registration
ClinicalTrials (NCT): NCT00608764
PMCID: PMC3033825  PMID: 21232152
Cancer  2010;116(14):3458-3462.
Recent genome-wide association (GWA) studies of lung cancer have shown that the CHRNA5-A3 region on chromosome 15q24-25.1 is strongly associated with an increased risk of lung cancer and nicotine dependence, and thought to be associated with chronic obstructive airways disease as well. However, it has not been established whether the association between genetic variants and lung cancer risk is a direct one or one mediated by nicotine dependence.
In this paper we applied a rigorous statistical approach, mediation analysis, to examine the mediating effect of smoking behavior and self-reported physician-diagnosed emphysema (chronic obstructive pulmonary disease [COPD]) on the relationship between the CHRNA5-A3 region genetic variant rs1051730 and the risk of lung cancer.
Our results showed that rs1051730 is directly associated with lung cancer risk, but that it is also associated with lung cancer risk through its effect on both smoking behavior and COPD. Furthermore, we showed that COPD is a mediating phenotype that explains part of the effect of smoking behavior on lung cancer. Our results also suggested that smoking behavior is a mediator of the relationship between rs1051730 and COPD risk.
Smoking behavior and COPD are mediators of the association between the SNP rs1051730 and the risk of lung cancer. Also, COPD is a mediator of the association between smoking behavior and lung cancer. Finally, smoking behavior also has mediating effects on the association between the SNP and COPD.
PMCID: PMC3073819  PMID: 20564069
Lung Cancer; COPD; Mediation analysis; smoking behavior; genetic variants
14.  Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at:
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website:
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website:
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of smoking cessation interventions in the management of chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Tobacco smoking is the main risk factor for COPD. It is estimated that 50% of older smokers develop COPD and more than 80% of COPD-associated morbidity is attributed to tobacco smoking. According to the Canadian Community Health Survey, 38.5% of Ontarians who smoke have COPD. In patients with a significant history of smoking, COPD is usually present with symptoms of progressive dyspnea (shortness of breath), cough, and sputum production. Patients with COPD who smoke have a particularly high level of nicotine dependence, and about 30.4% to 43% of patients with moderate to severe COPD continue to smoke. Despite the severe symptoms that COPD patients suffer, the majority of patients with COPD are unable to quit smoking on their own; each year only about 1% of smokers succeed in quitting on their own initiative.
Smoking cessation is the process of discontinuing the practice of inhaling a smoked substance. Smoking cessation can help to slow or halt the progression of COPD. Smoking cessation programs mainly target tobacco smoking, but may also encompass other substances that can be difficult to stop smoking due to the development of strong physical addictions or psychological dependencies resulting from their habitual use.
Smoking cessation strategies include both pharmacological and nonpharmacological (behavioural or psychosocial) approaches. The basic components of smoking cessation interventions include simple advice, written self-help materials, individual and group behavioural support, telephone quit lines, nicotine replacement therapy (NRT), and antidepressants. As nicotine addiction is a chronic, relapsing condition that usually requires several attempts to overcome, cessation support is often tailored to individual needs, while recognizing that in general, the more intensive the support, the greater the chance of success. Success at quitting smoking decreases in relation to:
a lack of motivation to quit,
a history of smoking more than a pack of cigarettes a day for more than 10 years,
a lack of social support, such as from family and friends, and
the presence of mental health disorders (such as depression).
Research Question
What are the effectiveness and cost-effectiveness of smoking cessation interventions compared with usual care for patients with COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on June 24, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations (1950 to June Week 3 2010), EMBASE (1980 to 2010 Week 24), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Library, and the Centre for Reviews and Dissemination for studies published between 1950 and June 2010. A single reviewer reviewed the abstracts and obtained full-text articles for those studies meeting the eligibility criteria. Reference lists were also examined for any additional relevant studies not identified through the search. Data were extracted using a standardized data abstraction form.
Inclusion Criteria
English-language, full reports from 1950 to week 3 of June, 2010;
either randomized controlled trials (RCTs), systematic reviews and meta-analyses, or non-RCTs with controls;
a proven diagnosis of COPD;
adult patients (≥ 18 years);
a smoking cessation intervention that comprised at least one of the treatment arms;
≥ 6 months’ abstinence as an outcome; and
patients followed for ≥ 6 months.
Exclusion Criteria
case reports
case series
Outcomes of Interest
≥ 6 months’ abstinence
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Nine RCTs were identified from the literature search. The sample sizes ranged from 74 to 5,887 participants. A total of 8,291 participants were included in the nine studies. The mean age of the patients in the studies ranged from 54 to 64 years. The majority of studies used the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD staging criteria to stage the disease in study subjects. Studies included patients with mild COPD (2 studies), mild-moderate COPD (3 studies), moderate–severe COPD (1 study) and severe–very severe COPD (1 study). One study included persons at risk of COPD in addition to those with mild, moderate, or severe COPD, and 1 study did not define the stages of COPD. The individual quality of the studies was high. Smoking cessation interventions varied across studies and included counselling or pharmacotherapy or a combination of both. Two studies were delivered in a hospital setting, whereas the remaining 7 studies were delivered in an outpatient setting. All studies reported a usual care group or a placebo-controlled group (for the drug-only trials). The follow-up periods ranged from 6 months to 5 years. Due to excessive clinical heterogeneity in the interventions, studies were first grouped into categories of similar interventions; statistical pooling was subsequently performed, where appropriate. When possible, pooled estimates using relative risks for abstinence rates with 95% confidence intervals were calculated. The remaining studies were reported separately.
Abstinence Rates
Table ES1 provides a summary of the pooled estimates for abstinence, at longest follow-up, from the trials included in this review. It also shows the respective GRADE qualities of evidence.
Summary of Results*
Abbreviations: CI, confidence interval; NRT, nicotine replacement therapy.
Statistically significant (P < 0.05).
One trial used in this comparison had 2 treatment arms each examining a different antidepressant.
Based on a moderate quality of evidence, compared with usual care, abstinence rates are significantly higher in COPD patients receiving intensive counselling or a combination of intensive counselling and NRT.
Based on limited and moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving NRT compared with placebo.
Based on a moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving the antidepressant bupropion compared to placebo.
PMCID: PMC3384371  PMID: 23074432
15.  Associations of Nicotine Intake Measures With CHRN Genes in Finnish Smokers 
Nicotine & Tobacco Research  2011;13(8):686-690.
Genetic effects contribute to individual differences in smoking behavior. Persistence to smoke despite known harmful health effects is mostly driven by nicotine addiction. As the physiological effects of nicotine are mediated by nicotinic acetylcholine receptors (nAChRs), we aimed at examining whether single nucleotide polymorphisms (SNPs) residing in nAChR subunit (CHRN) genes, other than CHRNA3/CHRNA5/CHRNB4 gene cluster previously showing association in our sample, are associated with smoking quantity or serum cotinine levels.
The study sample consisted of 485 Finnish adult daily smokers (age 30–75 years, 59% men) assessed for the number of cigarettes smoked per day (CPD) and serum cotinine level. We first studied SNPs residing on selected nAChR subunit genes (CHRNA2, CHRNA4, CHRNA6/CHRNB3, CHRNA7, CHRNA9, CHRNA10, CHRNB2, CHRNG/CHRND) genotyped within a genome-wide association study for single SNP and multiple SNP associations by ordinal regression. Next, we explored individual haplotype associations using sliding window technique.
At one of the 8 loci studied, CHRNG/CHRND (chr2), single SNP (rs1190452), multiple SNP, and 2-SNP haplotype analyses (SNPs rs4973539–rs1190452) all showed statistically significant association with cotinine level. The median cotinine levels varied between the 2-SNP haplotypes from 220 ng/ml (AA haplotype) to 249 ng/ml (AG haplotype). We did not observe significant associations with CPD.
These results provide further evidence that the γ−δ nAChR subunit gene region is associated with cotinine levels but not with the number of CPD, illustrating the usefulness of biomarkers in genetic analyses.
PMCID: PMC3150688  PMID: 21498873
16.  Association of CHRNA4 polymorphisms with smoking behavior in two populations 
CHRNA4, the gene that encodes the nicotinic acetylcholine receptor α4 subunit, is a potential candidate gene for nicotine dependence (ND). However, studies of the association of CHNRA4 with smoking behavior have shown inconsistent results. Our meta-analysis of linkage studies of smoking behavior identified a genome-wide significant linkage of the phenotype maximum number of cigarettes smoked in a 24-hour period to a region (20q13.12-q13.32) harboring CHRNA4. This motivated us to examine the association of CHRNA4 with smoking behavior in two independent samples. In this study, we examined five single nucleotide polymorphisms (SNPs) within CHRNA4 and three smoking-related behaviors: one quantitative trait [cigarettes smoked per day (CPD)], and two binary traits [DSM-IV diagnosis of ND and dichotomized Fagerstrom test of ND (FTND)], in 1,249 unrelated European-Americans (EAs) and 1,790 unrelated African-Americans (AAs). Using the combined sample with sex, age and race as covariates, the synonymous SNP rs1044394 was significantly associated with ND (P = 0.001) and FTND (P = 0.01). Rs2236196, which has a low correlation with rs1044394, was also significantly associated with CPD (P = 0.003). The pattern of association for these SNPs was similar in AAs and EAs. After correction for multiple testing, the association between rs1044394 and ND in the combined sample remained significant (P = 0.033). In summary, our study supports association between CHRNA4 common variation and ND in AA and EA samples. Additional studies will be necessary to evaluate the role of rare variants at CHRNA4 for ND.
PMCID: PMC3742073  PMID: 21445957
smoking behavior; nicotine dependence; FTND; SNP; association
17.  Impact of Smoking and Smoking Cessation on Oncologic Outcomes in Primary Non–muscle-invasive Bladder Cancer 
European urology  2012;63(4):724-732.
Cigarette smoking is the best-established risk factor for urothelial carcinoma (UC) development, but the impact on oncologic outcomes remains poorly understood.
To analyse the effects of smoking status, cumulative exposure, and time from smoking cessation on the prognosis of patients with primary non–muscle-invasive bladder cancer (NMIBC).
Design, setting, and participants
We collected smoking data from 2043 patients with primary NMIBC. Smoking variables included smoking status, average number of cigarettes smoked per day (CPD), duration in years, and time since smoking cessation. Lifetime cumulative smoking exposure was categorised as light short term (≤19 CPD, ≤19.9 yr), light long term (≤19 CPD, ≥20 yr), heavy short term (≥20 CPD, ≤19.9 yr) and heavy long term (≥20 CPD, ≥20 yr). The median follow-up in this retrospective study was 49 mo.
Transurethral resection of the bladder with or without intravesical instillation therapy.
Outcome measurements and statistical analysis
Univariable and multivariable logistic regression and competing risk regression analyses assessed the effects of smoking on outcomes.
Results and limitations
There was no difference in clinicopathologic factors among never (24%), former (47%), and current smokers (29%). Smoking status was associated with the cumulative incidence of disease progression in multivariable analysis (p = 0.003); current smokers had the highest cumulative incidences. Among current and former smokers, cumulative smoking exposure was associated with disease recurrence (p < 0.001), progression (p < 0.001), and overall survival (p < 0.001) in multivariable analyses that adjusted for the effects of standard clinicopathologic factors and smoking status; heavy long-term smokers had the worst outcomes, followed by light long-term, heavy short-term, and light short-term smokers. Smoking cessation >10 yr reduced the risk of disease recurrence (hazard ratio [HR]: 0.66; 95% confidence interval [CI], 0.52–0.84; p < 0.001) and progression (HR: 0.42; 95% CI, 0.22–0.83; p = 0.036) in multivariable analyses. The study is limited by its retrospective nature.
Smoking status and a higher cumulative smoking exposure are associated with worse prognosis in patients with NMIBC. Smoking cessation >10 yr abrogates this detrimental effect. These findings underscore the need for integrated smoking cessation and prevention programmes in the management of NMIBC patients.
PMCID: PMC3969986  PMID: 22925575
Smoking; Urothelial carcinoma; Non–muscle-invasive bladder cancer; Recurrence; Progression; Survival; Dose–response relationship
18.  Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility 
Human genetics  2013;132(4):431-441.
Cigarette smoking is the major environmental risk factor for chronic obstructive pulmonary disease (COPD). Genome-wide association studies have provided compelling associations for three loci with COPD. In this study, we aimed to estimate direct, i.e., independent from smoking, and indirect effects of those loci on COPD development using mediation analysis. We included a total of 3,424 COPD cases and 1,872 unaffected controls with data on two smoking-related phenotypes: lifetime average smoking intensity and cumulative exposure to tobacco smoke (pack years). Our analysis revealed that effects of two linked variants (rs1051730 and rs8034191) in the AGPHD1/CHRNA3 cluster on COPD development are significantly, yet not entirely, mediated by the smoking-related phenotypes. Approximately 30 % of the total effect of variants in the AGPHD1/CHRNA3 cluster on COPD development was mediated by pack years. Simultaneous analysis of modestly (r2 = 0.21) linked markers in CHRNA3 and IREB2 revealed that an even larger (~42 %) proportion of the total effect of the CHRNA3 locus on COPD was mediated by pack years after adjustment for an IREB2 single nucleotide polymorphism. This study confirms the existence of direct effects of the AGPHD1/CHRNA3, IREB2, FAM13A and HHIP loci on COPD development. While the association of the AGPHD1/CHRNA3 locus with COPD is significantly mediated by smoking-related phenotypes, IREB2 appears to affect COPD independently of smoking.
PMCID: PMC3600068  PMID: 23299987
19.  A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13 
Human Molecular Genetics  2011;21(4):947-957.
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
PMCID: PMC3298111  PMID: 22080838
20.  Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index 
Background Cigarette smoking is associated with lower body mass index (BMI), and a commonly cited reason for unwillingness to quit smoking is a concern about weight gain. Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region (chromosome 15q25) is robustly associated with smoking quantity in smokers, but its association with BMI is unknown. We hypothesized that genotype would accurately reflect smoking exposure and that, if smoking were causally related to weight, it would be associated with BMI in smokers, but not in never smokers.
Methods We stratified nine European study samples by smoking status and, in each stratum, analysed the association between genotype of the 15q25 SNP, rs1051730, and BMI. We meta-analysed the results (n = 24 198) and then tested for a genotype × smoking status interaction.
Results There was no evidence of association between BMI and genotype in the never smokers {difference per T-allele: 0.05 kg/m2 [95% confidence interval (95% CI): −0.05 to 0.18]; P = 0.25}. However, in ever smokers, each additional smoking-related T-allele was associated with a 0.23 kg/m2 (95% CI: 0.13–0.31) lower BMI (P = 8 × 10−6). The effect size was larger in current [0.33 kg/m2 lower BMI per T-allele (95% CI: 0.18–0.48); P = 6 × 10−5], than in former smokers [0.16 kg/m2 (95% CI: 0.03–0.29); P = 0.01]. There was strong evidence of genotype × smoking interaction (P = 0.0001).
Conclusions Smoking status modifies the association between the 15q25 variant and BMI, which strengthens evidence that smoking exposure is causally associated with reduced BMI. Smoking cessation initiatives might be more successful if they include support to maintain a healthy BMI.
PMCID: PMC3235017  PMID: 21593077
Smoking; BMI; SNP; genetic association; interaction
21.  Role of Nicotine Dependence on the Relationship between Variants in the Nicotinic Receptor Genes and Risk of Lung Adenocarcinoma 
PLoS ONE  2014;9(9):e107268.
Several variations in the nicotinic receptor genes have been identified to be associated with both lung cancer risk and smoking in the genome-wide association (GWA) studies. However, the relationships among these three factors (genetic variants, nicotine dependence, and lung cancer) remain unclear. In an attempt to elucidate these relationships, we applied mediation analysis to quantify the impact of nicotine dependence on the association between the nicotinic receptor genetic variants and lung adenocarcinoma risk. We evaluated 23 single nucleotide polymorphisms (SNPs) in the five nicotinic receptor related genes (CHRNB3, CHRNA6, and CHRNA5/A3/B4) previously reported to be associated with lung cancer risk and smoking behavior and 14 SNPs in the four ‘control’ genes (TERT, CLPTM1L, CYP1A1, and TP53), which were not reported in the smoking GWA studies. A total of 661 lung adenocarcinoma cases and 1,347 controls with a smoking history, obtained from the Environment and Genetics in Lung Cancer Etiology case-control study, were included in the study. Results show that nicotine dependence is a mediator of the association between lung adenocarcinoma and gene variations in the regions of CHRNA5/A3/B4 and accounts for approximately 15% of this relationship. The top two CHRNA3 SNPs associated with the risk for lung adenocarcinoma were rs1051730 and rs12914385 (p-value = 1.9×10−10 and 1.1×10−10, respectively). Also, these two SNPs had significant indirect effects on lung adenocarcinoma risk through nicotine dependence (p = 0.003 and 0.007). Gene variations rs2736100 and rs2853676 in TERT and rs401681 and rs31489 in CLPTM1L had significant direct associations on lung adenocarcinoma without indirect effects through nicotine dependence. Our findings suggest that nicotine dependence plays an important role between genetic variants in the CHRNA5/A3/B4 region, especially CHRNA3, and lung adenocarcinoma. This may provide valuable information for understanding the pathogenesis of lung adenocarcinoma and for conducting personalized smoking cessation interventions.
PMCID: PMC4169410  PMID: 25233467
22.  Genome-wide meta-analyses of smoking behaviors in African Americans 
Translational Psychiatry  2012;2(5):e119-.
The identification and exploration of genetic loci that influence smoking behaviors have been conducted primarily in populations of the European ancestry. Here we report results of the first genome-wide association study meta-analysis of smoking behavior in African Americans in the Study of Tobacco in Minority Populations Genetics Consortium (n=32 389). We identified one non-coding single-nucleotide polymorphism (SNP; rs2036527[A]) on chromosome 15q25.1 associated with smoking quantity (cigarettes per day), which exceeded genome-wide significance (β=0.040, s.e.=0.007, P=1.84 × 10−8). This variant is present in the 5′-distal enhancer region of the CHRNA5 gene and defines the primary index signal reported in studies of the European ancestry. No other SNP reached genome-wide significance for smoking initiation (SI, ever vs never smoking), age of SI, or smoking cessation (SC, former vs current smoking). Informative associations that approached genome-wide significance included three modestly correlated variants, at 15q25.1 within PSMA4, CHRNA5 and CHRNA3 for smoking quantity, which are associated with a second signal previously reported in studies in European ancestry populations, and a signal represented by three SNPs in the SPOCK2 gene on chr10q22.1. The association at 15q25.1 confirms this region as an important susceptibility locus for smoking quantity in men and women of African ancestry. Larger studies will be needed to validate the suggestive loci that did not reach genome-wide significance and further elucidate the contribution of genetic variation to disparities in cigarette consumption, SC and smoking-attributable disease between African Americans and European Americans.
PMCID: PMC3365260  PMID: 22832964
African American; genome-wide association; health disparities; nicotine; smoking; tobacco
23.  Associations of Variants in CHRNA5/A3/B4 Gene Cluster with Smoking Behaviors in a Korean Population 
PLoS ONE  2010;5(8):e12183.
Multiple genome-wide and targeted association studies reveal a significant association of variants in the CHRNA5-CHRNA3-CHRNB4 (CHRNA5/A3/B4) gene cluster on chromosome 15 with nicotine dependence. The subjects examined in most of these studies had a European origin. However, considering the distinct linkage disequilibrium patterns in European and other ethnic populations, it would be of tremendous interest to determine whether such associations could be replicated in populations of other ethnicities, such as Asians. In this study, we performed comprehensive association and interaction analyses for 32 single-nucleotide polymorphisms (SNPs) in CHRNA5/A3/B4 with smoking initiation (SI), smoking quantity (SQ), and smoking cessation (SC) in a Korean sample (N = 8,842). We found nominally significant associations of 7 SNPs with at least one smoking-related phenotype in the total sample (SI: P = 0.015∼0.023; SQ: P = 0.008∼0.028; SC: P = 0.018∼0.047) and the male sample (SI: P = 0.001∼0.023; SQ: P = 0.001∼0.046; SC: P = 0.01). A spectrum of haplotypes formed by three consecutive SNPs located between rs16969948 in CHRNA5 and rs6495316 in the intergenic region downstream from the 5′ end of CHRNB4 was associated with these three smoking-related phenotypes in both the total and the male sample. Notably, associations of these variants and haplotypes with SC appear to be much weaker than those with SI and SQ. In addition, we performed an interaction analysis of SNPs within the cluster using the generalized multifactor dimensionality reduction method and found a significant interaction of SNPs rs7163730 in LOC123688, rs6495308 in CHRNA3, and rs7166158, rs8043123, and rs11072793 in the intergenic region downstream from the 5′ end of CHRNB4 to be influencing SI in the male sample. Considering that fewer than 5% of the female participants were smokers, we did not perform any analysis on female subjects specifically. Together, our detected associations of variants in the CHRNA5/A3/B4 cluster with SI, SQ, and SC in the Korean smoker samples provide strong evidence for the contribution of this cluster to the etiology of SI, ND, and SC in this Asian population.
PMCID: PMC2922326  PMID: 20808433
Respiratory medicine  2014;108(10):1469-1480.
Chronic obstructive pulmonary disease (COPD) is characterized by marked phenotypic heterogeneity. Most previous studies have focused on COPD subjects with FEV1 < 80% predicted. We investigated the clinical and genetic heterogeneity in subjects with mild airflow limitation in spirometry grade 1 defined by the Global Initiative for chronic Obstructive Lung Disease (GOLD 1).
Data from current and former smokers participating in the COPDGene Study (NCT00608764) were analyzed. K-means clustering was performed to explore subtypes within 794 GOLD 1 subjects. For all subjects with GOLD 1 and with each cluster, a genome-wide association study and candidate gene testing were performed using smokers with normal lung function as a control group. Combinations of COPD genome-wide significant single nucleotide polymorphisms (SNPs) were tested for association with FEV1 (% predicted) in GOLD 1 and in a combined group of GOLD1 and smoking control subjects.
K-means clustering of GOLD 1 subjects identified putative “near-normal”, “airway-predominant”, “emphysema-predominant” and “lowest FEV1 % predicted” subtypes. In non-Hispanic whites, the only SNP nominally associated with GOLD 1 status relative to smoking controls was rs7671167 (FAM13A) in logistic regression models with adjustment for age, sex, pack-years of smoking, and genetic ancestry. The emphysema-predominant GOLD 1 cluster was nominally associated with rs7671167 (FAM13A) and rs161976 (BICD1). The lowest FEV1 % predicted cluster was nominally associated with rs1980057 (HHIP) and rs1051730 (CHRNA3). Combinations of COPD genome-wide significant SNPs were associated with FEV1 (% predicted) in a combined group of GOLD 1 and smoking control subjects.
Our results indicate that GOLD 1 subjects show substantial clinical heterogeneity, which is at least partially related to genetic heterogeneity.
PMCID: PMC4253548  PMID: 25154699
pulmonary disease; chronic obstructive; population characteristics; cluster analysis; genetic association
25.  Beyond Cigarettes Per Day. A Genome-Wide Association Study of the Biomarker Carbon Monoxide 
Rationale: The CHRNA5-CHRNA3-CHRNB4 locus is associated with self-reported smoking behavior and also harbors the strongest genetic associations with chronic obstructive pulmonary disease (COPD) and lung cancer. Because the associations with lung disease remain after adjustment for self-reported smoking behaviors, it has been asserted that CHRNA5-CHRNA3-CHRNB4 variants increase COPD and lung cancer susceptibility independently of their effects on smoking.
Objectives: To compare the genetic associations of exhaled carbon monoxide (CO), a biomarker of current cigarette exposure, with self-reported smoking behaviors.
Methods: A total of 1,521 European American and 247 African American current smokers recruited into smoking cessation studies were assessed for CO at intake before smoking cessation. DNA samples were genotyped using the Illumina Omni2.5 microarray. Genetic associations with CO and smoking behaviors (cigarettes smoked per day, Fagerstrom test for nicotine dependence) were studied.
Measurements and Main Results: Variants in the CHRNA5-CHRNA3-CHRNB4 locus, including rs16969968, a nonsynonymous variant in CHRNA5, are genomewide association study–significantly associated with CO (β = 2.66; 95% confidence interval [CI], 1.74–3.58; P = 1.65 × 10−8), and this association remains strong after adjusting for smoking behavior (β = 2.18; 95% CI, 1.32–3.04; P = 7.47 × 10−7). The correlation between CO and cigarettes per day is statistically significantly lower (z = 3.43; P = 6.07 × 10−4) in African Americans (r = 0.14; 95% CI, 0.02–0.26; P = 0.003) than in European-Americans (r = 0.36; 95% CI, 0.31–0.40; P = 0.0001).
Conclusions: Exhaled CO, a biomarker that is simple to measure, captures aspects of cigarette smoke exposure in current smokers beyond the number of cigarettes smoked per day. Behavioral measures of smoking are therefore insufficient indices of cigarette smoke exposure, suggesting that genetic associations with COPD or lung cancer that persist after adjusting for self-reported smoking behavior may still reflect genetic effects on smoking exposure.
PMCID: PMC4214060  PMID: 25072098
smoking; nicotine; chronic obstructive pulmonary disease; lung cancer; nicotinic receptor

Results 1-25 (1105437)