Search tips
Search criteria

Results 1-25 (921790)

Clipboard (0)

Related Articles

1.  Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding 
BMC Plant Biology  2012;12:99.
Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance.
Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots.
Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under flooding conditions.
PMCID: PMC3431261  PMID: 22738296
2.  Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon) 
Journal of Experimental Botany  2013;64(7):1907-1916.
The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8’-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0–2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.
PMCID: PMC3638820  PMID: 23630325
Abscisic acid; ABA; ABA 8’-hydroxylase genes; grapevine; irrigation; NCED genes.
3.  Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan 
Journal of Experimental Botany  2011;62(11):4067-4077.
An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.
PMCID: PMC3134360  PMID: 21527630
Dry matter production; high-yielding variety; hydraulic conductance; hydraulic conductivity; leaf nitrogen; photosynthesis; rice (Oryza sativa); ribulose-1; 5-bisphosphate carboxylase/oxygenase (Rubisco); root surface area; stomatal conductance
4.  Soil and Plant Water Relations Determine Photosynthetic Responses of C3 and C4 Grasses in a Semi‐arid Ecosystem under Elevated CO2 
Annals of Botany  2003;92(1):41-52.
To model the effect of increasing atmospheric CO2 on semi‐arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open‐top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 µmol mol–1 CO2 (elevated CO2) in a semi‐arid shortgrass steppe. Assimilation rate (A) and stomatal conductance (gs) at the treatment CO2 concentrations and at a range of intercellular CO2 concentrations and leaf water potentials (ψleaf) were measured over 4 years with variable soil water content caused by season and CO2 treatment. Carboxylation efficiency of ribulose bisphosphate carboxylase/oxygenase (Vc,max), and ribulose bisphosphate regeneration capacity (Jmax) were reduced in P. smithii grown in elevated CO2, to the degree that A was similar in elevated and ambient CO2 (when soil moisture was adequate). Photosynthetic capacity was not reduced in B. gracilis under elevated CO2, but A was nearly saturated at ambient CO2. There were no stomatal adaptations independent of photosynthetic acclimation. Although photosynthetic capacity was reduced in P. smithii growing in elevated CO2, reduced gs and transpiration improved soil water content and ψleaf in the elevated CO2 chambers, thereby improving A of both species during dry periods. These results suggest that photosynthetic responses of C3 and C4 grasses in this semi‐arid ecosystem will be driven primarily by the effect of elevated CO2 on plant and soil water relations.
PMCID: PMC4243634  PMID: 12754182
Bouteloua gracilis; Pascopyrum smithii; C3; C4; leaf water potential; photosynthesis; acclimation; stomata; semi‐arid; soil water
5.  Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf 
Journal of Experimental Botany  2014;66(5):1303-1315.
Under well-watered conditions leaf hydraulic conductance increases with transpiration rate. This reduces the water potential gradient in leaves and potentially improves productivity under daily variation in evaporative demand.
Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand.
PMCID: PMC4339593  PMID: 25547915
Leaf hydraulic conductance; leaf water potential; stem water potential; stomatal conductance; transpiration; water relations.
6.  Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture 
Journal of Experimental Botany  2014;65(22):6617-6627.
Short statement: Field and chamber studies show a decline in leaf hydraulic conductance as soybean leaves age that is independent of decreases in soil moisture.
Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux.
PMCID: PMC4246190  PMID: 25281701
Development; drought; leaf age; leaf hydraulic conductance; leaf water potential; photosynthesis; senescence; stomatal conductance.
7.  Conditions Leading to High CO2 (>5 kPa) in Waterlogged–Flooded Soils and Possible Effects on Root Growth and Metabolism 
Annals of Botany  2006;98(1):9-32.
• Aims Soil waterlogging impedes gas exchange with the atmosphere, resulting in low PO2 and often high PCO2. Conditions conducive to development of high PCO2 (5–70 kPa) during soil waterlogging and flooding are discussed. The scant information on responses of roots to high PCO2 in terms of growth and metabolism is reviewed.
• Scope PCO2 at 15–70 kPa has been reported for flooded paddy-field soils; however, even 15 kPa PCO2 may not always be reached, e.g. when soil pH is above 7. Increases of PCO2 in soils following waterlogging will develop much more slowly than decreases in PO2; in soil from rice paddies in pots without plants, maxima in PCO2 were reached after 2–3 weeks. There are no reliable data on PCO2 in roots when in waterlogged or flooded soils. In rhizomes and internodes, PCO2 sometimes reached 10 kPa, inferring even higher partial pressures in the roots, as a CO2 diffusion gradient will exist from the roots to the rhizomes and shoots. Preliminary modelling predicts that when PCO2 is higher in a soil than in roots, PCO2 in the roots would remain well below the PCO2 in the soil, particularly when there is ventilation via a well-developed gas-space continuum from the roots to the atmosphere. The few available results on the effects of PCO2 at > 5 kPa on growth have nearly all involved sudden increases to 10–100 kPa PCO2; consequently, the results cannot be extrapolated with certainty to the much more gradual increases of PCO2 in waterlogged soils. Nevertheless, rice in an anaerobic nutrient solution was tolerant to 50 kPa CO2 being suddenly imposed. By contrast, PCO2 at 25 kPa retarded germination of some maize genotypes by 50 %. With regard to metabolism, assuming that the usual pH of the cytoplasm of 7·5 was maintained, every increase of 10 kPa CO2 would result in an increase of 75–90 mm HCO3− in the cytoplasm. pH maintenance would depend on the biochemical and biophysical pH stats (i.e. regulatory systems). Furthermore, there are indications that metabolism is adversely affected when HCO3− in the cytoplasm rises above 50 mm, or even lower; succinic dehydrogenase and cytochrome oxidase are inhibited by HCO3− as low as 10 mm. Such effects could be mitigated by a decrease in the set point for the pH of the cytoplasm, thus lowering levels of HCO3− at the prevailing PCO2 in the roots.
• Conclusions Measurements are needed on PCO2 in a range of soil types and in roots of diverse species, during waterlogging and flooding. Species well adapted to high PCO2 in the root zone, such as rice and other wetland plants, thrive even when PCO2 is well over 10 kPa; mechanisms of adaptation, or acclimatization, by these species need exploration.
PMCID: PMC3291891  PMID: 16644893
Acid load; aerenchyma; bicarbonate; carbon dioxide; cytochrome c; O2 deficiency; pH regulation; metabolism; respiration; waterlogging; wetland plants
8.  Erythrina speciosa (Leguminosae-Papilionoideae) under soil water saturation: morphophysiological and growth responses 
Annals of Botany  2009;104(4):671-680.
Background and Aims
Erythrina speciosa is a Neotropical tree that grows mainly in moist habitats. To characterize the physiological, morphological and growth responses to soil water saturation, young plants of E. speciosa were subjected experimentally to soil flooding.
Flooding was imposed from 2 to 4 cm above the soil surface in water-filled tanks for 60 d. Non-flooded (control) plants were well watered, but never flooded. The net CO2 exchange (ACO2), stomatal conductance (gs) and intercellular CO2 concentration (Ci) were assessed for 60 d. Soluble sugar and free amino acid concentrations and the proportion of free amino acids were determined at 0, 7, 10, 21, 28 and 45 d of treatments. After 28, 45 and 60 d, dry masses of leaves, stems and roots were determined. Stem and root cross-sections were viewed using light microscopy.
Key Results
The ACO2 and gs were severely reduced by flooding treatment, but only for the first 10 d. The soluble sugars and free amino acids increased until the tenth day but decreased subsequently. The content of asparagine in the roots showed a drastic decrease while those of alanine and γ-aminobutyric increased sharply throughout the first 10 d after flooding. From the 20th day on, the flooded plants reached ACO2 and gs values similar to those observed for non-flooded plants. These events were coupled with the development of lenticels, adventitious roots and aerenchyma tissue of honeycomb type. Flooding reduced the growth rate and altered carbon allocation. The biomass allocated to the stem was higher and the root mass ratio was lower for flooded plants when compared with non-flooded plants.
Erythrina speciosa showed 100 % survival until the 60th day of flooding and was able to recover its metabolism. The recovery during soil flooding seems to be associated with morphological alterations, such as development of hypertrophic lenticels, adventitious roots and aerenchyma tissue, and with the maintenance of neutral amino acids in roots under long-term exposure to root-zone O2 deprivation.
PMCID: PMC2729630  PMID: 19581282
Erythrina speciosa; aerenchyma; amino acid content; biomass allocation; photosynthesis; flooding adaptations; stomatal conductance; O2 deficiency; γ-aminobutyric acid (GABA)
9.  Genetic variation, linkage mapping of QTL and correlation studies for yield, root, and agronomic traits for aerobic adaptation 
BMC Genetics  2013;14:104.
Water scarcity and drought have seriously threatened traditional rice cultivation practices in several parts of the world, including India. Aerobic rice that uses significantly less water than traditional flooded systems has emerged as a promising water-saving technology. The identification of QTL conferring improved aerobic adaptation may facilitate the development of high-yielding aerobic rice varieties. In this study, experiments were conducted for mapping QTL for yield, root-related traits, and agronomic traits under aerobic conditions using HKR47 × MAS26 and MASARB25 × Pusa Basmati 1460 F2:3 mapping populations.
A total of 35 QTL associated with 14 traits were mapped on chromosomes 1, 2, 5, 6, 8, 9, and 11 in MASARB25 x Pusa Basmati 1460 and 14 QTL associated with 9 traits were mapped on chromosomes 1, 2, 8, 9, 10, 11, and 12 in HKR47 × MAS26. Two QTL (qGY8.1 with an R2 value of 34.0% and qGY2.1 with an R2 value of 22.8%) and one QTL (qGY2.2 with an R2 value of 43.2%) were identified for grain yield under aerobic conditions in the mapping populations MASARB25 × Pusa Basmati 1460 and HKR47 × MAS26, respectively.
A number of breeding lines with higher yield per plant, root length, dry biomass, length-breadth ratio, and with Pusa Basmati 1460-specific alleles in a homozygous or heterozygous condition at the BAD2 locus were identified that will serve as novel material for the selection of stable aerobic Basmati rice breeding lines.
Our results identified positive correlation between some of the root traits and yield under aerobic conditions, indicating the role of root traits for improving yield under aerobic situations possibly through improved water and nutrient uptake. Co-localization of QTL for yield, root traits, and yield-related agronomic traits indicates that the identified QTL may be immediately exploited in marker-assisted-breeding to develop novel high-yielding aerobic rice varieties.
PMCID: PMC4231467  PMID: 24168061
Oryza sativa; QTL; Rice; Aerobic; Dry direct seeded
10.  Expression of Tolerance for Meloidogyne graminicola in Rice Cultivars as Affected by Soil Type and Flooding 
Journal of Nematology  2000;32(3):309-317.
The effects of different water regimes on the pathogenicity of Meloidogyne graminicola on six rice cultivars were determined in two soil types in three greenhouse experiments. Two water regimes, simulating continuous flooding and intermittent flooding, were used with five of the cultivars. All cultivars were susceptible to the nematode, but IR72 and IR74 were more tolerant than IR20 and IR29 under intermittent flooding. All were tolerant under continuous flooding. UPLRi-5 was grown under multiple water regimes: no flooding; continuous flooding; flooding starting at maximum tillering, panicle initiation, or booting stage; and flooding from sowing until maximum tillering or booting. In sandy loam soil, M. graminicola reduced stem and leaf dry weight, root dry weight, and grain weight under all water regimes. In clay loam soil, the nematode reduced root weight when the soil was not flooded or flooded only for a short time, from panicle initiation, or booting to maturity, and from sowing to maximum tillering. In clay loam soil, stem and leaf dry weight, as well as grain weight, were reduced by the nematode under all water regimes except continuous flooding or when the soil was flooded from sowing to booting stage. These results indicate that rice cultivar tolerance of M. graminicola varies with water regime and that yield losses due to M. graminicola may be prevented or minimized when the rice crop is flooded early and kept flooded until a late stage of development.
PMCID: PMC2620461  PMID: 19270982
Meloidogyne graminicola; pathogenicity; rice; tolerance; water regime
11.  Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM) 
Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration1,2. Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψleaf). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance3. Leaf hydraulic conductance (Kleaf = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. Kleaf is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, Kleaf responds strongly to the internal and external leaf environment3. Kleaf can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes4, and Kleaf declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation5-10. Because Kleaf can constrain gs and photosynthetic rate across species in well watered conditions and during drought, and thus limit whole-plant performance they may possibly determine species distributions especially as droughts increase in frequency and severity11-14.
We present a simple method for simultaneous determination of Kleaf and gs on excised leaves. A transpiring leaf is connected by its petiole to tubing running to a water source on a balance. The loss of water from the balance is recorded to calculate the flow rate through the leaf. When steady state transpiration (E, mmol • m-2 • s-1) is reached, gs is determined by dividing by vapor pressure deficit, and Kleaf by dividing by the water potential driving force determined using a pressure chamber (Kleaf= E /- Δψleaf, MPa)15.
This method can be used to assess Kleaf responses to different irradiances and the vulnerability of Kleaf to dehydration14,16,17.
PMCID: PMC3577864  PMID: 23299126
Plant Biology; Issue 70; Molecular Biology; Physiology; Ecology; Biology; Botany; Leaf traits; hydraulics; stomata; transpiration; xylem; conductance; leaf hydraulic conductance; resistance; evaporative flux method; whole plant
12.  Root attributes affecting water uptake of rice (Oryza sativa) under drought 
Journal of Experimental Botany  2012;63(13):4751-4763.
Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lp r) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.
PMCID: PMC3427995  PMID: 22791828
Aquaporin; drought; rice; root anatomy; root hydraulic conductivity; suberin
13.  Hydraulic Lift Increases Herbivory by Diaprepes abbreviatus Larvae and Persistence of Steinernema riobrave in Dry Soil 
Journal of Nematology  2001;33(2-3):142-146.
Citrus seedlings were grown in double pots that separated the root systems into discrete lower and upper zones to test the hypothesis that hydraulic lift affects persistence and efficacy of entomopathogenic nematodes. Three treatments were established: (i) both pots were irrigated at water potential ≤ -15 kPa (no drought); (ii) only the bottom pot was irrigated (partial drought); (iii) neither pot was irrigated (complete drought). Steinernema riobrave infective juveniles (IJ) were added to the soil in the top pots of all treatments. During 27 days, the water potential in soil in the top pots of both the partial and complete drought treatments declined to ca. -160 kPa. A greater number of nematodes (P ≤ 0.01) persisted in soil as motile IJ under conditions of partial drought (143/pot) than under no drought (6.1/pot) or complete drought (4.4/pot). A second experiment was initiated with the same treatments as the first, except that only half of the 20 replicates in each moisture regime were inoculated with nematodes. After 15 days, all top pots were irrigated and two larvae of the insect Diaprepes abbreviatus were added to all of the top pots in each treatment. Irrigation regimes were reinstituted until water potential in the top pots under partial and complete drought had again declined to ca. -150 kPa and the experiment was terminated. In the absence of nematodes, the damage to tap roots caused by D. abbreviatus feeding under partial drought and complete drought was 80% and 32%, respectively, of that under no drought. Numbers of motile IJ in soil were greater under conditions of partial drought (736/pot) than under complete drought (2.0/pot) or no drought (7.2/pot). Survival of D. abbreviatus and insect damage to roots were reduced by the presence of S. riobrave to a greater extent under partial drought as compared to other treatments. Hydraulic lift from the lower to the upper rhizosphere appears to have modulated the effect of dry soil conditions on feeding behavior of D. abbreviatus and created favorable conditions for persistence and efficacy of the entomopathogenic nematode.
PMCID: PMC2638139  PMID: 19266011
biological control; citrus; Diaprepes abbreviatus; drought; hydraulic lift; soil moisture; Steinernema riobrave; water potential
14.  Characterization of a rice variety with high hydraulic conductance and identification of the chromosome region responsible using chromosome segment substitution lines 
Annals of Botany  2010;106(5):803-811.
Background and Aims
The rate of photosynthesis in paddy rice often decreases at noon on sunny days because of water stress, even under submerged conditions. Maintenance of higher rates of photosynthesis during the day might improve both yield and dry matter production in paddy rice. A high-yielding indica variety, ‘Habataki’, maintains a high rate of leaf photosynthesis during the daytime because of the higher hydraulic conductance from roots to leaves than in the standard japonica variety ‘Sasanishiki’. This research was conducted to characterize the trait responsible for the higher hydraulic conductance in ‘Habataki’ and identified a chromosome region for the high hydraulic conductance.
Hydraulic conductance to passive water transport and to osmotic water transport was determined for plants under intense transpiration and for plants without transpiration, respectively. The varietal difference in hydraulic conductance was examined with respect to root surface area and hydraulic conductivity (hydraulic conductance per root surface area, Lp). To identify the chromosome region responsible for higher hydraulic conductance, chromosome segment substitution lines (CSSLs) derived from a cross between ‘Sasanishiki’ and ‘Habataki’ were used.
Key Results
The significantly higher hydraulic conductance resulted from the larger root surface area not from Lp in ‘Habataki’. A chromosome region associated with the elevated hydraulic conductance was detected between RM3916 and RM2431 on the long arm of chromosome 4. The CSSL, in which this region was substituted with the ‘Habataki’ chromosome segment in the ‘Sasanishiki’ background, had a larger root mass than ‘Sasanishiki’.
The trait for increasing plant hydraulic conductance and, therefore, maintaining the higher rate of leaf photosynthesis under the conditions of intense transpiration in ‘Habataki’ was identified, and it was estimated that there is at least one chromosome region for the trait located on chromosome 4.
PMCID: PMC2958790  PMID: 20810742
Chromosome segment substitution lines; diffusive conductance; hydraulic conductance; photosynthetic rate; quantitative trait locus; rice; Oryza sativa; root hydraulic conductivity
15.  Aerobic rice genotypes displayed greater adaptation to water-limited cultivation and tolerance to polyethyleneglycol-6000 induced stress 
Water scarcity and drought have seriously threatened traditional rice cultivation practices in several parts of the world including India. In the present investigation, experiments were conducted to see if the water-efficient aerobic rice genotypes developed at UAS, Bangalore (MAS25, MAS26 and MAS109) and IRRI, Philippines (MASARB25 and MASARB868), are endowed with drought tolerance or not. A set of these aerobic and five lowland high-yielding (HKR47 and PAU201, Taraori Basmati, Pusa1121 and Pusa1460) indica rice genotypes were evaluated for: (i) yield and yield components under submerged and aerobic conditions in field, (ii) root morphology and biomass under aerobic conditions in pots in the nethouse, (iii) PEG-6000 (0, −1, −2 and −3 bar) induced drought stress at vegetative stage using a hydroponic culture system and (iv) polymorphism for three SSR markers associated with drought resistance traits. Under submerged conditions, the yield of aerobic rice genotypes declined by 13.4–20.1 % whereas under aerobic conditions the yield of lowland indica/Basmati rice varieties declined by 23–27 %. Under water-limited conditions in pots, aerobic rice genotypes had 54–73.8 % greater root length and 18–60 % higher fresh root biomass compared to lowland indica rice varieties. Notably, root length of MASARB25 was 35 % shorter than MAS25 whereas fresh and dry root biomass of MASARB25 was 10 % and 64 % greater than MAS25. The lowland indica were more sensitive to PEG-stress with a score of 5.9–7.6 for Basmati and 6.1–6.7 for non-aromatic indica rice varieties, than the aerobic rice genotypes (score 2.7–3.3). A set of three microsatellite DNA markers (RM212, RM302 and RM3825) located on chromosome 1 which has been shown to be associated with drought resistance was investigated in the present study. Two of these markers (RM212 and RM302) amplified a specific allele in all the aerobic rice genotypes which were absent in lowland indica rice genotypes.
PMCID: PMC3550527  PMID: 23573038
Aerobic; Drought; Indica; Polyethyleneglycol 6000; Root traits; SSR
16.  Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes 
Journal of Experimental Botany  2010;61(12):3291-3303.
Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r2 >0.6–0.8) with leaf water potential (ψleaf) across a broad range of values (–2.0 to –4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (ψsoil) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision phenotyping.
PMCID: PMC2905199  PMID: 20639342
Canopy reflectance; canopy water content; leaf water potential; root growth; water index
17.  Risk-taking plants 
Plant Signaling & Behavior  2012;7(7):767-770.
Water scarcity is a critical limitation for agricultural systems. Two different water management strategies have evolved in plants: an isohydric strategy and an anisohydric strategy. Isohydric plants maintain a constant midday leaf water potential (Ψleaf) when water is abundant, as well as under drought conditions, by reducing stomatal conductance as necessary to limit transpiration. Anisohydric plants have more variable Ψleaf and keep their stomata open and photosynthetic rates high for longer periods, even in the presence of decreasing leaf water potential. This risk-taking behavior of anisohydric plants might be beneficial when water is abundant, as well as under moderately stressful conditions. However, under conditions of intense drought, this behavior might endanger the plant. We will discuss the advantages and disadvantages of these two water-usage strategies and their effects on the plant’s ability to tolerate abiotic and biotic stress. The involvement of plant tonoplast AQPs in this process will also be discussed.
PMCID: PMC3583960  PMID: 22751307
abiotic stress; anisohydric; aquaporins; biotic stress; isohydric; leaf water potential; relative water content
18.  RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice 
Journal of Experimental Botany  2011;63(1):163-175.
About one-third of the world’s rice area is in rain-fed lowlands and most are prone to water shortage. The identification of genes imparting tolerance to drought in the model cereal plant, rice, is an attractive strategy to engineer improved drought tolerance not only rice but other cereals as well. It is demonstrated that RNAi-mediated disruption of a rice farnesyltransferase/squalene synthase (SQS) by maize squalene synthase improves drought tolerance at both the vegetative and reproductive stages. Twenty-day-old seedlings of wild type (Nipponbare) and seven independent events of transgenic RNAi lines showed no difference in morphology. When subjected to water stress for a period of 32 d under growth chamber conditions, transgenic positives showed delayed wilting, conserved more soil water, and improved recovery. When five independent events along with wild-type plants were subjected to drought at the reproductive stage under greenhouse conditions, the transgenic plants lost water more slowly compared with the wild type, through reduced stomatal conductance and the retention of high leaf relative water content (RWC). After 28 d of slow progressive soil drying, transgenic plants recovered better and flowered earlier than wild-type plants. The yield of water-stressed transgenic positive plants ranged from 14–39% higher than wild-type plants. When grown in plates with Yoshida’s nutrient solution with 1.2% agar, transgenic positives from three independent events showed increased root length and an enhanced number of lateral roots. The RNAi-mediated inactivation produced reduced stomatal conductance and subsequent drought tolerance.
PMCID: PMC3245457  PMID: 21926092
ABA; filled grain weight; maize; relative water content; rice; RNAi; root number stomatal conductance; squalene synthase; water deficit
19.  Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity 
BMC Plant Biology  2014;14:72.
Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought.
The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity.
The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.
PMCID: PMC3976162  PMID: 24655599
Betula pendula; Branch water potential; Climate change; Hydraulic conductance; Leaf water potential; Net photosynthesis; Silver birch; Stomatal conductance; Water-use efficiency
20.  Effect of Depth of Flooding on the Rice Water Weevil, Lissorhoptrus oryzophilus, and Yield of Rice 
The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0–20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus.
PMCID: PMC3740922  PMID: 23906324
cultural control; Oryza sativa; rice water weevil management
21.  The effects of water regime on phosphorus responses of rainfed lowland rice cultivars 
Annals of Botany  2008;103(2):211-220.
Background and Aims
Soil phosphorus (P) solubility declines sharply when a flooded soil drains, and an important component of rice (Oryza sativa) adaptation to rainfed lowland environments is the ability to absorb and utilize P under such conditions. The aim of this study was to test the hypothesis that rice cultivars differ in their P responses between water regimes because P uptake mechanisms differ.
Six lowland rice cultivars (three considered tolerant of low P soils, three sensitive) were grown in a factorial experiment with three water regimes (flooded, moist and flooded-then-moist) and four soil P levels, and growth and P uptake were measured. Small volumes of soil were used to maximize inter-root competition and uptake per unit root surface. The results were compared with the predictions of a model allowing for the effects of water regime on P solubility and diffusion.
Key Results
The plants were P stressed but not water stressed in all the water regimes at all P levels except the higher P additions in the flooded soil. The cultivar rankings scarcely differed between the water regimes and P additions. In all the treatments, the soil P concentrations required to explain the measured uptake were several times the concentration of freely available P in the soil.
The cultivar rankings were driven more by differences in growth habit than specific P uptake mechanisms, so the hypothesis cannot be corroborated with these data. Evidently all the plants could tap sparingly soluble forms of P by releasing a solubilizing agent or producing a greater root length than measured, or both. However, any cultivar differences in this were not apparent in greater net P uptake, possibly because the restricted rooting volume meant that additional P uptake could not be converted into new root growth to explore new soil volumes.
PMCID: PMC2707314  PMID: 18945744
Oryza sativa; rainfed lowland; phosphorus efficiency; root morphology; solubilization; rice cultivar
22.  Effect of salinity on water relations of wild barley plants differing in salt tolerance 
AoB Plants  2010;2010:plq006.
Root hydraulic conductivity was decreased by salinity in barley plants in parallel with slower transpiration rates and a down-regulation of aquaporin expression in the roots. The effects were larger and faster in a more salinity-tolerant line.
Background and aims
Certain lines of wild barley (Hordeum spontaneum) are more tolerant of salinity than others. The physiological basis of this difference is examined in a comparative study of a saline-tolerant and saline-intolerant line that emphasizes plant water relations.
Effects of salt-treatment (75 mM maximum) extending from a few hours to 3 weeks were quantified in 8-day-old seedlings of a saline-sensitive wild barley line (‘T-1’) and a less saline-sensitive line (‘20-45’). Plants were grown in nutrient culture. Levels of mRNA of the HtPIP2;4 aquaporin (AQP) gene were determined together with a range of physiological responses including root hydraulic conductivity, osmotic potential of root xylem sap, transpiration, leaf relative water content, root water content, leaf water potential, leaf sap osmolality, leaf length, leaf area and chlorophyll content.
Principal results
Salt treatment inhibited transpiration and hydraulic conductivity more in salt-tolerant ‘20-45’ plants than in salt-sensitive ‘T-1’. In ‘20-45’, the effect was paralleled by a fast (within a few hours) and persistent (3 days) down-regulation of aquaporin. In salt-sensitive ‘T-1’ plants, aquaporin down-regulation was delayed for up to 24 h. Greater tolerance in ‘20-45’ plants was characterized by less inhibition of leaf area, root fresh weight, leaf water content and chlorophyll concentration. Leaf water potentials were similar in both lines.
(i) Decline in hydraulic conductivity in salt-treated barley plants is important for stomatal closure, (ii) lowered transpiration rate is beneficial for salt tolerance, at least at the seedling stage and (iii) changes in AQP expression are implicated in the control of whole plant hydraulic conductivity and the regulation of shoot water relations.
PMCID: PMC3000697  PMID: 22476064
23.  Rice Performance and Water Use Efficiency under Plastic Mulching with Drip Irrigation 
PLoS ONE  2013;8(12):e83103.
Plastic mulching with drip irrigation is a new water-saving rice cultivation technology, but little is known on its productivity and water-saving capacity. This study aimed to assess the production potential, performance, and water use efficiency (WUE) of rice under plastic mulching with drip irrigation. Field experiments were conducted over 2 years with two rice cultivars under different cultivation systems: conventional flooding (CF), non-flooded irrigation incorporating plastic mulching with furrow irrigation (FIM), non-mulching with furrow irrigation (FIN), and plastic mulching with drip irrigation (DI). Compared with the CF treatment, grain yields were reduced by 31.76–52.19% under the DI treatment, by 57.16–61.02% under the FIM treatment, by 74.40–75.73% under the FIN treatment, which were mainly from source limitation, especially a low dry matter accumulation during post-anthesis, in non-flooded irrigation. WUE was the highest in the DI treatment, being 1.52–2.12 times higher than with the CF treatment, 1.35–1.89 times higher than with the FIM treatment, and 2.37–3.78 times higher than with the FIN treatment. The yield contribution from tillers (YCFTs) was 50.65–62.47% for the CF treatment and 12.07–20.62% for the non-flooded irrigation treatments. These low YCFTs values were attributed to the poor performance in tiller panicles rather than the total tiller number. Under non-flooded irrigation, root length was significantly reduced with more roots distributed in deep soil layers compared with the CF treatment; the DI treatment had more roots in the topsoil layer than the FIM and FIN treatments. The experiment demonstrates that the DI treatment has greater water saving capacity and lower yield and economic benefit gaps than the FIM and FIN treatments compared with the CF treatment, and would therefore be a better water-saving technology in areas of water scarcity.
PMCID: PMC3858349  PMID: 24340087
24.  Differences in responses to flooding by germinating seeds of two contrasting rice cultivars and two species of economically important grass weeds 
AoB Plants  2014;6:plu064.
Barnyard grasses are serious weeds in direct seeded rice. We assessed the effectiveness of using controlled flooding for its control using two rice cultivars and two barnyard grasses contrasting in flood tolerance during germination. Flooding with 100 mm water after seeding suppressed barnyard grasses; but delaying flooding by 2-4 days was ineffective. Flooding increased the activity of alcohol dehydrogenase and pyruvate decarboxylase; the increase was higher in the tolerant rice cultivar but similar in both barnyard grasses. Aldehyde dehydrogenase activity increased only in flood-tolerant types of rice and weeds, but not in flood-sensitive types, implying potential role in tolerance.
Crop productivity is largely affected by abiotic factors such as flooding and by biotic factors such as weeds. Although flooding after direct seeding of rice helps suppress weeds, it also can adversely affects germination and growth of rice, resulting in poor crop establishment. Barnyard grasses (Echinochloa spp.) are among the most widespread weeds affecting rice, especially under direct seeding. The present work aimed to establish effective management options to control these weeds. We assessed the effects of variable depths and time of submergence on germination, seedling growth and carbohydrate metabolism of (i) two cultivars of rice known to differ in their tolerance to flooding during germination and (ii) two barnyard grasses (Echinochloa colona and E. crus-galli) that commonly infest rice fields. Flooding barnyard grasses with 100-mm-deep water immediately after seeding was effective in suppressing germination and growth. Echinochloa colona showed greater reductions in emergence, shoot and root growth than E. crus-galli. Delaying flooding for 2 or 4 days was less injurious to both species. Echinochloa colona was also more susceptible to flooding than the flood-sensitive rice cultivar ‘IR42’. The activity of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) in rice seedlings was increased by flooding after sowing but with greater increases in ‘Khao Hlan On’ compared with ‘IR42’. The activity of ADH and PDC was enhanced to a similar extent in both barnyard grasses. Under aerobic conditions, the activity of ADH and PDC in the two barnyard grasses was downregulated, which might contribute to their inherently faster growth compared with rice. Aldehyde dehydrogenase activity was significantly enhanced in flood-tolerant ‘Khao Hlan On’ and E. crus-galli, but did not increase in flood-sensitive E. colona and ‘IR42’, implying a greater ability of the flood-tolerant types to detoxify acetaldehyde generated during anaerobic fermentation. Confirmation of this hypothesis is now being sought.
PMCID: PMC4243074  PMID: 25336336
Alcohol dehydrogenase; aldehyde dehydrogenase; anaerobic germination; barnyard grass; direct-seeded rice; Echinochloa colona; Echinochloa crus-galli; fermentative metabolism; pyruvate decarboxylase; rice weeds.
25.  The Potential for Nitrification and Nitrate Uptake in the Rhizosphere of Wetland Plants: A Modelling Study 
Annals of Botany  2005;96(4):639-646.
• Background and Aims It has recently found that lowland rice grown hydroponically is exceptionally efficient in absorbing \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document}, raising the possibility that rice and other wetland plants growing in flooded soil may absorb significant amounts of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} formed by nitrification of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} in the rhizosphere. This is important because (a) this \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} is otherwise lost through denitrification in the soil bulk; and (b) plant growth and yield are generally improved when plants absorb their nitrogen as a mixture of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} compared with growth on either N source on its own. A mathematical model is developed here with which to assess the extent of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} absorption from the rhizosphere by wetland plants growing in flooded soil, considering the important plant and soil processes operating.
• Methods The model considers rates of O2 transport away from an individual root and simultaneous O2 consumption in microbial and non-microbial processes; transport of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} towards the root and its consumption in nitrification and uptake at the root surface; and transport of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} formed from \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} towards the root and its consumption in denitrification and uptake by the root. The sensitivity of the model's predictions to its input parameters is tested over the range of conditions in which wetland plants grow.
• Key Results The model calculations show that substantial quantities of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} can be produced in the rhizosphere of wetland plants through nitrification and taken up by the roots under field conditions. The rates of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} uptake can be comparable with those of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document}. The model also shows that rates of denitrification and subsequent loss of N from the soil remain small even where \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} production and uptake are considerable.
• Conclusions Nitrate uptake by wetland plants may be far more important than thought hitherto. This has implications for managing wetland soils and water, as discussed in this paper.
PMCID: PMC4247031  PMID: 16024557
Ammonium; flooded soil; modelling; nitrate; nitrification–denitrification; rice; rhizosphere; root aeration; soil aeration; wetland plants

Results 1-25 (921790)