PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (508171)

Clipboard (0)
None

Related Articles

1.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability 
Nature cell biology  2011;13(5):589-598.
Summary
A plethora of cellular processes, including apoptosis, depend on regulated changes in mitochondrial shape and ultrastructure. Scarce is our understanding of the role of mitochondria and of their morphology during autophagy, a bulk degradation and recycling process of eukaryotic cells’ constituents. Here we show that mitochondrial morphology determines the cellular response to macroautophagy. When autophagy is triggered, mitochondria elongate in vitro and in vivo. Upon starvation cellular cAMP levels increase and protein kinase A (PKA) becomes activated. PKA in turn phosphorylates the pro-fission dynamin related protein 1 (DRP1) that is therefore retained in the cytoplasm, leading to unopposed mitochondrial fusion. Elongated mitochondria are spared from autophagic degradation, possess more cristae, increase dimerization and activity of ATP synthase, and maintain ATP production. When elongation is genetically or pharmacologically blocked, mitochondria conversely consume ATP, precipitating starvation-induced death. Thus, regulated changes in mitochondrial morphology determine the fate of the cell during autophagy.
doi:10.1038/ncb2220
PMCID: PMC3088644  PMID: 21478857
2.  Together we are stronger 
Autophagy  2011;7(12):1568-1569.
Starvation induces a protective process of self-cannibalization called autophagy that is thought to mediate nonselective degradation of cytoplasmic material. We recently reported that mitochondria escape autophagosomal degradation through extensive fusion into mitochondrial networks upon certain starvation conditions. The extent of mitochondrial elongation is dependent on the type of nutrient deprivation, with amino acid depletion having a particularly strong effect. Downregulation of the mitochondrial fission protein Drp1 was determined to be important in bringing about starvation-induced mitochondrial fusion. The formation of mitochondrial networks during nutrient depletion selectively blocked their autophagic degradation, presumably allowing cells to sustain efficient ATP production and thereby survive starvation.
doi:10.4161/auto.7.12.17992
PMCID: PMC3327623  PMID: 22024745
autophagy; Drp1; fission; fusion; mitochondria; PKA; starvation
3.  Mitophagy in neurodegeneration and aging 
Frontiers in Genetics  2012;3:297.
Macroautophagy is a cellular catabolic process that involves the sequestration of cytoplasmic constituents into double-membrane vesicles known as autophagosomes, which subsequently fuse with lysosomes, where they deliver their cargo for degradation. The main physiological role of autophagy is to recycle intracellular components, under conditions of nutrient deprivation, so as to supply cells with vital materials and energy. Selective autophagy also takes place in nutrient-rich conditions to rid the cell of damaged organelles or protein aggregates that would otherwise compromise cell viability. Mitophagy is a selective type of autophagy, whereby damaged or superfluous mitochondria are eliminated to maintain proper mitochondrial numbers and quality control. While mitophagy shares key regulatory factors with the general macroautophagy pathway, it also involves distinct steps, specific for mitochondrial elimination. Recent findings indicate that parkin and the phosphatase and tensin homolog-induced putative kinase protein 1 (PINK1), which have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease, also regulate mitophagy and function to maintain mitochondrial homeostasis. Here, we survey the molecular mechanisms that govern the process of mitophagy and discuss its involvement in the onset and progression of neurodegenerative diseases during aging.
doi:10.3389/fgene.2012.00297
PMCID: PMC3525948  PMID: 23267366
aging; autophagy; neuron; mitochondria; mitophagy; neurodegeneration; parkin; PINK1
4.  Mitochondrial autophagy as a compensatory response to PINK1 deficiency 
Autophagy  2009;5(8):1213-1214.
Macroautophagy (hereafter, autophagy) plays a critical role in maintaining cellular homeostasis by degrading protein aggregates and dysfunctional/damaged organelles. We recently reported that silencing the recessive familial Parkinson disease gene encoding PTEN-induced kinase 1 (PINK1) leads to neuronal cell death accompanied by mitochondrial dysfunction and Drp1-dependent fragmentation. In this model, mitochondrial fission and Beclin 1-dependent autophagy play protective roles, cooperating to sequester and eliminate damaged mitochondria. We discuss the role of superoxide and other reactive oxygen species upstream of mitochondrial depolarization, fission and autophagy in PINK1 knockdown lines. PINK1 deficiency appears to trigger several compensatory responses that together facilitate clearance of depolarized mitochondria, through a mechanism that is further enhanced by increased expression of parkin. These data offer additional insights that broaden the spectrum of potential interactions between PINK1 and parkin with respect to the regulation of mitochondrial homeostasis and mitophagy.
PMCID: PMC2841445  PMID: 19786829
mitochondria; PINK1; autophagy; cell death; parkinson disease; parkin; beclin 1
5.  Stepwise Assembly of Dimeric F1Fo-ATP Synthase in Mitochondria Involves the Small Fo-Subunits k and i 
Molecular Biology of the Cell  2010;21(9):1494-1504.
Oligomerization of F1Fo-ATP synthase in the inner mitochondrial membrane governs the formation of cristae membrane domains. We show that the F1Fo-subunits Su i and Su k are crucial for the formation and maturation of ATP synthase dimers and oligomers. Su i additionally facilitates the incorporation of new subunits into ATP synthase monomers.
F1Fo-ATP synthase is a key enzyme of oxidative phosphorylation that is localized in the inner membrane of mitochondria. It uses the energy stored in the proton gradient across the inner mitochondrial membrane to catalyze the synthesis of ATP from ADP and phosphate. Dimeric and higher oligomeric forms of ATP synthase have been observed in mitochondria from various organisms. Oligomerization of ATP synthase is critical for the morphology of the inner mitochondrial membrane because it supports the generation of tubular cristae membrane domains. Association of individual F1Fo-ATP synthase complexes is mediated by the membrane-embedded Fo-part. Several subunits were mapped to monomer-monomer-interfaces of yeast ATP synthase complexes, but only Su e (Atp21) and Su g (Atp20) have so far been identified as crucial for the formation of stable dimers. We show that two other small Fo-components, Su k (Atp19) and Su i (Atp18) are involved in the stepwise assembly of F1Fo-ATP synthase dimers and oligomers. We have identified an intermediate form of the ATP synthase dimer, which accumulates in the absence of Su i. Moreover, our data indicate that Su i facilitates the incorporation of newly synthesized subunits into ATP synthase complexes.
doi:10.1091/mbc.E09-12-1023
PMCID: PMC2861609  PMID: 20219971
6.  Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging 
Neurobiology of disease  2010;43(1):46-51.
Macroautophagy is a cellular process by which cytosolic components and organelles are degraded in double-membrane bound structures upon fusion with lysosomes. A pathway for selective degradation of mitochondria by autophagy, known as mitophagy, has been described, and is of particular importance to neurons, because of the constant need for high levels of energy production in this cell type. Although much remains to be learned about mitophagy, it appears that the regulation of mitophagy shares key steps with the macroautophagy pathway, while exhibiting distinct regulatory steps specific for mitochondrial autophagic turnover. Mitophagy is emerging as an important pathway in neurodegenerative disease, and has been linked to the pathogenesis of Parkinson’s disease through the study of recessively inherited forms of this disorder, involving PINK1 and Parkin. Recent work indicates that PINK1 and Parkin together maintain mitochondrial quality control by regulating mitophagy. In the Purkinje cell degeneration (pcd) mouse, altered mitophagy may contribute to the dramatic neuron cell death observed in the cerebellum, suggesting that over-active mitophagy or insufficient mitophagy can both be deleterious. Finally, mitophagy has been linked to aging, as impaired macroautophagy over time promotes mitochondrial dysfunction associated with the aging process. Understanding the role of mitophagy in neural function, neurodegenerative disease, and aging represents an essential goal for future research in the autophagy field.
doi:10.1016/j.nbd.2010.09.009
PMCID: PMC3096708  PMID: 20887789
7.  The Double-edged Sword of Autophagy Modulation in Cancer 
Macroautophagy (autophagy) is a lysosomal degradation pathway for the breakdown of intracellular proteins and organelles. Although, constitutive autophagy is a homeostatic mechanism for intracellular recycling and metabolic regulation, autophagy is also stress responsive where it is important for the removal of damaged proteins and organelles. Autophagy thereby confers stress tolerance, limits damage and sustains viability under adverse conditions. Autophagy is a tumor suppression mechanism yet it enables tumor cell survival in stress. Reconciling how loss of a prosurvival function can promote tumorigenesis, emerging evidence suggests that preservation of cellular fitness by autophagy may be key to tumor suppression. As autophagy is such a fundamental process, establishing how the functional status of autophagy influences tumorigenesis and treatment response is important. This is especially critical as many current cancer therapeutics activate autophagy. Therefore, efforts to understand and modulate the autophagy pathway will provide new approaches to cancer therapy and prevention.
doi:10.1158/1078-0432.CCR-07-5023
PMCID: PMC2737083  PMID: 19706824
8.  The Mitochondrial Inner Membrane Protein Mitofilin Controls Cristae MorphologyD⃞ 
Molecular Biology of the Cell  2005;16(3):1543-1554.
Mitochondria are complex organelles with a highly dynamic distribution and internal organization. Here, we demonstrate that mitofilin, a previously identified mitochondrial protein of unknown function, controls mitochondrial cristae morphology. Mitofilin is enriched in the narrow space between the inner boundary and the outer membranes, where it forms a homotypic interaction and assembles into a large multimeric protein complex. Down-regulation of mitofilin in HeLa cells by using specific small interfering RNA lead to decreased cellular proliferation and increased apoptosis, suggesting abnormal mitochondrial function. Although gross mitochondrial fission and fusion seemed normal, ultrastructural studies revealed disorganized mitochondrial inner membrane. Inner membranes failed to form tubular or vesicular cristae and showed as closely packed stacks of membrane sheets that fused intermittently, resulting in a complex maze of membranous network. Electron microscopic tomography estimated a substantial increase in inner:outer membrane ratio, whereas no cristae junctions were detected. In addition, mitochondria subsequently exhibited increased reactive oxygen species production and membrane potential. Although metabolic flux increased due to mitofilin deficiency, mitochondrial oxidative phosphorylation was not increased accordingly. We propose that mitofilin is a critical organizer of the mitochondrial cristae morphology and thus indispensable for normal mitochondrial function.
doi:10.1091/mbc.E04-08-0697
PMCID: PMC551514  PMID: 15647377
9.  The inner membrane protein Mdm33 controls mitochondrial morphology in yeast 
The Journal of Cell Biology  2003;160(4):553-564.
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Δmdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein–protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.
doi:10.1083/jcb.200211113
PMCID: PMC2173741  PMID: 12591915
membrane fission; mitochondria; mitochondrial dynamics; organelle morphology; Saccharomyces cerevisiae
10.  Loss of Macroautophagy Promotes or Prevents Fibroblast Apoptosis Depending on the Death Stimulus*S◆ 
The Journal of biological chemistry  2007;283(8):4766-4777.
Macroautophagy has been implicated as a mechanism of cell death. However, the relationship between this degradative pathway and cell death is unclear as macroautophagy has been shown recently to protect against apoptosis. To better define the inter-play between these two critical cellular processes, we determined whether inhibition of macroautophagy could have both pro-apoptotic and anti-apoptotic effects in the same cell. Embryonic fibroblasts from mice with a knock-out of the essential macroautophagy gene atg5 were treated with activators of the extrinsic and intrinsic death pathways. Loss of macroautophagy sensitized these cells to caspase-dependent apoptosis from the death receptor ligands Fas and tumor necrosis factor-α (TNF-α). Atg5−/− mouse embryonic fibroblasts had increased activation of the mitochondrial death pathway in response to Fas/TNF-α in concert with decreased ATP levels. Fas/TNF-α treatment failed to up-regulate macroautophagy, and in fact, decreased activity at late time points. In contrast to their sensitization to Fas/TNF-α, Atg5−/− cells were resistant to death from menadione and UV light. In the absence of macroautophagy, an up-regulation of chaperone-mediated autophagy induced resistance to these stressors. These results demonstrate that inhibition of macroautophagy can promote or prevent apoptosis in the same cell and that the response is governed by the nature of the death stimulus and compensatory changes in other forms of autophagy. Experimental findings that an inhibition of macroautophagy blocks apoptosis do not prove that autophagy mediates cell death as this effect may result from the protective up-regulation of other autophagic pathways such as chaperone-mediated autophagy.
doi:10.1074/jbc.M706666200
PMCID: PMC2754125  PMID: 18073215
11.  Review: Autophagy and neurodegeneration: survival at a cost? 
Protein aggregation, mitochondrial impairment and oxidative stress are common to multiple neurodegenerative diseases. Homeostasis is regulated by a balanced set of anabolic and catabolic responses, which govern removal and repair of damaged proteins and organelles. Macroautophagy is an evolutionarily conserved pathway for the degradation of long-lived proteins, effete organelles and protein aggregates. Aberrations in macroautophagy have been observed in Alzheimer, Huntington, Parkinson, motor neurone and prion diseases. In this review, we will discuss the divergent roles of macroautophagy in neuro-degenerative diseases and suggest a potential regulatory mechanism that could determine cell death or survival outcomes. We also highlight emerging data on neurite morphology and synaptic remodelling that indicate the possibility of detrimental functional trade-offs in the face of neuronal cell survival, particularly if the need for elevated macroautophagy is sustained.
doi:10.1111/j.1365-2990.2010.01062.x
PMCID: PMC2860012  PMID: 20202120
autophagy; Beclin 1; cell death; neurite retraction; neuroprotection; PTEN-induced kinase 1
12.  Mitochondrial morphology and cardiovascular disease 
Cardiovascular Research  2010;88(1):16-29.
Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy, although the majority of studies have been largely confined to non-cardiac cells. Despite the unique arrangement of mitochondria in the adult heart, emerging data suggest that changes in mitochondrial morphology may be relevant to various aspects of cardiovascular biology—these include cardiac development, the response to ischaemia–reperfusion injury, heart failure, diabetes mellitus, and apoptosis. Interestingly, the machinery required for altering mitochondrial shape in terms of the mitochondrial fusion and fission proteins are all present in the adult heart, but their physiological function remains unclear. In this article, we review the current developments in this exciting new field of mitochondrial biology, the implications for cardiovascular physiology, and the potential for discovering novel therapeutic strategies for treating cardiovascular disease.
doi:10.1093/cvr/cvq237
PMCID: PMC2936127  PMID: 20631158
Mitochondrial morphology; Mitochondrial dynamics; Ischaemia–reperfusion injury; Mitochondrial fusion; Mitochondrial fission
13.  Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli 
EMBO molecular medicine  2010;2(12):490-503.
Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, is accompanied by multiple mitochondrial alterations. Here we show that mitochondrial fragmentation and cristae alterations characterize cellular models of HD and participate in their increased susceptibility to apoptosis. In HD cells the increased basal activity of the phosphatase calcineurin dephosphorylates the pro-fission dynamin related protein 1 (Drp1), increasing its mitochondrial translocation and activation, and ultimately leading to fragmentation of the organelle. The fragmented HD mitochondria are characterized by cristae alterations that are aggravated by apoptotic stimulation. A genetic analysis indicates that correction of mitochondrial elongation is not sufficient to rescue the increased cytochrome c release and cell death observed in HD cells. Conversely, the increased apoptosis can be corrected by manoeuvres that prevent fission and cristae remodelling. In conclusion, the cristae remodelling of the fragmented HD mitochondria contributes to their hypersensitivity to apoptosis.
doi:10.1002/emmm.201000102
PMCID: PMC3044888  PMID: 21069748
apoptosis; cristae remodelling; fission; Huntington's disease; mitochondria
14.  Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli 
EMBO Molecular Medicine  2010;2(12):490-503.
Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, is accompanied by multiple mitochondrial alterations. Here, we show that mitochondrial fragmentation and cristae alterations characterize cellular models of HD and participate in their increased susceptibility to apoptosis. In HD cells, the increased basal activity of the phosphatase calcineurin dephosphorylates the pro-fission dynamin related protein 1 (Drp1), increasing its mitochondrial translocation and activation, and ultimately leading to fragmentation of the organelle. The fragmented HD mitochondria are characterized by cristae alterations that are aggravated by apoptotic stimulation. A genetic analysis indicates that correction of mitochondrial elongation is not sufficient to rescue the increased cytochrome c release and cell death observed in HD cells. Conversely, the increased apoptosis can be corrected by manoeuvres that prevent fission and cristae remodelling. In conclusion, the cristae remodelling of the fragmented HD mitochondria contributes to their hypersensitivity to apoptosis.
doi:10.1002/emmm.201000102
PMCID: PMC3044888  PMID: 21069748
apoptosis; cristae remodelling; fission; Huntington's disease; mitochondria
15.  Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli 
EMBO Molecular Medicine  2010;2(12):490-503.
Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, is accompanied by multiple mitochondrial alterations. Here, we show that mitochondrial fragmentation and cristae alterations characterize cellular models of HD and participate in their increased susceptibility to apoptosis. In HD cells, the increased basal activity of the phosphatase calcineurin dephosphorylates the pro-fission dynamin related protein 1 (Drp1), increasing its mitochondrial translocation and activation, and ultimately leading to fragmentation of the organelle. The fragmented HD mitochondria are characterized by cristae alterations that are aggravated by apoptotic stimulation. A genetic analysis indicates that correction of mitochondrial elongation is not sufficient to rescue the increased cytochrome c release and cell death observed in HD cells. Conversely, the increased apoptosis can be corrected by manoeuvres that prevent fission and cristae remodelling. In conclusion, the cristae remodelling of the fragmented HD mitochondria contributes to their hypersensitivity to apoptosis.
doi:10.1002/emmm.201000102
PMCID: PMC3044888  PMID: 21069748
apoptosis; cristae remodelling; fission; Huntington's disease; mitochondria
16.  Monitoring Mitophagy in Neuronal Cell Cultures 
Proper control of mitochondrial turnover is critical for maintenance of cellular energetics under basal and stressed conditions, and for prevention of endogenous oxidative stress. Whole organelle turnover is mediated through macroautophagy, a process by which autophagosomes deliver mitochondria to the lysosome for hydrolytic degradation. While mitochondrial autophagy can occur as part of a nonselective upregulation of autophagy, selective degradation of damaged or unneeded mitochondria (mitophagy) is a rapidly growing area in development, cancer, and neurodegeneration, particularly with regard to Parkinson’s disease. Due to its dynamic nature, and the potential for regulatory perturbation by disease processes, no single technique is sufficient to evaluate mitophagy. Here, we describe several complementary techniques that include electron microscopy, single cell analysis of LC3 fluorescent puncta, and Western blot, each used in conjunction with a flux inhibitor to trap newly formed autophagosomes in order to monitor mitophagy in neuronal cells.
doi:10.1007/978-1-61779-328-8_21
PMCID: PMC3683873  PMID: 21913110
Autophagy; Mitophagy; Electron microscopy; Western Blot; RFP-LC3; GFP-LC3; Immunofluorescence
17.  Role of Macroautophagy in Nutrient Homeostasis During Fungal Development and Pathogenesis 
Cells  2012;1(3):449-463.
Macroautophagy is a non-selective, bulk degradation process conserved in eukaryotes. Response to starvation stress and/or regulation of nutrient breakdown/utilization is the major intracellular function of macroautophagy. Recent studies have revealed requirement for autophagy in diverse functions such as nutrient homeostasis, organelle degradation and programmed cell death in filamentous fungal pathogens, for proper morphogenesis and differentiation during critical steps of infection. In this review, we aim to summarize the physiological functions of autophagy in fungal virulence, with an emphasis on nutrient homeostasis in opportunistic human fungal pathogens and in the rice-blast fungus, Magnaporthe oryzae. We briefly summarize the role of autophagy on the host side: for resistance to, or subversion by, the pathogens.
doi:10.3390/cells1030449
PMCID: PMC3901100
autophagy; degradation; metabolism; fungi; pathogen; ROS
18.  Fuse or die 
Mitochondria continuously change their shape and thereby influence different cellular processes like cell death or development. Recently, we showed that during starvation mitochondria fuse into a highly connected network. The change in mitochondrial shape was dependent on inactivation of the fission protein Drp1, through targeting of two different phosphorylation sites. This rapid inhibition of mitochondrial fission led to unopposed fusion, protecting mitochondria from starvation-induced degradation and enabling the cell to survive nutrient scarce conditions.
PMCID: PMC3306350  PMID: 22446546
autophagy; starvation; mitochondria; fusion; fission; Drp1; PKA; Mfn1; Mfn2
19.  Atg32 is a mitochondrial protein that confers selectivity during mitophagy 
Developmental cell  2009;17(1):98-109.
Mitochondrial quality control is important to maintain proper cellular homeostasis. Although selective mitochondrial degradation by autophagy (mitophagy) is suggested to have an important role for quality control and there is evidence for a direct relation between mitophagy and neurodegenerative diseases, the molecular mechanism of mitophagy is poorly understood. Using a screen for mitophagy-deficient mutants, we found that YIL146C/ECM37 is essential for mitophagy. This gene is not required for other types of selective autophagy or for nonspecific macroautophagy. We designated this autophagy-related (ATG) gene as ATG32. The Atg32 protein localizes on mitochondria. Following the induction of mitophagy, Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and then Atg32 is recruited to and imported into the vacuole along with mitochondria. Therefore, Atg32 confers selectivity for mitochondrial sequestration as a cargo and is necessary for recruitment of this organelle by the autophagy machinery for mitophagy.
doi:10.1016/j.devcel.2009.06.014
PMCID: PMC2746076  PMID: 19619495
autophagy; ECM37; lysosome; mitochondria; stress; vacuole; yeast
20.  Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities 
Circulation Research  2012;110(8):1125-1138.
The prevalence of cardiovascular disease (CVD) increases with advancing age. While the long-term exposure to cardiovascular risk factors plays a major role in the etiopathogenesis of CVD, intrinsic cardiac aging enhances the susceptibility to developing heart pathologies in late life. The progressive decline of cardiomyocyte mitochondrial function is considered to be a major mechanism underlying heart senescence. Damaged mitochondria not only produce less ATP, but also generate increased amounts of reactive oxygen species (ROS) and display a greater propensity to trigger apoptosis. Given the post-mitotic nature of cardiomyocytes, the efficient removal of dysfunctional mitochondria is critical for the maintenance of cell homeostasis, as damaged organelles cannot be diluted by cell proliferation. The only known mechanism whereby mitochondria are turned over is through macroautophagy (MA). The efficiency of this process declines with advancing age which may play a critical role in heart senescence as well as in age-related CVD. This review illustrates the putative mechanisms whereby alterations in the autophagic removal of damaged mitochondria intervene in the process of cardiac aging as well as in the pathogenesis of specific heart diseases especially prevalent in late life (e.g., left ventricular hypertrophy, ischemic heart disease, heart failure, and diabetic cardiomyopathy). Interventions proposed to counter cardiac aging through improvements in MA (e.g., calorie restriction and calorie restriction mimetics) are also presented.
doi:10.1161/CIRCRESAHA.111.246108
PMCID: PMC3353545  PMID: 22499902
heart senescence; mitophagy; oxidative stress; resveratrol; calorie restriction
21.  Optic Atrophy 1-Dependent Mitochondrial Remodeling Controls Steroidogenesis in Trophoblasts 
Current Biology  2012;22(13):1228-1234.
Summary
During human pregnancy, placental trophoblasts differentiate and syncytialize into syncytiotrophoblasts that sustain progesterone production [1]. This process is accompanied by mitochondrial fragmentation and cristae remodeling [2], two facets of mitochondrial apoptosis, whose molecular mechanisms and functional consequences on steroidogenesis are unclear. Here we show that the mitochondria-shaping protein Optic atrophy 1 (Opa1) controls efficiency of steroidogenesis. During syncytialization of trophoblast BeWo cells, levels of the profission mitochondria-shaping protein Drp1 increase, and those of Opa1 and mitofusin (Mfn) decrease, leading to mitochondrial fragmentation and cristae remodeling. Manipulation of the levels of Opa1 reveal an inverse relationship with the efficiency of steroidogenesis in trophoblasts and in mouse embryonic fibroblasts where the mitochondrial steroidogenetic pathway has been engineered. In an in vitro assay, accumulation of cholesterol is facilitated in the inner membrane of isolated mitochondria lacking Opa1. Thus, Opa1-dependent inner membrane remodeling controls efficiency of steroidogenesis.
Graphical Abstract
Highlights
► Mitochondrial remodeling characterize differentiation of human trophoblasts ► Expression of Opa1 decreases during trophoblast differentiation ► Lowered Opa1 increases efficiency of steroidogenesis stimulating cholesterol flux
doi:10.1016/j.cub.2012.04.054
PMCID: PMC3396839  PMID: 22658590
22.  Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome 
Mitochondria are important organelles for providing the ATP and carbon skeletons required to sustain cell growth. While these organelles also participate in other key metabolic functions across species, they have a specialized role in plants of optimizing photosynthesis through participating in photorespiration. It is therefore critical to map the protein composition of mitochondria in plants to gain a better understanding of their regulation and define the uniqueness of their metabolic networks. To date, <30% of the predicted number of mitochondrial proteins has been verified experimentally by proteomics and/or GFP localization studies. In this mini-review, we will provide an overview of the advances in mitochondrial proteomics in the model plant Arabidopsis thaliana over the past 5 years. The ultimate goal of mapping the mitochondrial proteome in Arabidopsis is to discover novel mitochondrial components that are critical during development in plants as well as genes involved in developmental abnormalities, such as those implicated in mitochondrial-linked cytoplasmic male sterility.
doi:10.3389/fpls.2013.00004
PMCID: PMC3554846  PMID: 23355843
Arabidopsis thaliana; mitochondria; proteomics; heterogeneity; protein complex; post-translational modifications; functional proteomics
23.  Effects of mutations in mitochondrial dynamics-related genes on the mitochondrial response to ultraviolet C radiation in developing Caenorhabditis elegans 
Worm  2013;2(1):e23763.
We recently found that genes involved in mitochondrial dynamics and autophagy are required for removal of UVC-induced mitochondrial DNA damage. However, drp-1 and pink-1, unlike the autophagy and fusion genes tested, were not necessary for larval development after exposure. We hypothesized that increased fusion resulting from mutations in these genes facilitated recovery of mitochondrial function. In this work, we investigated this hypothesis by studying the effects of fis-1, fis-2, drp-1 and pink-1 mutations on mitochondrial responses to UVC exposure including ATP levels, mitochondrial DNA copy number, larval development and mitochondrial morphology. Our results suggest that mutations that promote highly networked mitochondria have the capacity to lessen the effects of mitochondrial genotoxicants on the function of this organelle.
doi:10.4161/worm.23763
PMCID: PMC3670464  PMID: 24058863
ultraviolet C radiation; Caenorhabditis elegans; mitochondrial DNA; autophagy; mitochondrial dynamics; pink-1; drp-1; fis-1; fis-2
24.  Mitochondrial Fission and Autophagy in the Normal and Diseased Heart 
Current hypertension reports  2010;12(6):418-425.
Sustained hypertension promotes structural, functional and metabolic remodeling of cardiomyocyte mitochondria. As long-lived, postmitotic cells, cardiomyocytes turn over mitochondria continuously to compensate for changes in energy demands and to remove damaged organelles. This process involves fusion and fission of existing mitochondria to generate new organelles and separate old ones for degradation via autophagy. Autophagy is a lysosome-dependent proteolytic pathway capable of processing cellular components, including organelles and protein aggregates. Autophagy can be either nonselective or selective and contributes to remodeling of the myocardium under stress. Fission of mitochondria, loss of membrane potential, and ubiquitination are emerging as critical steps that direct selective autophagic degradation of mitochondria. This review discusses the molecular mechanisms controlling mitochondrial dynamics, including fission, fusion, transport, and degradation. Furthermore, it examines recent studies revealing the importance of these processes in normal and diseased heart.
doi:10.1007/s11906-010-0147-x
PMCID: PMC3032809  PMID: 20865352
Mitochondrial dynamics; Mitochondrial fission; Mitochondrial fusion; Autophagy; Mitophagy; Metabolism; Hypertension; Heart failure
25.  Autophagy and Mitochondria in Pompe Disease: Nothing is so New as What Has Long Been Forgotten* 
Macroautophagy (often referred to as autophagy) is an evolutionarily conserved intracellular system by which macromolecules and organelles are delivered to lysosomes for degradation and recycling. Autophagy is robustly induced in response to starvation in order to generate nutrients and energy through the lysosomal degradation of cytoplasmic components. Constitutive, basal autophagy serves as a quality control mechanism for the elimination of aggregated proteins and worn-out or damaged organelles, such as mitochondria. Research during the last decade has made it clear that malfunctioning or failure of this system is associated with a vide range of human pathologies and age-related diseases. Our recent data provide strong evidence for the role of autophagy in the pathogenesis of Pompe disease, a lysosomal glycogen storage disease caused by deficiency of acid alpha-glucosidase (GAA). Large pools of autophagic debris in skeletal muscle cells can be seen in both our GAA knockout model and patients with Pompe disease. In this review, we will focus on these recent data, and comment on the not so recent observations pointing to the involvement of autophagy in skeletal muscle damage in Pompe disease.
doi:10.1002/ajmg.c.31317
PMCID: PMC3265635  PMID: 22253254
autophagy; muscle; mitochondria; lysosome; glycogen storage

Results 1-25 (508171)