PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (926927)

Clipboard (0)
None

Related Articles

1.  Air Pollution and the Microvasculature: A Cross-Sectional Assessment of In Vivo Retinal Images in the Population-Based Multi-Ethnic Study of Atherosclerosis (MESA) 
PLoS Medicine  2010;7(11):e1000372.
Sara Adar and colleagues show that residing in locations with higher air pollution concentrations and experiencing daily increases in air pollution are associated with narrower retinal arteriolar diameters in older individuals, thus providing a link between air pollution and cardiovascular disease.
Background
Long- and short-term exposures to air pollution, especially fine particulate matter (PM2.5), have been linked to cardiovascular morbidity and mortality. One hypothesized mechanism for these associations involves microvascular effects. Retinal photography provides a novel, in vivo approach to examine the association of air pollution with changes in the human microvasculature.
Methods and Findings
Chronic and acute associations between residential air pollution concentrations and retinal vessel diameters, expressed as central retinal arteriolar equivalents (CRAE) and central retinal venular equivalents (CRVE), were examined using digital retinal images taken in Multi-Ethnic Study of Atherosclerosis (MESA) participants between 2002 and 2003. Study participants (46 to 87 years of age) were without clinical cardiovascular disease at the baseline examination (2000–2002). Long-term outdoor concentrations of PM2.5 were estimated at each participant's home for the 2 years preceding the clinical exam using a spatio-temporal model. Short-term concentrations were assigned using outdoor measurements on the day preceding the clinical exam. Residential proximity to roadways was also used as an indicator of long-term traffic exposures. All associations were examined using linear regression models adjusted for subject-specific age, sex, race/ethnicity, education, income, smoking status, alcohol use, physical activity, body mass index, family history of cardiovascular disease, diabetes status, serum cholesterol, glucose, blood pressure, emphysema, C-reactive protein, medication use, and fellow vessel diameter. Short-term associations were further controlled for weather and seasonality. Among the 4,607 participants with complete data, CRAE were found to be narrower among persons residing in regions with increased long- and short-term levels of PM2.5. These relationships were observed in a joint exposure model with −0.8 µm (95% confidence interval [CI] −1.1 to −0.5) and −0.4 µm (95% CI −0.8 to 0.1) decreases in CRAE per interquartile increases in long- (3 µg/m3) and short-term (9 µg/m3) PM2.5 levels, respectively. These reductions in CRAE are equivalent to 7- and 3-year increases in age in the same cohort. Similarly, living near a major road was also associated with a −0.7 µm decrease (95% CI −1.4 to 0.1) in CRAE. Although the chronic association with CRAE was largely influenced by differences in exposure between cities, this relationship was generally robust to control for city-level covariates and no significant differences were observed between cities. Wider CRVE were associated with living in areas of higher PM2.5 concentrations, but these findings were less robust and not supported by the presence of consistent acute associations with PM2.5.
Conclusions
Residing in regions with higher air pollution concentrations and experiencing daily increases in air pollution were each associated with narrower retinal arteriolar diameters in older individuals. These findings support the hypothesis that important vascular phenomena are associated with small increases in short-term or long-term air pollution exposures, even at current exposure levels, and further corroborate reported associations between air pollution and the development and exacerbation of clinical cardiovascular disease.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a common cause of illness and death among adults in developed countries. In the United States, for example, the leading cause of death is coronary heart disease, a CVD in which narrowing of the heart's arteries by atherosclerotic plaques (fatty deposits that build up with age) slows the blood supply to the heart and may eventually cause a heart attack (myocardial infarction). Other types of CVD include stroke (in which atherosclerotic plaques interrupt the brain's blood supply) and peripheral arterial disease (in which the blood supply to the limbs is blocked). Smoking, high blood pressure, high blood levels of cholesterol (a type of fat), having diabetes, being overweight, and being physically inactive all increase a person's risk of developing CVD. Treatments for CVD include lifestyle changes and taking drugs that lower blood pressure or blood cholesterol levels.
Why Was This Study Done?
Another risk factor for CVD is exposure to long-term and/or short-term air pollution. Fine particle pollution or PM2.5 is particularly strongly associated with an increased risk of CVD. PM2.5—particulate matter 2.5 µm in diameter or 1/30th the diameter of a human hair—is mainly produced by motor vehicles, power plants, and other combustion sources. Why PM2.5 increases CVD risk is not clear but one possibility is that it alters the body's microvasculature (fine blood vessels known as capillaries, arterioles, and venules), thereby impairing the blood flow through the heart and brain. In this study, the researchers use noninvasive digital retinal photography to investigate whether there is an association between air pollution and changes in the human microvasculature. The retina—a light-sensitive layer at the back of the eye that converts images into electrical messages and sends them to the brain—has a dense microvasculature. Retinal photography is used to check the retinal microvasculature for signs of potentially blinding eye diseases such as diabetic retinopathy. Previous studies have found that narrower than normal retinal arterioles and wider than normal retinal venules are associated with CVD.
What Did the Researchers Do and Find?
The researchers used digital retinal photography to measure the diameters of retinal blood vessels in the participants of the Multi-Ethnic Study of Atherosclerosis (MESA). This study is investigating CVD progression in people aged 45–84 years of various ethnic backgrounds who had no CVD symptoms when they enrolled in the study in 2000–2002. The researchers modeled the long-term outdoor concentration of PM2.5 at each participant's house for the 2-year period preceding the retinal examination (which was done between 2002 and 2003) using data on PM2.5 levels collected by regulatory monitoring stations as well as study-specific air samples collected outside of the homes and in the communities of study participants. Outdoor PM2.5 measurements taken the day before the examination provided short-term PM2.5 levels. Among the 4,607 MESA participants who had complete data, retinal arteriolar diameters were narrowed among those who lived in regions with increased long- and short-term PM2.5 levels. Specifically, an increase in long-term PM2.5 concentrations of 3 µg/m3 was associated with a 0.8 µm decrease in arteriolar diameter, a reduction equivalent to that seen for a 7-year increase in age in this group of people. Living near a major road, another indicator of long-term exposure to PM2.5 pollution, was also associated with narrowed arterioles. Finally, increased retinal venular diameters were weakly associated with long-term high PM2.5 concentrations.
What Do These Findings Mean?
These findings indicate that living in areas with long-term air pollution or being exposed to short-term air pollution is associated with narrowing of the retinal arterioles in older individuals. They also show that widening of retinal venules is associated with long-term (but not short-term) PM2.5 pollution. Together, these findings support the hypothesis that long- and short-term air pollution increases CVD risk through effects on the microvasculature. However, they do not prove that PM2.5 is the constituent of air pollution that drives microvascular changes—these findings could reflect the toxicity of another pollutant or the pollution mixture as a whole. Importantly, these findings show that microvascular changes can occur at the PM2.5 levels that commonly occur in developed countries, which are well below those seen in developing countries. Worryingly, they also suggest that the deleterious cardiovascular effects of air pollution could occur at levels below existing regulatory standards.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/ 10.1371/journal.pmed.1000372.
The American Heart Association provides information for patients and caregivers on all aspects of cardiovascular disease (in several languages), including information on air pollution, heart disease, and stroke
The US Centers for Disease Control and Prevention has information on heart disease and on stroke
Information is available from the British Heart Foundation on cardiovascular disease
The UK National Health Service Choices website provides information for patients and caregivers about cardiovascular disease
MedlinePlus provides links to other sources of information on heart disease and on vascular disease (in English and Spanish)
The AIRNow site provides information about US air quality and about air pollution and health
The Air Quality Archive has up-to-date information about air pollution in the UK and information about the health effects of air pollution
The US Environmental Protection Agency has information on PM2.5
The following Web sites contain information available on the MESA and MESA Air studies
doi:10.1371/journal.pmed.1000372
PMCID: PMC2994677  PMID: 21152417
2.  Health Impacts of the Built Environment: Within-Urban Variability in Physical Inactivity, Air Pollution, and Ischemic Heart Disease Mortality 
Environmental Health Perspectives  2011;120(2):247-253.
Background: Physical inactivity and exposure to air pollution are important risk factors for death and disease globally. The built environment may influence exposures to these risk factors in different ways and thus differentially affect the health of urban populations.
Objective: We investigated the built environment’s association with air pollution and physical inactivity, and estimated attributable health risks.
Methods: We used a regional travel survey to estimate within-urban variability in physical inactivity and home-based air pollution exposure [particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), nitrogen oxides (NOx), and ozone (O3)] for 30,007 individuals in southern California. We then estimated the resulting risk for ischemic heart disease (IHD) using literature-derived dose–response values. Using a cross-sectional approach, we compared estimated IHD mortality risks among neighborhoods based on “walkability” scores.
Results: The proportion of physically active individuals was higher in high- versus low-walkability neighborhoods (24.9% vs. 12.5%); however, only a small proportion of the population was physically active, and between-neighborhood variability in estimated IHD mortality attributable to physical inactivity was modest (7 fewer IHD deaths/100,000/year in high- vs. low-walkability neighborhoods). Between-neighborhood differences in estimated IHD mortality from air pollution were comparable in magnitude (9 more IHD deaths/100,000/year for PM2.5 and 3 fewer IHD deaths for O3 in high- vs. low-walkability neighborhoods), suggesting that population health benefits from increased physical activity in high-walkability neighborhoods may be offset by adverse effects of air pollution exposure.
Policy implications: Currently, planning efforts mainly focus on increasing physical activity through neighborhood design. Our results suggest that differences in population health impacts among neighborhoods are similar in magnitude for air pollution and physical activity. Thus, physical activity and exposure to air pollution are critical aspects of planning for cleaner, health-promoting cities.
doi:10.1289/ehp.1103806
PMCID: PMC3279444  PMID: 22004949
active travel; air quality; environmental planning; infill; risk assessment; urban form
3.  Long-Term Exposure to Constituents of Fine Particulate Air Pollution and Mortality: Results from the California Teachers Study 
Environmental Health Perspectives  2009;118(3):363-369.
Background
Several studies have reported associations between long-term exposure to ambient fine particulate matter (PM) and cardiovascular mortality. However, the health impacts of long-term exposure to specific constituents of PM2.5 (PM with aerodynamic diameter ≤ 2.5 μm) have not been explored.
Methods
We used data from the California Teachers Study, a prospective cohort of active and former female public school professionals. We developed estimates of long-term exposures to PM2.5 and several of its constituents, including elemental carbon, organic carbon (OC), sulfates, nitrates, iron, potassium, silicon, and zinc. Monthly averages of exposure were created using pollution data from June 2002 through July 2007. We included participants whose residential addresses were within 8 and 30 km of a monitor collecting PM2.5 constituent data. Hazard ratios (HRs) were estimated for long-term exposure for mortality from all nontraumatic causes, cardiopulmonary disease, ischemic heart disease (IHD), and pulmonary disease.
Results
Approximately 45,000 women with 2,600 deaths lived within 30 km of a monitor. We observed associations of all-cause, cardiopulmonary, and IHD mortality with PM2.5 mass and each of its measured constituents, and between pulmonary mortality and several constituents. For example, for cardiopulmonary mortality, HRs for interquartile ranges of PM2.5, OC, and sulfates were 1.55 [95% confidence interval (CI), 1.43–1.69], 1.80 (95% CI, 1.68–1.93), and 1.79 (95% CI, 1.58–2.03), respectively. Subsequent analyses indicated that, of the constituents analyzed, OC and sulfates had the strongest associations with all four outcomes.
Conclusions
Long-term exposures to PM2.5 and several of its constituents were associated with increased risks of all-cause and cardiopulmonary mortality in this cohort. Constituents derived from combustion of fossil fuel (including diesel), as well as those of crustal origin, were associated with some of the greatest risks. These results provide additional evidence that reduction of ambient PM2.5 may provide significant public health benefits.
doi:10.1289/ehp.0901181
PMCID: PMC2854764  PMID: 20064787
cardiopulmonary mortality; chronic exposure; cohort study; elemental carbon; fine particles; organic carbon; PM2.5; species; sulfates
4.  Associations between daily mortalities from respiratory and cardiovascular diseases and air pollution in Hong Kong, China 
Wong, T | Tam, W | Yu, T | Wong, A
Objective: To investigate the association between ambient concentrations of air pollutants and respiratory and cardiovascular mortalities in Hong Kong.
Methods: Retrospective ecological study. A Poisson regression of concentrations of daily air pollutants on daily mortalities for respiratory and cardiovascular diseases in Hong Kong from 1995 to the end of 1998 was performed using the air pollution and health: the European approach (APHEA) protocol. The effects of time trend, seasonal variations, temperature, and humidity were adjusted. Autocorrelation and overdispersion were corrected. Daily concentrations of nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), and particulate matter <10 µm in aerodynamic diameter (PM10) were averaged from eight monitoring stations in Hong Kong. Relative risks (RRs) of respiratory and cardiovascular mortalities (per 10 µg/m3 increase in air pollutant concentration) were calculated.
Results: Significant associations were found between mortalities for all respiratory diseases and ischaemic heart diseases (IHD) and the concentrations of all pollutants when analysed singly. The RRs for all respiratory mortalities (for a 10 µg/m3 increase in the concentration of a pollutant) ranged from 1.008 (for PM10) to 1.015 (for SO2) and were higher for chronic obstructive pulmonary diseases (COPD) with all pollutants except SO2, ranging from 1.017 (for PM10) to 1.034 (for O3). RRs for IHD ranged from 1.009 (for O3) to 1.028 (for SO2). In a multipollutant model, O3 and SO2 were significantly associated with all respiratory mortalities, whereas NO2 was associated with mortality from IHD. No interactions were detected between any of the pollutants or with the winter season. A dose-response effect was evident for all air pollutants. Harvesting was not found in the short term.
Conclusions: Mortality risks were detected at current ambient concentrations of air pollutants. The associations with the particulates and some gaseous pollutants when analysed singly were consistent with many reported in temperate countries. PM10 was not associated with respiratory or cardiovascular mortalities in multipollutant analyses.
doi:10.1136/oem.59.1.30
PMCID: PMC1740206  PMID: 11836466
5.  Mortality Associations with Long-Term Exposure to Outdoor Air Pollution in a National English Cohort 
Rationale: Cohort evidence linking long-term exposure to outdoor particulate air pollution and mortality has come largely from the United States. There is relatively little evidence from nationally representative cohorts in other countries.
Objectives: To investigate the relationship between long-term exposure to a range of pollutants and causes of death in a national English cohort.
Methods: A total of 835,607 patients aged 40–89 years registered with 205 general practices were followed from 2003–2007. Annual average concentrations in 2002 for particulate matter with a median aerodynamic diameter less than 10 (PM10) and less than 2.5 μm (PM2.5), nitrogen dioxide (NO2), ozone, and sulfur dioxide (SO2) at 1 km2 resolution, estimated from emission-based models, were linked to residential postcode. Deaths (n = 83,103) were ascertained from linkage to death certificates, and hazard ratios (HRs) for all- and cause-specific mortality for pollutants were estimated for interquartile pollutant changes from Cox models adjusting for age, sex, smoking, body mass index, and area-level socioeconomic status markers.
Measurements and Main Results: Residential concentrations of all pollutants except ozone were positively associated with all-cause mortality (HR, 1.02, 1.03, and 1.04 for PM2.5, NO2, and SO2, respectively). Associations for PM2.5, NO2, and SO2 were larger for respiratory deaths (HR, 1.09 each) and lung cancer (HR, 1.02, 1.06, and 1.05) but nearer unity for cardiovascular deaths (1.00, 1.00, and 1.04).
Conclusions: These results strengthen the evidence linking long-term ambient air pollution exposure to increased all-cause mortality. However, the stronger associations with respiratory mortality are not consistent with most US studies in which associations with cardiovascular causes of death tend to predominate.
doi:10.1164/rccm.201210-1758OC
PMCID: PMC3734610  PMID: 23590261
air pollution; mortality; cohort study; respiratory
6.  A Systematic Review of Occupational Exposure to Particulate Matter and Cardiovascular Disease 
Exposure to ambient particulate air pollution is a recognized risk factor for cardiovascular disease; however the link between occupational particulate exposures and adverse cardiovascular events is less clear. We conducted a systematic review, including meta-analysis where appropriate, of the epidemiologic association between occupational exposure to particulate matter and cardiovascular disease. Out of 697 articles meeting our initial criteria, 37 articles published from January 1990 to April 2009 (12 mortality; 5 morbidity; and 20 intermediate cardiovascular endpoints) were included. Results suggest a possible association between occupational particulate exposures and ischemic heart disease (IHD) mortality as well as non-fatal myocardial infarction (MI), and stronger evidence of associations with heart rate variability and systemic inflammation, potential intermediates between occupational PM exposure and IHD. In meta-analysis of mortality studies, a significant increase in IHD was observed (meta-IRR = 1.16; 95% CI: 1.06–1.26), however these data were limited by lack of adequate control for smoking and other potential confounders. Further research is needed to better clarify the magnitude of the potential risk of the development and aggravation of IHD associated with short and long-term occupational particulate exposures and to clarify the clinical significance of acute and chronic changes in intermediate cardiovascular outcomes.
doi:10.3390/ijerph7041773
PMCID: PMC2872342  PMID: 20617059
particles; air pollution; epidemiology; environmental health; ischemic heart disease; occupation; inflammation; heart rate variability; meta-analysis
7.  An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure 
Environmental Health Perspectives  2014;122(4):397-403.
Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking.
Objective: We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age.
Methods: We fit an integrated exposure–response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations.
Results: The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI.
Conclusions: We developed a fine particulate mass–based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available.
Citation: Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR, Smith KR, Balmes JR, Bruce NG, Kan H, Laden F, Prüss-Ustün A, Turner MC, Gapstur SM, Diver WR, Cohen A. 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122:397–403; http://dx.doi.org/10.1289/ehp.1307049
doi:10.1289/ehp.1307049
PMCID: PMC3984213  PMID: 24518036
8.  Long-Term Exposure to Urban Air Pollution and Mortality in a Cohort of More than a Million Adults in Rome 
Environmental Health Perspectives  2013;121(3):324-331.
Background: Few European studies have investigated the effects of long-term exposure to both fine particulate matter (≤ 2.5 µm; PM2.5) and nitrogen dioxide (NO2) on mortality.
Objectives: We studied the association of exposure to NO2, PM2.5, and traffic indicators on cause-specific mortality to evaluate the form of the concentration–response relationship.
Methods: We analyzed a population-based cohort enrolled at the 2001 Italian census with 9 years of follow-up. We selected all 1,265,058 subjects ≥ 30 years of age who had been living in Rome for at least 5 years at baseline. Residential exposures included annual NO2 (from a land use regression model) and annual PM2.5 (from a Eulerian dispersion model), as well as distance to roads with > 10,000 vehicles/day and traffic intensity. We used Cox regression models to estimate associations with cause-specific mortality adjusted for individual (sex, age, place of birth, residential history, marital status, education, occupation) and area (socioeconomic status, clustering) characteristics.
Results: Long-term exposures to both NO2 and PM2.5 were associated with an increase in nonaccidental mortality [hazard ratio (HR) = 1.03 (95% CI: 1.02, 1.03) per 10-µg/m3 NO2; HR = 1.04 (95% CI: 1.03, 1.05) per 10-µg/m3 PM2.5]. The strongest association was found for ischemic heart diseases (IHD) [HR = 1.10 (95% CI: 1.06, 1.13) per 10-µg/m3 PM2.5], followed by cardiovascular diseases and lung cancer. The only association showing some deviation from linearity was that between NO2 and IHD. In a bi-pollutant model, the estimated effect of NO2 on mortality was independent of PM2.5.
Conclusions: This large study strongly supports an effect of long-term exposure to NO2 and PM2.5 on mortality, especially from cardiovascular causes. The results are relevant for the next European policy decisions regarding air quality.
doi:10.1289/ehp.1205862
PMCID: PMC3621202  PMID: 23308401
air pollution; cardiovascular mortality; fine particulate matter; ischemic heart disease; lung cancer; mortality; nitrogen dioxide
9.  Ozone and cardiovascular injury 
Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular diseases in urban communities. The potential detrimental effects are both acute and chronic having a strong impact on morbidity and mortality. The acute exposure to pollutants has been linked to adverse cardiovascular events such as myocardial infarction, heart failure and life-threatening arrhythmias. The long-terms effects are related to the lifetime risk of death from cardiac causes. The WHO estimates that air pollution is responsible for 3 million premature deaths each year. The evidence supporting these data is very strong nonetheless, epidemiologic and observational data have the main limitation of imprecise measurements. Moreover, the lack of clinical experimental models makes it difficult to demonstrate the individual risk. The other limitation is related to the lack of a clear mechanism explaining the effects of pollution on cardiovascular mortality. In the present review we will explore the epidemiological, clinical and experimental evidence of the effects of ozone on cardiovascular diseases.
The pathophysiologic consequences of air pollutant exposures have been extensively investigated in pulmonary systems, and it is clear that some of the major components of air pollution (e.g. ozone and particulate matter) can initiate and exacerbate lung disease in humans [1]. It is possible that pulmonary oxidant stress mediated by particulate matter and/or ozone (O3) exposure can result in downstream perturbations in the cardiovasculature, as the pulmonary and cardiovascular systems are intricately associated, and it is well documented that specific environmental toxins (such as tobacco smoke [2]) introduced through the lungs can initiate and/or accelerate cardiovascular disease development. Indeed, several epidemiologic studies have proved that there is an association between PM and O3 and the increased incidence of cardiovascular morbidity and mortality [3]. Most of the evidence comes from studies of ambient particles concentrations. However, in Europe and elsewhere, the air pollution profile has gradually changed toward a more pronounced photochemical component. Ozone is one of the most toxic components of the photochemical air pollution mixture. Indeed, the biological basis for these observations has not been elucidated.
In the present review, the role of ozone as chemical molecule will be firstly considered. Secondly, pathogenetic mechanisms connecting the atmospheric ozone level and cardiovascular pathology will be examined. Thirdly, the literature relating hospitalization frequency, morbidity and mortality due to cardiovascular causes and ozone concentration will be studied. The correlation between ozone level and occurrence of acute myocardial infarction will be eventually discussed.
doi:10.1186/1476-7120-7-30
PMCID: PMC2706799  PMID: 19552797
10.  Exposure to Particulate Air Pollution and Risk of Deep Vein Thrombosis 
Archives of internal medicine  2008;168(9):920-927.
Background
Particulate air pollution has been linked to heart disease and stroke, possibly resulting from enhanced coagulation and arterial thrombosis. Whether particulate air pollution exposure is related to venous thrombosis is unknown.
Methods
We examined the association of exposure to particulate matter of less than 10 µm in aerodynamic diameter (PM10) with DVT risk in 870 patients and 1210 controls from Lombardia Region, Italy examined between 1995–2005. We estimated exposure to particulate matter of less than 10 µm in aerodynamic diameter (PM10) in the year before DVT diagnosis (cases) or examination (controls) through area-specific average levels obtained from ambient monitors.
Results
Higher average PM10 level in the year before the examination was associated with shortened Prothrombin Time (PT) in DVT cases (beta=−0.12; 95% CI −0.23, 0.00; p=0.04) and controls (beta=-0.06; 95% CI −0.11, 0.00, p=0.04). Each PM10 increase of 10 µg/m3 was associated with a 70% increase in DVT risk (OR=1.70; 95% CI, 1.30–2.23; p=0.0001) in models adjusting for clinical and environmental covariates. The exposure-response relationship was approximately linear over the observed PM10 range. The association between PM10 and DVT was weaker in women (OR=1.40; 95% CI, 1.02–1.92; p=0.02 for the interaction between PM10 and sex), particularly in those using oral contraceptives or hormone replacement therapy (OR=0.97; 95% CI 0.58–1.61; p=0.048 for the interaction between PM10 and hormone use).
Conclusions
Long-term exposure to particulate air pollution is associated with altered coagulation function and DVT risk. Other risk factors for DVT may modulate the effect of particulate air pollution.
doi:10.1001/archinte.168.9.920
PMCID: PMC3093962  PMID: 18474755
11.  Chronic and Acute Effects of Coal Tar Pitch Exposure and Cardiopulmonary Mortality Among Aluminum Smelter Workers 
American Journal of Epidemiology  2010;172(7):790-799.
Air pollution causes several adverse cardiovascular and respiratory effects. In occupational studies, where levels of particulate matter and polycyclic aromatic hydrocarbons (PAHs) are higher, the evidence is inconsistent. The effects of acute and chronic PAH exposure on cardiopulmonary mortality were examined within a Kitimat, Canada, aluminum smelter cohort (n = 7,026) linked to a national mortality database (1957–1999). No standardized mortality ratio was significantly elevated compared with the province's population. Smoking-adjusted internal comparisons were conducted using Cox regression for male subjects (n = 6,423). Ischemic heart disease (IHD) mortality (n = 281) was associated with cumulative benzo[a]pyrene (B(a)P) exposure (hazard ratio = 1.62, 95% confidence interval: 1.06, 2.46) in the highest category. A monotonic but nonsignificant trend was observed with chronic B(a)P exposure and acute myocardial infarction (n = 184). When follow-up was restricted to active employment, the hazard ratio for IHD was 2.39 (95% confidence interval: 0.95, 6.05) in the highest cumulative B(a)P category. The stronger associations observed during employment suggest that risk may not persist after exposure cessation. No associations with recent or current exposure were observed. IHD was associated with chronic (but not current) PAH exposure in a high-exposure occupational setting. Given the widespread workplace exposure to PAHs and heart disease's high prevalence, even modest associations produce a high burden.
doi:10.1093/aje/kwq208
PMCID: PMC2984260  PMID: 20702507
air pollutants; cohort studies; heart diseases; occupational diseases; polycyclic hydrocarbons, aromatic
12.  Adverse effects of outdoor pollution in the elderly 
Journal of Thoracic Disease  2015;7(1):34-45.
With fewer newborns and people living longer, older people are making up an increasing fraction of the total population. Epidemiological evidence shows that older-age-related health problems affect a wide and expanding proportion of the world population. One of the major epidemiological trends of this century is the rise of chronic diseases that affect more elderly than younger people. A total of 3.7 million premature deaths worldwide in 2012 are attributable to outdoor air pollution; the susceptibility to adverse effects of air pollution is expected to differ widely between people and within the same person, and also over time. Frailty history, a measure of multi-system decline, modifies cumulative associations between air pollution and lung function. Moreover, pre-existing diseases may determine susceptibility. In the elderly, due to comorbidity, exposure to air pollutants may even be fatal. Rapid and not-well-planned urbanization is associated with high level of ambient air pollution, mainly caused by vehicular exhausts. In general, there is sufficient evidence of the adverse effects related to short-term exposure, while fewer studies have addressed the longer-term health effects. Increased pollution exposures have been associated with increased mortality, hospital admissions/emergency-room visits, mainly due to exacerbations of chronic diseases or to respiratory tract infections (e.g., pneumonia). These effects may also be modulated by ambient temperature and many studies show that the elderly are mostly vulnerable to heat waves. The association between heat and mortality in the elderly is well-documented, while less is known regarding the associations with hospital admissions. Chronic exposure to elevated levels of air pollution has been related to the incidence of chronic obstructive pulmonary disease (COPD), chronic bronchitis (CB), asthma, and emphysema. There is also growing evidence suggesting adverse effects on lung function related to long-term exposure to ambient air pollution. Few studies have assessed long-term mortality in the elderly. It is still unclear what are the pollutants most damaging to the health of the elderly. It seems that elderly subjects are more vulnerable to particulate matter (PM) than to other pollutants, with particular effect on daily cardio-respiratory mortality and acute hospital admissions. Not many studies have targeted elderly people specifically, as well as specific respiratory morbidity. Most data have shown higher risks in the elderly compared to the rest of the population. Future epidemiological cohort studies need to keep investigating the health effects of air pollutants (mainly cardiopulmonary diseases) on the elderly.
doi:10.3978/j.issn.2072-1439.2014.12.10
PMCID: PMC4311079
Outdoor air pollution; elderly people; frailty elderly; respiratory disease; environmental exposure
13.  Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality 
Heart  2014;100(14):1093-1098.
Objective
To inform potential pathophysiological mechanisms of air pollution effects on cardiovascular disease (CVD), we investigated short-term associations between ambient air pollution and a range of cardiovascular events from three national databases in England and Wales.
Methods
Using a time-stratified case-crossover design, over 400 000 myocardial infarction (MI) events from the Myocardial Ischaemia National Audit Project (MINAP) database, over 2 million CVD emergency hospital admissions and over 600 000 CVD deaths were linked with daily mean concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter less than 10 μm in aerodynamic diameter (PM10), particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) and sulfur dioxide (SO2), and daily maximum of 8-hourly running mean of O3 measured at the nearest air pollution monitoring site to the place of residence. Pollutant effects were modelled using lags up to 4 days and adjusted for ambient temperature and day of week.
Results
For mortality, no CVD outcome analysed was clearly associated with any pollutant, except for PM2.5 with arrhythmias, atrial fibrillation and pulmonary embolism. With hospital admissions, only NO2 was associated with a raised risk: CVD 1.7% (95% CI 0.9 to 2.6), non-MI CVD 2.0% (1.1 to 2.9), arrhythmias 2.9% (0.6 to 5.2), atrial fibrillation 2.8% (0.3 to 5.4) and heart failure 4.4% (2.0 to 6.8) for a 10th–90th centile increase. With MINAP, only NO2 was associated with an increased risk of MI, which was specific to non-ST-elevation myocardial infarction (non-STEMIs): 3.6% (95% CI 0.4 to 6.9).
Conclusions
This study found no clear evidence for pollution effects on STEMIs and stroke, which ultimately represent thrombogenic processes, though it did for pulmonary embolism. The strongest associations with air pollution were observed with selected non-MI outcomes.
doi:10.1136/heartjnl-2013-304963
PMCID: PMC4078678  PMID: 24952943
MYOCARDIAL ISCHAEMIA AND INFARCTION (IHD); ARRHYTHMIAS
14.  Effects of air pollutants on acute stroke mortality. 
Environmental Health Perspectives  2002;110(2):187-191.
The relationship between stroke and air pollution has not been adequately studied. We conducted a time-series study to examine the evidence of an association between air pollutants and stroke over 4 years (January 1995-December 1998) in Seoul, Korea. We used a generalized additive model to regress daily stroke death counts for each pollutant, controlling for seasonal and long-term trends and meteorologic influences, such as temperature, relative humidity, and barometric pressure. We observed an estimated increase of 1.5% [95% confidence interval (CI), 1.3-1.8%] and 2.9% (95% CI, 0.3-5.5%) in stroke mortality for each interquartile range increase in particulate matter < 10 microm aerodynamic diameter (PM(10)) and ozone concentrations in the same day. Stroke mortality also increased 3.1% (95% CI, 1.1-5.1%) for nitrogen dioxide, 2.9% (95% CI, 0.8-5.0%) for sulfur dioxide, and 4.1% (95% CI, 1.1-7.2%) for carbon monoxide in a 2-day lag for each interquartile range increase in single-pollutant models. When we examined the associations among PM(10) levels stratified by the level of gaseous pollutants and vice versa, we found that these pollutants are interactive with respect to their effects on the risk of stroke mortality. We also observed that the effects of PM(10) on stroke mortality differ significantly in subgroups by age and sex. We conclude that PM(10) and gaseous pollutants are significant risk factors for acute stroke death and that the elderly and women are more susceptible to the effect of particulate pollutants.
PMCID: PMC1240734  PMID: 11836148
15.  Lung Function and Incidence of Chronic Obstructive Pulmonary Disease after Improved Cooking Fuels and Kitchen Ventilation: A 9-Year Prospective Cohort Study 
PLoS Medicine  2014;11(3):e1001621.
Pixin Ran, Nanshan Zhong, and colleagues report that cleaner cooking fuels and improved ventilation were associated with better lung function and reduced COPD among a cohort of villagers in Southern China.
Please see later in the article for the Editors' Summary
Background
Biomass smoke is associated with the risk of chronic obstructive pulmonary disease (COPD), but few studies have elaborated approaches to reduce the risk of COPD from biomass burning. The purpose of this study was to determine whether improved cooking fuels and ventilation have effects on pulmonary function and the incidence of COPD.
Methods and Findings
A 9-y prospective cohort study was conducted among 996 eligible participants aged at least 40 y from November 1, 2002, through November 30, 2011, in 12 villages in southern China. Interventions were implemented starting in 2002 to improve kitchen ventilation (by providing support and instruction for improving biomass stoves or installing exhaust fans) and to promote the use of clean fuels (i.e., biogas) instead of biomass for cooking (by providing support and instruction for installing household biogas digesters); questionnaire interviews and spirometry tests were performed in 2005, 2008, and 2011. That the interventions improved air quality was confirmed via measurements of indoor air pollutants (i.e., SO2, CO, CO2, NO2, and particulate matter with an aerodynamic diameter of 10 µm or less) in a randomly selected subset of the participants' homes. Annual declines in lung function and COPD incidence were compared between those who took up one, both, or neither of the interventions.
Use of clean fuels and improved ventilation were associated with a reduced decline in forced expiratory volume in 1 s (FEV1): decline in FEV1 was reduced by 12 ml/y (95% CI, 4 to 20 ml/y) and 13 ml/y (95% CI, 4 to 23 ml/y) in those who used clean fuels and improved ventilation, respectively, compared to those who took up neither intervention, after adjustment for confounders. The combined improvements of use of clean fuels and improved ventilation had the greatest favorable effects on the decline in FEV1, with a slowing of 16 ml/y (95% CI, 9 to 23 ml/y). The longer the duration of improved fuel use and ventilation, the greater the benefits in slowing the decline of FEV1 (p<0.05). The reduction in the risk of COPD was unequivocal after the fuel and ventilation improvements, with an odds ratio of 0.28 (95% CI, 0.11 to 0.73) for both improvements.
Conclusions
Replacing biomass with biogas for cooking and improving kitchen ventilation are associated with a reduced decline in FEV1 and risk of COPD.
Trial Registration
Chinese Clinical Trial Register ChiCTR-OCH-12002398
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Nearly 3 billion people in developing countries heat their homes and cook by burning biomass—wood, crop waste, and animal dung—in open fires and leaky stoves. Burning biomass this way releases pollutants into the home that impair lung function and that are responsible for more than a million deaths from chronic obstructive pulmonary disease (COPD) every year. COPD is a group of diseases that interfere with breathing. Normally, air is breathed in through the nose or mouth and travels down the windpipe into two bronchial tubes (airways) in the lungs. These tubes branch into smaller tubes (bronchioles) that end in bunches of tiny air sacs (alveoli). Oxygen in the air passes through the thin walls of these sacs into small blood vessels and is taken to the heart for circulation round the body. The two main types of COPD—chronic bronchitis (long-term irritation and swelling of the bronchial tubes) and emphysema (damage to the walls of the alveoli)—make it hard for people to breathe. Most people with COPD have both chronic bronchitis and emphysema, both of which are caused by long-term exposure to cigarette smoke, indoor air pollution, and other lung irritants. Symptoms of COPD include breathlessness during exercise and a persistent cough that produces large amounts of phlegm (mucus). There is no cure for COPD, but drugs and oxygen therapy can relieve its symptoms, and avoiding lung irritants can slow disease progression.
Why Was This Study Done?
Exposure to indoor air pollution has been associated with impaired lung function and COPD in several studies. However, few studies have assessed the long-term effects on lung function and on the incidence of COPD (the proportion of a population that develops COPD each year) of replacing biomass with biogas (a clean fuel produced by bacterial digestion of biodegradable materials) for cooking and heating, or of improving kitchen ventilation during cooking. Here, the researchers undertook a nine-year prospective cohort study in rural southern China to investigate whether these interventions are associated with any effects on lung function and on the incidence of COPD. A prospective cohort study enrolls a group of people, determines their characteristics at baseline, and follows them over time to see whether specific characteristic are associated with specific outcomes.
What Did the Researchers Do and Find?
The researchers offered nearly 1,000 people living in 12 villages in southern China access to biogas and to improved kitchen ventilation. All the participants, who adopted these interventions according to personal preferences, completed a questionnaire about their smoking habits and occupational exposure to pollutants and had their lung function measured using a spirometry test at the start and end of the study. Some participants also completed a questionnaire and had their lung function measured three and six years into the study. Finally, the researchers measured levels of indoor air pollution in a randomly selected subset of homes at the end of the study to confirm that the interventions had reduced indoor air pollution. Compared with non-use, the use of clean fuels and of improved ventilation were both associated with a reduction in the decline in lung function over time after adjusting for known characteristics that affect lung function, such as smoking. The use of both interventions reduced the decline in lung function more markedly than either intervention alone, and the benefits of using the interventions increased with length of use. Notably, the combined use of both interventions reduced the risk of COPD occurrence among the study participants.
What Do These Findings Mean?
These findings suggest that, among people living in rural southern China, the combined interventions of use of biogas instead of biomass and improved kitchen ventilation were associated with a reduced decline in lung function over time and with a reduced risk of COPD. Because participants were not randomly allocated to intervention groups, the people who adopted the interventions may have shared other unknown characteristics (confounders) that affected their lung function (for example, having a healthier lifestyle). Thus, it is not possible to conclude that either intervention actually caused a reduction in the decline in lung function. Nevertheless, these findings suggest that the use of biogas as a substitute for biomass for cooking and heating and improvements in kitchen ventilation might lead to a reduction in the global burden of COPD associated with biomass smoke.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001621.
The US National Heart, Lung, and Blood Institute provides detailed information for the public about COPD
The US Centers for Disease Control and Prevention provides information about COPD and links to other resources (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about COPD, personal stories, and links to other resources
The British Lung Foundation, a not-for-profit organization, provides information about COPD in several languages
The Global Initiative for Chronic Obstructive Lung Disease works to improve prevention and treatment of COPD around the world
The World Health Organization provides information about all aspects of indoor air pollution and health (in English, French, and Spanish)
MedlinePlus provides links to other information about COPD (in English and Spanish)
doi:10.1371/journal.pmed.1001621
PMCID: PMC3965383  PMID: 24667834
16.  Effect of air pollution on daily mortality in Hong Kong. 
Environmental Health Perspectives  2001;109(4):335-340.
In different weather conditions, constituents and concentrations of pollutants, personal exposure, and biologic responses to air pollution may vary. In this study we assessed the effects of four air pollutants on mortality in both cool and warm seasons in Hong Kong, a subtropical city. Daily counts of mortality, due to all nonaccidental causes, and cardiovascular and respiratory diseases were modeled with daily pollutant concentrations [24-hr means for nitrogen dioxide, sulfur dioxide, and particulate matter < 10 microm in aerodynamic diameter (PM(10)); 8-hr mean for ozone]. using Poisson regression. We controlled for confounding factors by fitting the terms in models, in line with those recommended by the APHEA (Air Pollution and Health: a European Approach) protocol. Exposure-response relationships in warm and cool seasons were examined using generalized additive modeling. During the cool season, for a linear extrapolation of 10th-90th percentiles in the pollutant concentrations of all oxidant pollutants, NO(2), SO(2), and O(3), we found significant effects on all the mortality outcomes under study, with relative risks (RR) of 1.04-1.10 (p < 0.038, except p = 0.079 for SO(2) on respiratory mortality). We observed consistent positive exposure-response relationships during the cool season but not during the warm season. The effects of PM(10) were marginally significant (RR = 1.06; p = 0.054) for respiratory mortality but not for the other outcomes (p > 0.135). In this subtropical city, local air quality objectives should take into account that air pollution has stronger health effects during the cool rather than warm season and that oxidant pollutants are more important indicators of health effects than particulates.
PMCID: PMC1240272  PMID: 11335180
17.  Oral Cleft Defects and Maternal Exposure to Ambient Air Pollutants in New Jersey 
Background
Evidence links exposure to ambient air pollution during pregnancy, particularly gaseous pollutants and particulate matter, to an increased risk of adverse reproductive outcomes but the results for birth defects have been inconsistent.
Methods
We compared estimated exposure to ambient air pollutants during early pregnancy among mothers of children with oral cleft defects (cases) to that among mothers of controls, adjusting for available risk factors from birth certificates. We obtained ambient air pollutant data from air monitoring sites in New Jersey for carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), particulate matter less than 10 µm in aerodynamic diameter (PM10) and particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5). We used values from the nearest monitor (within 40 km of the residence at birth) for controls, cleft lip with or without cleft palate (CLP) and cleft palate only (CPO).
Results
Based on logistic regression analyses for each contaminant and all contaminants together, there were no consistent elevated associations between selected air pollutants and cleft malformations. Quartile of CO concentration showed a consistent protective association with CPO (p<.01). For other contaminants, confidence intervals (95%) of the odds ratios for some quartiles excluded one. CLP showed limited evidence of an association with increasing SO2 exposure while CPO showed weak associations with increasing O3 exposure.
Conclusion
There was little consistent evidence associating cleft malformations with maternal exposure to ambient air pollutants. Evaluating particular pollutants or disease subgroups would require more detailed measurement of exposure and classification of cleft defects.
doi:10.1002/bdra.20650
PMCID: PMC2862481  PMID: 20146378
18.  The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. 
Environmental Health Perspectives  1997;105(6):614-620.
In order to address the role that the ambient air pollution mix, comprised of gaseous pollutants and various physical and chemical measures of particulate matter, plays in exacerbating cardiorespiratory disease, daily measures of fine and coarse particulate mass, aerosol chemistry (sulfates and acidity), and gaseous pollution (ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were collected in Toronto, Ontario, Canada, in the summers of 1992, 1993, and 1994. These time series were then compared with concurrent data on the number of daily admissions to hospitals for either cardiac diseases (ischemic heart disease, heart failure, and dysthymias) or respiratory diseases (tracheobronchitis, chronic obstructive long disease, asthma, and pneumonia). After adjusting the admission time series for long-term temporal trends, seasonal variations, the effects of short-term epidemics, day of the week effects, and ambient temperature and dew point temperature, positive associations were observed for all ambient air pollutants for both respiratory and cardiac diseases. Ozone was least sensitive to adjustment for the gaseous and particulate pollution measures. However, the association between the health outcomes and carbon monoxide, fine and coarse mass, sulfate levels and aerosol acidity could be explained by adjustment for exposure to gaseous pollutants. Increases in ozone, nitrogen dioxide, and sulfur dioxide equivalent to their interquartile ranges corresponded to an 11% and 13% increase in daily hospitalizations for respiratory and cardiac diseases, respectively. The inclusion of any one of the particulate air pollutants in multiple regression models did not increase these percentages. Particle mass and chemistry could not be identified as an independent risk factor for the exacerbation of cardiorespiratory diseases in this study beyond that attributable to climate and gaseous air pollution. We recommend that effects of particulate matter on health be assessed in conjunction with temporally covarying gaseous air pollutants.
Images
PMCID: PMC1470088  PMID: 9288496
19.  A protocol for investigation of the effects of outdoor air pollution on stroke incidence, phenotypes and survival using the South London Stroke Register 
Stroke is a major cause of death and disability. About 5.3 million people die every year from stroke worldwide with over 9 million people surviving at any one time after suffering a stroke. About 1 in 4 men and 1 in 5 women aged 45 years will suffer a stroke if they live to their 85th year. It is estimated that by 2023 there will be an absolute increase in the number of people experiencing a first ever stroke of about 30% compared with 1983.
In the UK, stroke is the third commonest cause of death and the most common cause of adult physical disability and consumes 5% of the health and social services budget. Stroke is assuming strategic public health importance because of increased awareness in society, an ageing population and emerging new treatments. It is an NHS health service and research priority, being identified as a target in Our Healthier Nation and the NSF for Older People for prevention and risk factor control and in the NHS Plan as a disease requiring intermediate care planning and reduction in inequalities of care.
Whilst a number of risk factors for stroke are well known (e.g. increasing age, ethnicity, socioeconomic deprivation, hypertension), the potential importance of outdoor air pollution as a modifiable risk factor is much less well recognised. This is because studies to date are inconclusive or have methodological limitations. In Sheffield, we estimated that 11% of stroke deaths may be linked to current levels of outdoor air pollution and this high figure is explained by the fact that so many people are exposed to air pollution.
We plan to study the effects of outdoor air pollution on stroke using a series of epidemiological (i.e. population based) studies. The purpose of this project is:
• to examine if short term increases in pollution can trigger a stroke in susceptible individuals;
• to investigate if the occurrence of stroke is higher amongst people living in more polluted areas (which would be explained by a combination of exposure to short term increases and longer term exposure to higher pollution levels); and
• to see if people living in more polluted areas have reduced survival following their stroke.
We will use geographical information systems, robust statistical methods and powerful grid computing facilities to link and analyse the data. The datasets we will use are the South London Stroke Register database, daily monitored pollution data from national monitoring networks and modelled pollution data for London from the Greater London Authority. The South London Stroke Register records information on all patients who suffer a stroke ("incident" cases) living within a defined area. This stroke incidence dataset offers major advantages over previous studies examining the effects of pollution on hospital admissions and mortality, as not all patients with stroke are admitted or die and there may be a delay between the onset of stroke and admission or death. In addition, it contains other useful information, particularly the type of stroke people have suffered.
Air pollution is a potentially modifiable risk factor for stroke. This study will provide robust population level evidence regarding the effects of outdoor air pollution on stroke. If it confirms the link, it will suggest to policy-makers at national and international levels that targeting policy interventions at high pollution areas may be a feasible option for stroke prevention.
doi:10.1186/1476-072X-5-10
PMCID: PMC1421386  PMID: 16545133
20.  Long-term Exposure to PM2.5 and Incidence of Acute Myocardial Infarction 
Environmental Health Perspectives  2012;121(2):192-196.
Background: A number of studies have shown associations between chronic exposure to particulate air pollution and increased mortality, particularly from cardiovascular disease, but fewer studies have examined the association between long-term exposure to fine particulate air pollution and specific cardiovascular events, such as acute myocardial infarction (AMI).
Objective: We examined how long-term exposure to area particulate matter affects the onset of AMI, and we distinguished between area and local pollutants.
Methods: Building on the Worcester Heart Attack Study, an ongoing community-wide investigation examining changes over time in myocardial infarction incidence in greater Worcester, Massachusetts, we conducted a case–control study of 4,467 confirmed cases of AMI diagnosed between 1995 and 2003 and 9,072 matched controls selected from Massachusetts resident lists. We used a prediction model based on satellite aerosol optical depth (AOD) measurements to generate both exposure to particulate matter ≤ 2.5 μm in diameter (PM2.5) at the area level (10 × 10 km) and the local level (100 m) based on local land use variables. We then examined the association between area and local particulate pollution and occurrence of AMI.
Results: An interquartile range (IQR) increase in area PM2.5 (0.59 μg/m3) was associated with a 16% increase in the odds of AMI (95% CI: 1.04, 1.29). An IQR increase in total PM2.5 (area + local, 1.05 μg/m3) was weakly associated with a 4% increase in the odds of AMI (95% CI: 0.96, 1.11).
Conclusions: Residential exposure to PM2.5 may best be represented by a combination of area and local PM2.5, and it is important to consider spatial gradients within a single metropolitan area when examining the relationship between particulate matter exposure and cardiovascular events.
doi:10.1289/ehp.1205284
PMCID: PMC3569684  PMID: 23204289
air pollution.
21.  Environmental inequality and circulatory disease mortality gradients 
Study objective: Studies in Europe and North America have reported that living in a disadvantaged neighbourhood is associated with an increased incidence of coronary heart disease. The aim of this study was to test the hypotheses that exposure to traffic and air pollution might account for some of the socioeconomic differences in mortality rates in a city where residents are covered by universal health insurance.
Design: Cohort mortality study. Individual postal codes used to derive: (1) socioeconomic status from census data; (2) mean air pollution levels from interpolation between governmental monitoring stations; (3) proximity to traffic from the geographical information system. Analysis conducted with Cox proportional hazards models.
Setting: Hamilton Census Metropolitan Area, Ontario, Canada, on the western tip of Lake Ontario (population about 480 000).
Participants: 5228 people, aged 40 years or more, identified from register of lung function laboratory at an academic respirology clinic between 1985 and 1999.
Main results: Circulatory disease (cardiovascular and stroke) mortality rates were related to measures of neighbourhood deprivation. Circulatory disease mortality rates were also associated with indices of long term ambient pollution at the subjects' residences (relative risk 1.06, 1.00 to 1.13) and with proximity to traffic (relative risk 1.40, 1.08 to 1.81). Subjects in more deprived neighbourhoods had greater exposure to ambient particulate and gaseous pollutants and to traffic.
Conclusions: At least some of the observed social gradients in circulatory mortality arise from inequalities in environmental exposure to background and traffic air pollutants.
doi:10.1136/jech.2004.026203
PMCID: PMC1757055  PMID: 15911644
22.  Long-Term Exposure to Ambient Air Pollution and Incidence of Cerebrovascular Events: Results from 11 European Cohorts within the ESCAPE Project 
Environmental Health Perspectives  2014;122(9):919-925.
Background: Few studies have investigated effects of air pollution on the incidence of cerebrovascular events.
Objectives: We assessed the association between long-term exposure to multiple air pollutants and the incidence of stroke in European cohorts.
Methods: Data from 11 cohorts were collected, and occurrence of a first stroke was evaluated. Individual air pollution exposures were predicted from land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE). The exposures were: PM2.5 [particulate matter (PM) ≤ 2.5 μm in diameter], coarse PM (PM between 2.5 and 10 μm), PM10 (PM ≤ 10 μm), PM2.5 absorbance, nitrogen oxides, and two traffic indicators. Cohort-specific analyses were conducted using Cox proportional hazards models. Random-effects meta-analysis was used for pooled effect estimation.
Results: A total of 99,446 study participants were included, 3,086 of whom developed stroke. A 5-μg/m3 increase in annual PM2.5 exposure was associated with 19% increased risk of incident stroke [hazard ratio (HR) = 1.19, 95% CI: 0.88, 1.62]. Similar findings were obtained for PM10. The results were robust to adjustment for an extensive list of cardiovascular risk factors and noise coexposure. The association with PM2.5 was apparent among those ≥ 60 years of age (HR = 1.40, 95% CI: 1.05, 1.87), among never-smokers (HR = 1.74, 95% CI: 1.06, 2.88), and among participants with PM2.5 exposure < 25 μg/m3 (HR = 1.33, 95% CI: 1.01, 1.77).
Conclusions: We found suggestive evidence of an association between fine particles and incidence of cerebrovascular events in Europe, even at lower concentrations than set by the current air quality limit value.
Citation: Stafoggia M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R, Caracciolo B, Cyrys J, de Faire U, de Hoogh K, Eriksen KT, Fratiglioni L, Galassi C, Gigante B, Havulinna AS, Hennig F, Hilding A, Hoek G, Hoffmann B, Houthuijs D, Korek M, Lanki T, Leander K, Magnusson PK, Meisinger C, Migliore E, Overvad K, Östenson CG, Pedersen NL, Pekkanen J, Penell J, Pershagen G, Pundt N, Pyko A, Raaschou-Nielsen O, Ranzi A, Ricceri F, Sacerdote C, Swart WJ, Turunen AW, Vineis P, Weimar C, Weinmayr G, Wolf K, Brunekreef B, Forastiere F. 2014. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect 122:919–925; http://dx.doi.org/10.1289/ehp.1307301
doi:10.1289/ehp.1307301
PMCID: PMC4153743  PMID: 24835336
23.  Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution 
Context
Associations have been found between day-to-day particulate air pollution and increased risk of various adverse health outcomes, including cardiopulmonary mortality. However, studies of health effects of long-term particulate air pollution have been less conclusive.
Objective
To assess the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality.
Design, Setting, and Participants
Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998.
Main Outcome Measure
All-cause, lung cancer, and cardiopulmonary mortality.
Results
Fine particulate and sulfur oxide–related pollution were associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-μg/m3 elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality.
Conclusion
Long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality.
PMCID: PMC4037163  PMID: 11879110
24.  Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate 
OBJECTIVES—There is considerable evidence linking ambient particles measured as particulate matter with aerodynamic diameter <10 µm (PM10) to daily mortality and hospital admissions but it is not clear which physical or chemical components of the particle mixture are responsible. The relative effects of fine particles (PM2.5), coarse particles (PM2.5-10), black smoke (mainly fine particles of primary origin) and sulphate (mainly fine particles of secondary origin) were investigated, together with ozone, SO2, NO2, and CO, on daily mortality and hospital admissions in the west Midlands conurbation of the United Kingdom.
METHODS—Time series of health outcome and environmental data were obtained for the period 1994-6. The relative risk of death or hospital admission was estimated with regression techniques, controlling for long term time trends, seasonal patterns, influenza epidemics, effects of day of the week, and temperature and humidity. Models were adjusted for any remaining residual serial correlation and overdispersion. The sensitivities of the estimates for the effects of pollution to the inclusion of a second pollutant and seasonal interactions (warm or cool) were also examined.
RESULTS—Daily all cause mortality was not associated with any gaseous or particulate air pollutant in the all year analysis, although all measures of particles apart from PM2.5-10 showed significant positive effects of the warm season. Neither respiratory nor cardiovascular admissions (all ages) were associated with any air pollutant, and there were no important seasonal interactions. However, analysis of admissions by age found evidence for various associations—notably between PM10, PM2.5, black smoke, SO2, and ozone (negative) and respiratory admissions in the 0-14 age group. The coarse fraction, PM2.5-10 differed from PM2.5 in having smaller and less consistent associations (including several large significant negative associations) and a different lag distribution. The results for black smoke, an indicator of fine primary carbonaceous particles, were very similar to those for PM2.5, and tended to be more robust in two pollutant models. The effects of sulphate, an indicator of secondary particles, also showed some similarities to those of PM2.5.
CONCLUSIONS—Clear effects of air pollution on mortality and hospital admissions were difficult to discern except in certain age or diagnostic subgroups and seasonal analyses. It was also difficult to distinguish between different measures of particles. Within these limitations the results suggest that the active component of PM10 resides mostly in the fine fraction and that this is due mainly to primary particles from combustion (mainly vehicle) sources with a contribution from secondary particles. Effects of the coarse fraction cannot be excluded.


Keywords: air pollution particulates; mortality; hospital admissions
doi:10.1136/oem.58.8.504
PMCID: PMC1740167  PMID: 11452044
25.  A Cohort Study of Traffic-Related Air Pollution Impacts on Birth Outcomes 
Environmental Health Perspectives  2008;116(5):680-686.
Background
Evidence suggests that air pollution exposure adversely affects pregnancy outcomes. Few studies have examined individual-level intraurban exposure contrasts.
Objectives
We evaluated the impacts of air pollution on small for gestational age (SGA) birth weight, low full-term birth weight (LBW), and preterm birth using spatiotemporal exposure metrics.
Methods
With linked administrative data, we identified 70,249 singleton births (1999–2002) with complete covariate data (sex, ethnicity, parity, birth month and year, income, education) and maternal residential history in Vancouver, British Columbia, Canada. We estimated residential exposures by month of pregnancy using nearest and inverse-distance weighting (IDW) of study area monitors [carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, and particulate matter < 2.5 (PM2.5) or < 10 (PM10) μm in aerodynamic diameter], temporally adjusted land use regression (LUR) models (NO, NO2, PM2.5, black carbon), and proximity to major roads. Using logistic regression, we estimated the risk of mean (entire pregnancy, first and last month of pregnancy, first and last 3 months) air pollution concentrations on SGA (< 10th percentile), term LBW (< 2,500 g), and preterm birth.
Results
Residence within 50 m of highways was associated with a 26% increase in SGA [95% confidence interval (CI), 1.07–1.49] and an 11% (95% CI, 1.01–1.23) increase in LBW. Exposure to all air pollutants except O3 was associated with SGA, with similar odds ratios (ORs) for LUR and monitoring estimates (e.g., LUR: OR = 1.02; 95% CI, 1.00–1.04; IDW: OR = 1.05; 95% CI, 1.03–1.08 per 10-μg/m3 increase in NO). For preterm births, associations were observed with PM2.5 for births < 37 weeks gestation (and for other pollutants at < 30 weeks). No consistent patterns suggested exposure windows of greater relevance.
Conclusion
Associations between traffic-related air pollution and birth outcomes were observed in a population-based cohort with relatively low ambient air pollution exposure.
doi:10.1289/ehp.10952
PMCID: PMC2367679  PMID: 18470315
air pollution; birth weight; carbon black; carbon monoxide; nitrogen dioxide; nitric oxide; particulate matter; pregnancy; pregnancy outcome; preterm birth; soot; sulfur dioxide; vehicle emissions

Results 1-25 (926927)