PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1137828)

Clipboard (0)
None

Related Articles

1.  Ozone and cardiovascular injury 
Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular diseases in urban communities. The potential detrimental effects are both acute and chronic having a strong impact on morbidity and mortality. The acute exposure to pollutants has been linked to adverse cardiovascular events such as myocardial infarction, heart failure and life-threatening arrhythmias. The long-terms effects are related to the lifetime risk of death from cardiac causes. The WHO estimates that air pollution is responsible for 3 million premature deaths each year. The evidence supporting these data is very strong nonetheless, epidemiologic and observational data have the main limitation of imprecise measurements. Moreover, the lack of clinical experimental models makes it difficult to demonstrate the individual risk. The other limitation is related to the lack of a clear mechanism explaining the effects of pollution on cardiovascular mortality. In the present review we will explore the epidemiological, clinical and experimental evidence of the effects of ozone on cardiovascular diseases.
The pathophysiologic consequences of air pollutant exposures have been extensively investigated in pulmonary systems, and it is clear that some of the major components of air pollution (e.g. ozone and particulate matter) can initiate and exacerbate lung disease in humans [1]. It is possible that pulmonary oxidant stress mediated by particulate matter and/or ozone (O3) exposure can result in downstream perturbations in the cardiovasculature, as the pulmonary and cardiovascular systems are intricately associated, and it is well documented that specific environmental toxins (such as tobacco smoke [2]) introduced through the lungs can initiate and/or accelerate cardiovascular disease development. Indeed, several epidemiologic studies have proved that there is an association between PM and O3 and the increased incidence of cardiovascular morbidity and mortality [3]. Most of the evidence comes from studies of ambient particles concentrations. However, in Europe and elsewhere, the air pollution profile has gradually changed toward a more pronounced photochemical component. Ozone is one of the most toxic components of the photochemical air pollution mixture. Indeed, the biological basis for these observations has not been elucidated.
In the present review, the role of ozone as chemical molecule will be firstly considered. Secondly, pathogenetic mechanisms connecting the atmospheric ozone level and cardiovascular pathology will be examined. Thirdly, the literature relating hospitalization frequency, morbidity and mortality due to cardiovascular causes and ozone concentration will be studied. The correlation between ozone level and occurrence of acute myocardial infarction will be eventually discussed.
doi:10.1186/1476-7120-7-30
PMCID: PMC2706799  PMID: 19552797
2.  Hourly differences in air pollution and risk of respiratory disease in the elderly: a time-stratified case-crossover study 
Environmental Health  2014;13:67.
Background
Epidemiological studies have shown adverse effects of short-term exposure to air pollution on respiratory disease outcomes; however, few studies examined this association on an hourly time scale. We evaluated the associations between hourly changes in air pollution and the risk of respiratory disease in the elderly, using the time of the emergency call as the disease onset for each case.
Methods
We used a time-stratified case-crossover design. Study participants were 6,925 residents of the city of Okayama, Japan, aged 65 or above who were taken to hospital emergency rooms between January 2006 and December 2010 for onset of respiratory disease. We calculated city-representative hourly average concentrations of air pollutants from several monitoring stations. By using conditional logistic regression models, we estimated odds ratios per interquartile-range increase in each pollutant by exposure period prior to emergency call, adjusting for hourly ambient temperature, hourly relative humidity, and weekly numbers of reported influenza cases aged ≥60.
Results
Suspended particulate matter (SPM) exposure 24 to <72 hours prior to the onset and ozone exposure 48 to <96 hours prior to the onset were associated with the increased risk of respiratory disease. For example, following one interquartile-range increase, odds ratios were 1.05 (95% confidence interval: 1.01, 1.09) for SPM exposure 24 to <48 hours prior to the onset and 1.13 (95% confidence interval: 1.04, 1.23) for ozone exposure 72 to <96 hours prior to the onset. Sulfur dioxide (SO2) exposure 0 to <24 hours prior to onset was associated with the increased risk of pneumonia and influenza: odds ratio was 1.07 per one interquartile-range increase (95% confidence interval: 1.00, 1.14). Elevated risk for pneumonia and influenza of SO2 was observed at shorter lags (i.e., 8–18 hours) than the elevated risks for respiratory disease of SPM or ozone. Overall, the effect estimates for chronic obstructive pulmonary disease and allied conditions were equivocal.
Conclusions
This study provides further evidence that hourly changes in air pollution exposure increase the risks of respiratory disease, and that SO2 may be related with more immediate onset of the disease than other pollutants.
doi:10.1186/1476-069X-13-67
PMCID: PMC4237832  PMID: 25115710
Air pollution; Ozone; Particulate matter; Respiratory disease; Short-term effect; Sulfur dioxide
3.  Modifiers of short-term effects of ozone on mortality in eastern Massachusetts - A case-crossover analysis at individual level 
Background
Substantial epidemiological studies demonstrate associations between exposure to ambient ozone and mortality. A few studies simply examine the modification of this ozone effect by individual characteristics and socioeconomic status, but socioeconomic status was usually coded at the city level.
Methods
This study used a case-crossover design to examine whether impacts of ozone on mortality were modified by socioeconomic status coded at the tract or characteristics at an individual level in eastern Massachusetts, US for a period May-September, 1995-2002, with a total of 157,197 non-accident deaths aging 35 years or older. We used moving averages of maximal 8-hour concentrations of ozone monitored at 8 stationary stations as personal exposure.
Results
A 10 ppb increase in the four-day moving average of maximal 8-hour ozone was associated with 1.68% (95% confidence interval (CI): 0.51%, 2.87%), 1.96% (95% CI: -1.83%, 5.90%), 8.28% (95% CI: 0.66%, 16.48%), 0.44% (95% CI: -1.45%, 2.37%), -0.83% (95% CI: -2.94%, 1.32%), -1.09% (95% CI: -4.27%, 2.19%) and 6.5% (95% CI: 1.74%, 11.49%) changes in all natural deaths, respiratory disorders, diabetes, cardiovascular diseases, heart diseases, acute myocardial infarction and stroke, respectively. We did not find any evidence that the associations were significantly modified by socioeconomic status or individual characteristics although small differences of estimates across subpopulations were demonstrated.
Conclusions
Exposure to ozone was associated with specific cause mortality in Eastern Massachusetts during May-September, 1995-2002. There was no evidence that effects of ozone on mortality were significantly modified by socioeconomic status and individual characteristics.
doi:10.1186/1476-069X-9-3
PMCID: PMC2825215  PMID: 20092648
4.  Mortality Associations with Long-Term Exposure to Outdoor Air Pollution in a National English Cohort 
Rationale: Cohort evidence linking long-term exposure to outdoor particulate air pollution and mortality has come largely from the United States. There is relatively little evidence from nationally representative cohorts in other countries.
Objectives: To investigate the relationship between long-term exposure to a range of pollutants and causes of death in a national English cohort.
Methods: A total of 835,607 patients aged 40–89 years registered with 205 general practices were followed from 2003–2007. Annual average concentrations in 2002 for particulate matter with a median aerodynamic diameter less than 10 (PM10) and less than 2.5 μm (PM2.5), nitrogen dioxide (NO2), ozone, and sulfur dioxide (SO2) at 1 km2 resolution, estimated from emission-based models, were linked to residential postcode. Deaths (n = 83,103) were ascertained from linkage to death certificates, and hazard ratios (HRs) for all- and cause-specific mortality for pollutants were estimated for interquartile pollutant changes from Cox models adjusting for age, sex, smoking, body mass index, and area-level socioeconomic status markers.
Measurements and Main Results: Residential concentrations of all pollutants except ozone were positively associated with all-cause mortality (HR, 1.02, 1.03, and 1.04 for PM2.5, NO2, and SO2, respectively). Associations for PM2.5, NO2, and SO2 were larger for respiratory deaths (HR, 1.09 each) and lung cancer (HR, 1.02, 1.06, and 1.05) but nearer unity for cardiovascular deaths (1.00, 1.00, and 1.04).
Conclusions: These results strengthen the evidence linking long-term ambient air pollution exposure to increased all-cause mortality. However, the stronger associations with respiratory mortality are not consistent with most US studies in which associations with cardiovascular causes of death tend to predominate.
doi:10.1164/rccm.201210-1758OC
PMCID: PMC3734610  PMID: 23590261
air pollution; mortality; cohort study; respiratory
5.  Air pollution and emergency department visits for cardiac and respiratory conditions: a multi-city time-series analysis 
Environmental Health  2009;8:25.
Background
Relatively few studies have been conducted of the association between air pollution and emergency department (ED) visits, and most of these have been based on a small number of visits, for a limited number of health conditions and pollutants, and only daily measures of exposure and response.
Methods
A time-series analysis was conducted on nearly 400,000 ED visits to 14 hospitals in seven Canadian cities during the 1990s and early 2000s. Associations were examined between carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and particulate matter (PM10 and PM2.5), and visits for angina/myocardial infarction, heart failure, dysrhythmia/conduction disturbance, asthma, chronic obstructive pulmonary disease (COPD), and respiratory infections. Daily and 3-hourly visit counts were modeled as quasi-Poisson and analyses controlled for effects of temporal cycles, weather, day of week and holidays.
Results
24-hour average concentrations of CO and NO2 lag 0 days exhibited the most consistent associations with cardiac conditions (2.1% (95% CI, 0.0–4.2%) and 2.6% (95% CI, 0.2–5.0%) increase in visits for myocardial infarction/angina per 0.7 ppm CO and 18.4 ppb NO2 respectively; 3.8% (95% CI, 0.7–6.9%) and 4.7% (95% CI, 1.2–8.4%) increase in visits for heart failure). Ozone (lag 2 days) was most consistently associated with respiratory visits (3.2% (95% CI, 0.3–6.2%), and 3.7% (95% CI, -0.5–7.9%) increases in asthma and COPD visits respectively per 18.4 ppb). Associations tended to be of greater magnitude during the warm season (April – September). In particular, the associations of PM10 and PM2.5with asthma visits were respectively nearly three- and over fourfold larger vs. all year analyses (14.4% increase in visits, 95% CI, 0.2–30.7, per 20.6 μg/m3 PM10 and 7.6% increase in visits, 95% CI, 5.1–10.1, per 8.2 μg/m3 PM2.5). No consistent associations were observed between three hour average pollutant concentrations and same-day three hour averages of ED visits.
Conclusion
In this large multicenter analysis, daily average concentrations of CO and NO2 exhibited the most consistent associations with ED visits for cardiac conditions, while ozone exhibited the most consistent associations with visits for respiratory conditions. PM10 and PM2.5 were strongly associated with asthma visits during the warm season.
doi:10.1186/1476-069X-8-25
PMCID: PMC2703622  PMID: 19515235
6.  Short term fluctuations in air pollution and hospital admissions of the elderly for respiratory disease. 
Thorax  1995;50(5):531-538.
BACKGROUND--Several recent studies have reported associations between short term changes in air pollution and respiratory hospital admissions. This relationship was examined in two cities with substantially different levels of sulphur dioxide (SO2) but similar levels of airborne particles in an attempt to separate the effects of the two pollutants. Significant differences in weather between the two cities allowed the evaluation of that potential confounder also. METHODS--Daily counts of admissions to all hospitals for respiratory disease (ICD 9 460-519) were constructed for persons aged 65 years and older in two cities - New Haven, Connecticut and Tacoma, Washington. Each city was analysed separately. Average daily concentrations of SO2, inhalable particles (PM10), and ozone were computed from all monitors in each city, and daily average temperature and humidity were obtained from the US weather service. Daily respiratory admission counts were regressed on temperature, humidity, day of the week indicators, and air pollution. A 19 day weighted moving regression filter was used to remove all seasonal and subseasonal patterns from the data. Possible U-shaped dependence of admissions on temperature was dealt with using indicator variables for eight categories each of temperature and humidity. Each pollutant was first examined individually and then multiple pollutant models were fitted. RESULTS--All three pollutants were associated with respiratory hospital admissions of the elderly. The PM10 associations were little changed by control for either ozone or SO2. The ozone association was likewise independent of the other pollutants. The SO2 association was substantially attenuated by control for ozone in both cities, and by control for PM10 in Tacoma. The magnitude of the effect was small (relative risk 1.06 in New Haven and 1.10 in Tacoma for a 50 micrograms/m3 increase in PM10, for example) but, given the ubiquitous exposure, this has some public health significance. CONCLUSIONS--Air pollution concentrations within current guidelines were associated with increased respiratory hospital admissions of the elderly. The strongest evidence for an independent association was for PM10, followed by ozone. These results are consistent with other studies and suggest that lowering air pollution concentrations would have some impact on public health.
PMCID: PMC1021224  PMID: 7597667
7.  Long-Term Ozone Exposure and Mortality 
The New England journal of medicine  2009;360(11):1085-1095.
BACKGROUND
Although many studies have linked elevations in tropospheric ozone to adverse health outcomes, the effect of long-term exposure to ozone on air pollution–related mortality remains uncertain. We examined the potential contribution of exposure to ozone to the risk of death from cardiopulmonary causes and specifically to death from respiratory causes.
METHODS
Data from the study cohort of the American Cancer Society Cancer Prevention Study II were correlated with air-pollution data from 96 metropolitan statistical areas in the United States. Data were analyzed from 448,850 subjects, with 118,777 deaths in an 18-year follow-up period. Data on daily maximum ozone concentrations were obtained from April 1 to September 30 for the years 1977 through 2000. Data on concentrations of fine particulate matter (particles that are ≤2.5 μm in aerodynamic diameter [PM2.5]) were obtained for the years 1999 and 2000. Associations between ozone concentrations and the risk of death were evaluated with the use of standard and multilevel Cox regression models.
RESULTS
In single-pollutant models, increased concentrations of either PM2.5 or ozone were significantly associated with an increased risk of death from cardiopulmonary causes. In two-pollutant models, PM2.5 was associated with the risk of death from cardiovascular causes, whereas ozone was associated with the risk of death from respiratory causes. The estimated relative risk of death from respiratory causes that was associated with an increment in ozone concentration of 10 ppb was 1.040 (95% confidence interval, 1.010 to 1.067). The association of ozone with the risk of death from respiratory causes was insensitive to adjustment for confounders and to the type of statistical model used.
CONCLUSIONS
In this large study, we were not able to detect an effect of ozone on the risk of death from cardiovascular causes when the concentration of PM2.5 was taken into account. We did, however, demonstrate a significant increase in the risk of death from respiratory causes in association with an increase in ozone concentration.
doi:10.1056/NEJMoa0803894
PMCID: PMC4105969  PMID: 19279340
8.  Long-term residence in areas of high ozone: associations with respiratory health in a nationwide sample of nonsmoking young adults [dsee comments] 
Environmental Health Perspectives  1999;107(8):675-679.
Few studies have examined the respiratory effects of multiyear ozone exposures in human populations. We examined associations between current respiratory health status and long-term ozone exposure histories in 520 Yale College (New Haven, CT) students who never smoked. Questionnaires addressed current respiratory symptoms, respiratory disease history, residential history, and other factors. The symptoms of cough, phlegm, wheeze apart from colds, and a composite respiratory symptom index (RSI) were selected as outcome measures. Forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), forced expiratory flow rate between 25 and 75% of FVC (FEF(25-75)), and forced expiratory flow rate at 75% of FVC (FEF(75)) were obtained by forced expiration into spirometers. Ozone exposure was treated as a dichotomous variable, where subjects were assigned to the high-exposure group if they lived for 4 or more years in a U.S. county with 10-year average summer-season daily 1-hr maximum ozone levels [greater/equal to] 80 ppb. Lung function and respiratory symptoms were analyzed by multiple linear and logistic regression on ozone exposure, controlling for covariates. Lung function was lower in the group with high ozone exposures: differences were statistically significant for FEV(1) [-3.1%; 95% confidence interval (CI), -0.2 to -5.9%] and FEF(25-75) (-8.1%; CI, -2.3 to -13.9%), and nearly so for FEF(75) (-6.7%; CI, 1.4 to -14.8). Gender-specific analyses revealed stronger associations for males than for females. The symptoms of chronic phlegm, wheeze apart from colds, and RSI were increased in the ozone-exposed group, with odds ratios of 1.79 (CI, 0.83-3.82), 1.97 (CI, 1.06-3.66), and 2.00 (CI, 1.15-3.46), respectively. We conclude that living for 4 or more years in regions of the country with high levels of ozone and related copollutants is associated with diminished lung function and more frequent reports of respiratory symptoms.
PMCID: PMC1566506  PMID: 10417367
9.  Assessing the Influence of Indoor Exposure to “Outdoor Ozone” on the Relationship between Ozone and Short-term Mortality in U.S. Communities 
Environmental Health Perspectives  2011;120(2):235-240.
Background: City-to-city differences have been reported for the increase in short-term mortality associated with a given increase in ozone concentration (ozone mortality coefficient). Although ozone concentrations are monitored at central outdoor locations, a large fraction of total ozone exposure occurs indoors.
Objectives: To clarify the influence of indoor exposure to ozone of outdoor origin on short-term mortality, we conducted an analysis to determine whether variation in ozone mortality coefficients among U.S. cities might be partly explained by differences in total ozone exposure (from both outdoor and indoor exposures) resulting from the same outdoor ozone concentration.
Methods: We estimated average annual air change rates (the overall rate at which indoor air is replaced with outdoor air) and used these to estimate the change in total ozone exposure per unit change in outdoor ozone exposure (ozone exposure coefficient) for 18 cities that had been included in the National Morbidity and Mortality Air Pollution Study (NMMAPS). We then examined associations between both parameters and published ozone mortality coefficients.
Results: For the 18 targeted NMMAPS cities, the association between ozone mortality coefficients and ozone exposure coefficients was strong (1-hr ozone metric: R2 = 0.58, p < 0.001; 8-hr ozone: R2 = 0.56, p < 0.001; 24-hr ozone: R2 = 0.48, p = 0.001). When extended to another 72 NMMAPS cities, the associations remained strong (R2 = 0.47–0.63; p < 0.001).
Conclusions: Differences in ozone mortality coefficients among cities appear to partially reflect differences in total ozone exposure resulting from differences in the amount of outdoor ozone that is transported indoors.
doi:10.1289/ehp.1103970
PMCID: PMC3279450  PMID: 22100611
air change rate; air conditioning; infiltration rate; outdoor-to-indoor transport; ozone-derived products; total exposure
10.  Using community level strategies to reduce asthma attacks triggered by outdoor air pollution: a case crossover analysis 
Environmental Health  2014;13:58.
Background
Evidence indicates that asthma attacks can be triggered by exposure to ambient air pollutants, however, detailed pollution information is missing from asthma action plans. Asthma is commonly associated with four criteria pollutants with standards derived by the United States Environmental Protection Agency. Since multiple pollutants trigger attacks and risks depend upon city-specific mixtures of pollutants, there is lack of specific guidance to reduce exposure. Until multi-pollutant statistical modeling fully addresses this gap, some guidance on pollutant attack risk is required. This study examines the risks from exposure to the asthma-related pollutants in a large metropolitan city and defines the city-specific association between attacks and pollutant mixtures. Our goal is that city-specific pollution risks be incorporated into individual asthma action plans as additional guidance to prevent attacks.
Methods
Case-crossover analysis and conditional logistic regression were used to measure the association between ozone, fine particulate matter, nitrogen dioxide, sulfur dioxide and carbon monoxide pollution and 11,754 emergency medical service ambulance treated asthma attacks in Houston, Texas from 2004-2011. Both single and multi-pollutant models are presented.
Results
In Houston, ozone and nitrogen dioxide are important triggers (RR = 1.05; 95% CI: 1.00, 1.09), (RR = 1.10; 95% CI: 1.05, 1.15) with 20 and 8 ppb increase in ozone and nitrogen dioxide, respectively, in a multi-pollutant model. Both pollutants are simultaneously high at certain times of the year. The risk attributed to these pollutants differs when they are considered together, especially as concentrations increase. Cumulative exposure for ozone (0-2 day lag) is of concern, whereas for nitrogen dioxide the concern is with single day exposure. Persons at highest risk are aged 46-66, African Americans, and males.
Conclusions
Accounting for cumulative and concomitant outdoor pollutant exposure is important to effectively attribute risk for triggering of an asthma attack, especially as concentrations increase. Improved asthma action plans for Houston individuals should warn of these pollutants, their trends, correlation and cumulative effects. Our Houston based study identifies nitrogen dioxide levels and the three-day exposure to ozone to be of concern whereas current single pollutant based national standards do not.
doi:10.1186/1476-069X-13-58
PMCID: PMC4108967  PMID: 25012280
Asthma; Air pollution; Risk; Ozone; Nitrogen dioxide; Action plans
11.  Long-term exposure to outdoor air pollution and the incidence of chronic obstructive pulmonary disease in a national English cohort 
Objectives
The role of outdoor air pollution in the incidence of chronic obstructive pulmonary disease (COPD) remains unclear. We investigated this question using a large, nationally representative cohort based on primary care records linked to hospital admissions.
Methods
A cohort of 812 063 patients aged 40–89 years registered with 205 English general practices in 2002 without a COPD diagnosis was followed from 2003 to 2007. First COPD diagnoses recorded either by a general practitioner (GP) or on admission to hospital were identified. Annual average concentrations in 2002 for particulate matter with an aerodynamic diameter <10 µm (PM10) and <2.5 µm (PM2.5), nitrogen dioxide (NO2), ozone and sulfur dioxide (SO2) at 1 km2 resolution were estimated from emission-based dispersion models. Hazard ratios (HRs) per interquartile range change were estimated from Cox models adjusting for age, sex, smoking, body mass index and area-level deprivation.
Results
16 034 participants (1.92%) received a COPD diagnosis from their GP and 2910 participants (0.35%) were admitted to hospital for COPD. After adjustment, HRs for GP recorded COPD and PM10, PM2.5 and NO2 were close to unity, positive for SO2 (HR=1.07 (95% CI 1.03 to 1.11) per 2.2 µg/m3) and negative for ozone (HR=0.94 (0.89 to 1.00) per 3 µg/m3). For admissions HRs for PM2.5 and NO2 remained positive (HRs=1.05 (0.98 to 1.13) and 1.06 (0.98 to 1.15) per 1.9 µg/m3 and 10.7 µg/m3, respectively).
Conclusions
This large population-based cohort study found limited, inconclusive evidence for associations between air pollution and COPD incidence. Further work, utilising improved estimates of air pollution over time and enhanced socioeconomic indicators, is required to clarify the association between air pollution and COPD incidence.
doi:10.1136/oemed-2014-102266
PMCID: PMC4283678  PMID: 25146191
12.  Particulate Air Pollution, Progression, and Survival after Myocardial Infarction 
Environmental Health Perspectives  2007;115(5):769-775.
Objective
Several studies have examined the effect of particulate pollution (PM) on survival in general populations, but less is known about susceptible groups. Moreover, previous cohort studies have been cross-sectional and subject to confounding by uncontrolled differences between cities.
Design
We investigated whether PM was associated with progression of disease or reduced survival in a study of 196,000 persons from 21 U.S. cities discharged alive following an acute myocardial infarction (MI), using within-city between-year exposure to PM. We constructed city-specific cohorts of survivors of acute MI using Medicare data between 1985 and 1999, and defined three outcomes on follow-up: death, subsequent MI, and a first admission for congestive heart failure (CHF). Yearly averages of PM10 (particulate matter with aerodynamic diameter < 10 μm) were merged to the individual annual follow-up in each city. We applied Cox’s proportional hazard regression model in each city, with adjustment for individual risk factors. In the second stage of the analysis, the city-specific results were combined using a meta-regression.
Results
We found significant associations with a hazard ratio for the sum of the distributed lags of 1.3 [95% confidence interval (CI), 1.2–1.5] for mortality, a hazard ratio of 1.4 (95% CI, 1.2–1.7) for a hospitalization for CHF, and a hazard ratio of 1.4 (95% CI, 1.1–1.8) for a new hospitalization for MI per 10 μg/m3 PM10.
Conclusions
This is the first long-term study showing a significant association between particle exposure and adverse post-MI outcomes in persons who survived an MI.
doi:10.1289/ehp.9201
PMCID: PMC1867961  PMID: 17520066
air pollution; epidemiology; heart diseases; myocardial infarction; survival
13.  Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles 
Environmental Health Perspectives  2010;119(3):312-318.
Background
Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown.
Objective
We sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP.
Methods and results
Male Wistar Kyoto rats (10–12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m3), or ozone (0.38 ppm) + DEP (2.2 mg/m3) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m3) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta.
Conclusions
In animals exposed to ozone or DEP alone for 16 weeks, we observed elevated biomarkers of vascular impairments in the aorta, with the loss of phospholipid fatty acids in myocardial mitochondria. We conclude that there is a possible role of oxidized lipids and protein through LOX-1 and/or RAGE signaling.
doi:10.1289/ehp.1002386
PMCID: PMC3059992  PMID: 20980218
air pollution; aorta; cardiovascular; diesel exhaust particles; inhalation; LOX-1; ozone; vascular
14.  Air pollution and mortality in Barcelona. 
STUDY OBJECTIVES: Studies conducted in Barcelona reported a short term relation between daily air pollutant values and emergency department admissions for exacerbation of chronic obstructive pulmonary diseases and asthma. Air pollution in Barcelona is mainly generated by vehicle exhaust and is below the World Health Organization air quality guidelines. The acute relation between air pollution and mortality was assessed. DESIGN: Daily variations in total mortality, mortality in subjects older than 70 years, and cardiovascular and respiratory mortality were related with daily variations in air pollutants for the period 1985-91, using autoregressive Poisson regression models that allow to control for temperature, relative humidity and variables handling temporal and autoregressive patterns. MAIN RESULTS: Black smoke and sulphur dioxide (SO2) were related to total mortality (relative risks (RR) for 100 micrograms/m3 = 1.07 and 1.13 respectively), elderly mortality (RR = 1.06 and 1.13), cardiovascular mortality (RR = 1.09 and 1.14), and respiratory mortality (RR = 1.10 and 1.13); all the associations being statistically significant, except for respiratory mortality (p = 0.07). The association between SO2 and respiratory mortality was stronger in summer (1.24, p < 0.01) than in winter (1.08, p > 0.1). Oxidant pollutants (nitrogen dioxide and ozone) were positively related with elderly mortality (RR = 1.05 and 1.09, respectively) and cardiovascular mortality (RR = 1.07 and 1.09) during the summer (p < 0.05), but not during the winter. CONCLUSIONS: Current air pollutant levels were related to mortality in Barcelona. These results were consistent with similar studies in other cities and coherent with previous studies with emergency room admissions in Barcelona.
PMCID: PMC1060892  PMID: 8758229
15.  Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry 
Environmental Health Perspectives  2006;114(10):1489-1496.
Objective
The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related health effects by extensive review of the literature as well as further analyses of published data.
Findings
Daily inhalation intakes of indoor ozone (micrograms per day) are estimated to be between 25 and 60% of total daily ozone intake. This is especially noteworthy in light of recent work indicating little, if any, threshold for ozone’s impact on mortality. Additionally, the present study estimates that average daily indoor intakes of ozone oxidation products are roughly one-third to twice the indoor inhalation intake of ozone alone. Some of these oxidation products are known or suspected to adversely affect human health (e.g., formaldehyde, acrolein, hydroperoxides, fine and ultrafine particles). Indirect evidence supports connections between morbidity/mortality and exposures to indoor ozone and its oxidation products. For example, cities with stronger associations between outdoor ozone and mortality tend to have residences that are older and less likely to have central air conditioning, which implies greater transport of ozone from outdoors to indoors.
Conclusions
Indoor exposures to ozone and its oxidation products can be reduced by filtering ozone from ventilation air and limiting the indoor use of products and materials whose emissions react with ozone. Such steps might be especially valuable in schools, hospitals, and childcare centers in regions that routinely experience elevated outdoor ozone concentrations.
doi:10.1289/ehp.9256
PMCID: PMC1626413  PMID: 17035131
air exchange rates; aldehydes; indoor chemistry; inhalation intake; morbidity; mortality; secondary organic aerosols; surface chemistry; ultrafine particles
16.  Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study 
PLoS Medicine  2012;9(4):e1001206.
A retro-prospective cohort study by Weihong Chen and colleagues provides new estimates for the risk of total and cause-specific mortality due to long-term silica dust exposure among Chinese workers.
Background
Human exposure to silica dust is very common in both working and living environments. However, the potential long-term health effects have not been well established across different exposure situations.
Methods and Findings
We studied 74,040 workers who worked at 29 metal mines and pottery factories in China for 1 y or more between January 1, 1960, and December 31, 1974, with follow-up until December 31, 2003 (median follow-up of 33 y). We estimated the cumulative silica dust exposure (CDE) for each worker by linking work history to a job–exposure matrix. We calculated standardized mortality ratios for underlying causes of death based on Chinese national mortality rates. Hazard ratios (HRs) for selected causes of death associated with CDE were estimated using the Cox proportional hazards model. The population attributable risks were estimated based on the prevalence of workers with silica dust exposure and HRs. The number of deaths attributable to silica dust exposure among Chinese workers was then calculated using the population attributable risk and the national mortality rate. We observed 19,516 deaths during 2,306,428 person-years of follow-up. Mortality from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 per 100,000 person-years). We observed significant positive exposure–response relationships between CDE (measured in milligrams/cubic meter–years, i.e., the sum of silica dust concentrations multiplied by the years of silica exposure) and mortality from all causes (HR 1.026, 95% confidence interval 1.023–1.029), respiratory diseases (1.069, 1.064–1.074), respiratory tuberculosis (1.065, 1.059–1.071), and cardiovascular disease (1.031, 1.025–1.036). Significantly elevated standardized mortality ratios were observed for all causes (1.06, 95% confidence interval 1.01–1.11), ischemic heart disease (1.65, 1.35–1.99), and pneumoconiosis (11.01, 7.67–14.95) among workers exposed to respirable silica concentrations equal to or lower than 0.1 mg/m3. After adjustment for potential confounders, including smoking, silica dust exposure accounted for 15.2% of all deaths in this study. We estimated that 4.2% of deaths (231,104 cases) among Chinese workers were attributable to silica dust exposure. The limitations of this study included a lack of data on dietary patterns and leisure time physical activity, possible underestimation of silica dust exposure for individuals who worked at the mines/factories before 1950, and a small number of deaths (4.3%) where the cause of death was based on oral reports from relatives.
Conclusions
Long-term silica dust exposure was associated with substantially increased mortality among Chinese workers. The increased risk was observed not only for deaths due to respiratory diseases and lung cancer, but also for deaths due to cardiovascular disease.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Walk along most sandy beaches and you will be walking on millions of grains of crystalline silica, one of the commonest minerals on earth and a major ingredient in glass and in ceramic glazes. Silica is also used in the manufacture of building materials, in foundry castings, and for sandblasting, and respirable (breathable) crystalline silica particles are produced during quarrying and mining. Unfortunately, silica dust is not innocuous. Several serious diseases are associated with exposure to this dust, including silicosis (a chronic lung disease characterized by scarring and destruction of lung tissue), lung cancer, and pulmonary tuberculosis (a serious lung infection). Moreover, exposure to silica dust increases the risk of death (mortality). Worryingly, recent reports indicate that in the US and Europe, about 1.7 and 3.0 million people, respectively, are occupationally exposed to silica dust, figures that are dwarfed by the more than 23 million workers who are exposed in China. Occupational silica exposure, therefore, represents an important global public health concern.
Why Was This Study Done?
Although the lung-related adverse health effects of exposure to silica dust have been extensively studied, silica-related health effects may not be limited to these diseases. For example, could silica dust particles increase the risk of cardiovascular disease (diseases that affect the heart and circulation)? Other environmental particulates, such as the products of internal combustion engines, are associated with an increased risk of cardiovascular disease, but no one knows if the same is true for silica dust particles. Moreover, although it is clear that high levels of exposure to silica dust are dangerous, little is known about the adverse health effects of lower exposure levels. In this cohort study, the researchers examined the effect of long-term exposure to silica dust on the risk of all cause and cause-specific mortality in a large group (cohort) of Chinese workers.
What Did the Researchers Do and Find?
The researchers estimated the cumulative silica dust exposure for 74,040 workers at 29 metal mines and pottery factories from 1960 to 2003 from individual work histories and more than four million measurements of workplace dust concentrations, and collected health and mortality data for all the workers. Death from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 deaths per 100,000 person-years), and there was a positive exposure–response relationship between silica dust exposure and death from all causes, respiratory diseases, respiratory tuberculosis, and cardiovascular disease. For example, the hazard ratio for all cause death was 1.026 for every increase in cumulative silica dust exposure of 1 mg/m3-year; a hazard ratio is the incidence of an event in an exposed group divided by its incidence in an unexposed group. Notably, there was significantly increased mortality from all causes, ischemic heart disease, and silicosis among workers exposed to respirable silica concentrations at or below 0.1 mg/m3, the workplace exposure limit for silica dust set by the US Occupational Safety and Health Administration. For example, the standardized mortality ratio (SMR) for silicosis among people exposed to low levels of silica dust was 11.01; an SMR is the ratio of observed deaths in a cohort to expected deaths calculated from recorded deaths in the general population. Finally, the researchers used their data to estimate that, in 2008, 4.2% of deaths among industrial workers in China (231,104 deaths) were attributable to silica dust exposure.
What Do These Findings Mean?
These findings indicate that long-term silica dust exposure is associated with substantially increased mortality among Chinese workers. They confirm that there is an exposure–response relationship between silica dust exposure and a heightened risk of death from respiratory diseases and lung cancer. That is, the risk of death from these diseases increases as exposure to silica dust increases. In addition, they show a significant relationship between silica dust exposure and death from cardiovascular diseases. Importantly, these findings suggest that even levels of silica dust that are considered safe increase the risk of death. The accuracy of these findings may be affected by the accuracy of the silica dust exposure estimates and/or by confounding (other factors shared by the people exposed to silica such as diet may have affected their risk of death). Nevertheless, these findings highlight the need to tighten regulations on workplace dust control in China and elsewhere.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001206.
The American Lung Association provides information on silicosis
The US Centers for Disease Control and Prevention provides information on silica in the workplace, including links to relevant US National Institute for Occupational Health and Safety publications, and information on silicosis and other pneumoconioses
The US Occupational Safety and Health Administration also has detailed information on occupational exposure to crystalline silica
What does silicosis mean to you is a video provided by the US Mine Safety and Health Administration that includes personal experiences of silicosis; Dont let silica dust you is a video produced by the Association of Occupational and Environmental Clinics that identifies ways to reduce silica dust exposure in the workplace
The MedlinePlus encyclopedia has a page on silicosis (in English and Spanish)
The International Labour Organization provides information on health surveillance for those exposed to respirable crystalline silica
The World Health Organization has published a report about the health effects of crystalline silica and quartz
doi:10.1371/journal.pmed.1001206
PMCID: PMC3328438  PMID: 22529751
17.  Does one size fit all? The suitability of standard ozone exposure metric conversion ratios and implications for epidemiology 
Several exposure metrics have been applied in health research and policy settings to represent ozone exposure, such as the 24 h average and daily 8 h maximum. Frequently, results calculated using one exposure metric are converted using a simple ratio to compare or combine findings with results using a different metric. This conversion, however, assumes that such a ratio is constant across locations and time periods. We investigated the appropriateness of this conversion method by examining the relationships among various forms of ozone concentrations (24 h average, daily 1 h maximum, and daily 8 h maximum) within and between communities for 78 US communities from 2000 to 2004 and compared results to commonly used conversion ratios. We explored whether the relationships between ozone exposure metrics differ by region, weather, season, and city-specific characteristics. Analysis revealed variation in the relationship among ozone metrics, both across communities and across time within individual communities, indicating that conversion of ozone exposure metrics with a standard ratio introduces uncertainty. For example, the average ratio of the daily 8 h maximum to the daily concentration ranged from 1.23 to 1.83. Within a community, days with higher ozone levels had lower ratios. Relationships among metrics within a community were associated with daily temperature. The community-average exposure metric ratios were lower for communities with higher long-term ozone levels. Ozone metric ratios differed by season because of the different rate of change of ozone metrics throughout the year. We recommend that health effects studies present results from multiple ozone exposure metrics, if possible. When conversions are necessary, more accurate estimates can be obtained using summaries of data for a given location and time period if available, or by basing conversion ratios on data from a similar city and season, such as the results provided in this study.
doi:10.1038/jes.2008.69
PMCID: PMC3169292  PMID: 18985076
criteria pollutants; environmental monitoring; exposure modeling
18.  Role of mitogen-activated protein kinase phosphatase-1 in corticosteroid insensitivity of chronic oxidant lung injury 
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and in the induction of corticosteroid (CS) insensitivity. Chronic ozone exposure leads to a model of COPD with lung inflammation and emphysema. Mitogen-activated protein kinase phosphatase-1 (MKP-1) may underlie CS insensitivity in COPD. We determined the role played by MKP-1 by studying the effect of corticosteroids in wild-type C57/BL6J and MKP-1−/− mice after chronic ozone exposure. Mice were exposed to ozone (3 ppm, 3 h) 12 times over 6 weeks. Dexamethasone (0.1 or 2 mg/kg; intraperitoneally) was administered before each exposure. Mice were studied 24 h after final exposure. In ozone-exposed C57/BL6J mice, bronchial hyperresponsiveness (BHR) was not inhibited by both doses of dexamethasone, but in MKP-1−/− mice, there was a small inhibition by high dose dexamethasone (2 mg/kg). There was an increase in mean linear intercept after chronic ozone exposure in both strains which was CS-insensitive. There was lesser inflammation after low dose of dexamethasone in MKP-1−/− mice compared to C57/Bl6J mice. Epithelial and collagen areas were modulated in ozone-exposed MKP-1−/− mice treated with dexamethasone compared to C57/Bl6J mice. MKP-1 regulated the expression of MMP-12, IL-13 and KC induced by ozone but did not alter dexamethasone׳s effects. Bronchial hyperresponsiveness, lung inflammation and emphySEMa after chronic exposure are CS-insensitive, and the contribution of MKP-1 to CS sensitivity in this model was negligible.
doi:10.1016/j.ejphar.2014.10.003
PMCID: PMC4266539  PMID: 25310910
Ozone exposure; Emphysema; Lung inflammation; Bronchial hyperresponsiveness; Mitogen-activated protein kinase phosphatase 1 (MKP-1)
19.  Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists. 
Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution.
PMCID: PMC1567944  PMID: 1954938
20.  Obstructive Sleep Apnea and Risk of Cardiovascular Events and All-Cause Mortality: A Decade-Long Historical Cohort Study 
PLoS Medicine  2014;11(2):e1001599.
Tetyana Kendzerska and colleagues explore the association between physiological measures of obstructive sleep apnea other than the apnea-hypopnea index and the risk of cardiovascular events.
Please see later in the article for the Editors' Summary
Background
Obstructive sleep apnea (OSA) has been reported to be a risk factor for cardiovascular (CV) disease. Although the apnea-hypopnea index (AHI) is the most commonly used measure of OSA, other less well studied OSA-related variables may be more pathophysiologically relevant and offer better prediction. The objective of this study was to evaluate the relationship between OSA-related variables and risk of CV events.
Methods and Findings
A historical cohort study was conducted using clinical database and health administrative data. Adults referred for suspected OSA who underwent diagnostic polysomnography at the sleep laboratory at St Michael's Hospital (Toronto, Canada) between 1994 and 2010 were followed through provincial health administrative data (Ontario, Canada) until May 2011 to examine the occurrence of a composite outcome (myocardial infarction, stroke, congestive heart failure, revascularization procedures, or death from any cause). Cox regression models were used to investigate the association between baseline OSA-related variables and composite outcome controlling for traditional risk factors. The results were expressed as hazard ratios (HRs) and 95% CIs; for continuous variables, HRs compare the 75th and 25th percentiles. Over a median follow-up of 68 months, 1,172 (11.5%) of 10,149 participants experienced our composite outcome. In a fully adjusted model, other than AHI OSA-related variables were significant independent predictors: time spent with oxygen saturation <90% (9 minutes versus 0; HR = 1.50, 95% CI 1.25–1.79), sleep time (4.9 versus 6.4 hours; HR = 1.20, 95% CI 1.12–1.27), awakenings (35 versus 18; HR = 1.06, 95% CI 1.02–1.10), periodic leg movements (13 versus 0/hour; HR = 1.05, 95% CI 1.03–1.07), heart rate (70 versus 56 beats per minute [bpm]; HR = 1.28, 95% CI 1.19–1.37), and daytime sleepiness (HR = 1.13, 95% CI 1.01–1.28).The main study limitation was lack of information about continuous positive airway pressure (CPAP) adherence.
Conclusion
OSA-related factors other than AHI were shown as important predictors of composite CV outcome and should be considered in future studies and clinical practice.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder, particularly among middle-aged and elderly people. It is characterized by apnea—a brief interruption in breathing that lasts at least 10 seconds—and hypopnea—a decrease of more than 50% in the amplitude of breathing that lasts at least 10 seconds or clear but smaller decrease in amplitude associated with either oxygen desaturation or an arousal. Patients with OSA experience numerous episodes of apnea and hypopnea during the night; severe OSA is defined as having 30 or more episodes per hour (an apnea-hypopnea index [AHI] of >30). These breathing interruptions occur when relaxation of the upper airway muscles decreases the airflow, which lowers the amount of oxygen in the blood. As a result, affected individuals frequently wake from deep sleep as they struggle to breathe. Symptoms of OSA include loud snoring and daytime sleepiness. Treatments include lifestyle changes such as losing weight (excess fat around the neck increases airway collapse) and smoking cessation. For severe OSA, doctors recommend continuous positive airway pressure (CPAP), in which a machine blows pressurized air through a face mask into the airway to keep it open.
Why Was This Study Done?
OSA can be life-threatening. Most directly, daytime sleepiness can cause accidents, but OSA is also associated with an increased risk of developing cardiovascular disease (CVD, disease that affects the heart and the circulation). To date, studies that have investigated the association between OSA and the risk of myocardial infarction (heart attack), congestive heart failure, stroke, and other CVDs have used the AHI to diagnose and categorize the severity of OSA. However, by focussing on AHI, clinicians and researchers may be missing opportunities to improve their ability to predict which patients are at the highest risk of CVD. In this historical cohort study, the researchers investigate the association between other OSA-related variables (for example, blood oxygen saturation and sleep fragmentation) and the risk of cardiovascular events and all-cause mortality (death). A historical cohort study examines the medical records of groups of individuals who have different characteristics at baseline for the subsequent occurrence of specific outcomes.
What Did the Researchers Do and Find?
The researchers used administrative data (including hospitalization records and physicians' claims for services supplied to patients) to follow up adults referred for suspected OSA who underwent diagnostic polysomnography (a sleep study) at a single Canadian hospital between 1994 and 2010. A database of the polysomnography results provided information on OSA-related variables for all the study participants. Over an average follow-up of about 6 years, 11.5% of the 10,149 participants were hospitalized for a myocardial infarction, stroke, or congestive heart failure, underwent a revascularization procedure (an intervention that restores the blood supply to an organ or tissue after CVD has blocked a blood vessel), or had died from any cause. After adjusting for multiple established risk factors for CVD such as smoking and age in Cox regression models (a statistical approach that examines associations between patient variables and outcomes), several OSA-related variables (but not AHI) were significant predictors of CVD. The strongest OSA-related predictor of cardiovascular events or all-cause mortality was total sleep time spent with oxygen saturation below 90%, which increased the risk of a cardiovascular event or death by 50%. Other statistically significant OSA-related predictors (predictors that were unlikely to be associated with the outcome through chance) of cardiovascular events or death included total sleep time, number of awakenings, frequency of periodic leg movements, heart rate, and daytime sleepiness.
What Do These Findings Mean?
These findings indicate that OSA-related factors other than AHI are important predictors of the composite outcome of a cardiovascular event or all-cause mortality. Indeed, although AHI was significantly associated with the researchers' composite outcome in an analysis that did not consider other established risk factors for CVD (“confounders”), the association became non-significant after controlling for potential confounders. The accuracy of these findings, which need to be confirmed in other settings, is likely to be limited by the lack of information available about the use of CPAP by study participants and by the lack of adjustment for some important confounders. Importantly, however, these findings suggest that OSA-related factors other than AHI should be considered as predictors of CVD in future studies and in clinical practice.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001599.
The US National Heart Lung and Blood Institute has information (including several videos) about obstructive sleep apnea (in English and Spanish), sleep studies, heart disease, and other cardiovascular diseases (some information in English and Spanish)
The UK National Health Service Choices website provides information (including personal stories) about sleep apnea and about cardiovascular disease
The not-for-profit American Sleep Apnea Association provides detailed information about sleep apnea for patients and health-care professionals, including personal stories about the condition
The MedlinePlus encyclopedia has pages on obstructive sleep apnea and on polysomnography; MedlinePlus provides links to further information and advice about obstructive sleep apnea, heart diseases, and vascular diseases (in English and Spanish)
doi:10.1371/journal.pmed.1001599
PMCID: PMC3913558  PMID: 24503600
21.  Stress Hyperglycaemia in Hospitalised Patients and Their 3-Year Risk of Diabetes: A Scottish Retrospective Cohort Study 
PLoS Medicine  2014;11(8):e1001708.
In a retrospective analysis of a national database of hospital admissions, David McAllister and colleagues identify the 3-year risk of diabetes of hospitalized patients with hyperglycemia in Scotland.
Please see later in the article for the Editors' Summary
Background
Hyperglycaemia during hospital admission is common in patients who are not known to have diabetes and is associated with adverse outcomes. The risk of subsequently developing type 2 diabetes, however, is not known.
We linked a national database of hospital admissions with a national register of diabetes to describe the association between admission glucose and the risk of subsequently developing type 2 diabetes.
Methods and Findings
In a retrospective cohort study, patients aged 30 years or older with an emergency admission to hospital between 2004 and 2008 were included. Prevalent and incident diabetes were identified through the Scottish Care Information (SCI)-Diabetes Collaboration national registry. Patients diagnosed prior to or up to 30 days after hospitalisation were defined as prevalent diabetes and were excluded.
The predicted risk of developing incident type 2 diabetes during the 3 years following hospital discharge by admission glucose, age, and sex was obtained from logistic regression models. We performed separate analyses for patients aged 40 and older, and patients aged 30 to 39 years.
Glucose was measured in 86,634 (71.0%) patients aged 40 and older on admission to hospital. The 3-year risk of developing type 2 diabetes was 2.3% (1,952/86,512) overall, was <1% for a glucose ≤5 mmol/l, and increased to approximately 15% at 15 mmol/l. The risks at 7 mmol/l and 11.1 mmol/l were 2.6% (95% CI 2.5–2.7) and 9.9% (95% CI 9.2–10.6), respectively, with one in four (21,828/86,512) and one in 40 (1,798/86,512) patients having glucose levels above each of these cut-points. For patients aged 30–39, the risks at 7 mmol/l and 11.1 mmol/l were 1.0% (95% CI 0.8–1.3) and 7.8% (95% CI 5.7–10.7), respectively, with one in eight (1,588/11,875) and one in 100 (120/11,875) having glucose levels above each of these cut-points.
The risk of diabetes was also associated with age, sex, and socio-economic deprivation, but not with specialty (medical versus surgical), raised white cell count, or co-morbidity. Similar results were obtained for pre-specified sub-groups admitted with myocardial infarction, chronic obstructive pulmonary disease, and stroke.
There were 25,193 deaths (85.8 per 1,000 person-years) over 297,122 person-years, of which 2,406 (8.1 per 1,000 person-years) were attributed to vascular disease. Patients with glucose levels of 11.1 to 15 mmol/l and >15 mmol/l had higher mortality than patients with a glucose of <6.1 mmol/l (hazard ratio 1.54; 95% CI 1.42–1.68 and 2.50; 95% CI 2.14–2.95, respectively) in models adjusting for age and sex.
Limitations of our study include that we did not have data on ethnicity or body mass index, which may have improved prediction and the results have not been validated in non-white populations or populations outside of Scotland.
Conclusion
Plasma glucose measured during an emergency hospital admission predicts subsequent risk of developing type 2 diabetes. Mortality was also 1.5-fold higher in patients with elevated glucose levels. Our findings can be used to inform patients of their long-term risk of type 2 diabetes, and to target lifestyle advice to those patients at highest risk.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Insulin—a hormone released by the pancreas after meals—controls blood glucose (sugar) levels in healthy individuals. However, many patients admitted to hospital because of an acute illness have hyperglycemia, an abnormally high blood glucose level. In this setting, hyperglycemia can be caused by the drugs that patients are taking for existing conditions or may be stress hyperglycemia, a reversible condition in which hormonal changes induced by acute illness stimulate glucose production by the liver. However, hyperglycemia detected during an acute illness may also indicate underlying or incipient type 2 diabetes, a common condition in which blood glucose control fails. Type 2 diabetes can initially be controlled by diet, exercise, and antidiabetic drugs but many patients eventually need insulin injections to control their blood sugar level. Long-term complications of type 2 diabetes, which include an increased risk of heart attacks and stroke, reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes
Why Was This Study Done?
Prompt diagnosis of type 2 diabetes can minimize its long-term complications, so experts have designed several scoring systems based on lifestyle and other characteristics that allow primary care clinicians to identify the patients who should be tested for diabetes because they are at high risk of developing the condition. Unfortunately, these scoring systems cannot be used to interpret a high blood glucose result obtained during an acute illness so clinicians cannot currently advise their patients on the clinical significance of this type of abnormal glucose reading or make an informed decision about whether follow-up testing is needed. In this retrospective cohort study, the researchers investigate the association between blood glucose levels measured during emergency hospital admissions in Scotland and the risk of developing type 2 diabetes by linking together national databases of hospital admissions, laboratory test results, and people with diabetes. A retrospective cohort study examines the medical histories of a group of patients.
What Did the Researchers Do and Find?
The researchers used the databases to identify more than 100,000 patients aged 30 years or older who were admitted to a hospital for an acute illness between 2004 and 2008 in Scotland, to obtain information on blood glucose levels on admission for nearly three-quarters of these patients, and to identify which patients subsequently developed diabetes. They then used statistical models to estimate the patients' risk of developing type 2 diabetes during the 3 years following hospital discharge. Among patients aged 40 years or older, the overall 3-year risk of developing diabetes was 2.3%. The risk of developing diabetes increased linearly with increasing blood glucose level at admission. Specifically, the 3-year risks at blood glucose levels of 7 mmol/l and 11.1 mmol/l were 2.6% and 9.9%, respectively; because glucose levels fluctuate according to when an individual last ate, fasting blood glucose levels of 7 mmol/l and non-fasting blood glucose levels of 11.1 mmol/l are used as thresholds for the diagnosis of diabetes. The diabetes risk associated with blood glucose levels on admission among 30–39-year-old patients followed a similar pattern but was less marked. Finally, high glucose levels on admission were associated with increased mortality.
What Do These Findings Mean?
These findings indicate that blood glucose measured during an emergency hospital admission predicts the subsequent risk of type 2 diabetes among patients aged 40 years or older (the analysis specified in the researchers' original protocol). Importantly, however, they also suggest that a high blood glucose reading in these circumstances usually indicates stress hyperglycemia rather than type 2 diabetes. The accuracy and generalizability of these findings may be limited by the lack of data on ethnicity or body mass index (a measure of obesity), both of which affect diabetes risk, and by other aspects of the study design. Nevertheless, given their findings, the researchers recommend that any patient with a blood glucose level above 11.1 mmol/l on hospital admission for an acute illness (one in 40 patients in this study) should be offered follow-up testing. In addition, the researchers constructed a risk calculator using their findings that should help clinicians to inform their patients about their long-term risk of diabetes following hyperglycemia during an acute hospital admission and to target lifestyle advice to those patients at the highest risk of type 2 diabetes.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001708.
The US National Diabetes Information Clearinghouse provides information about diabetes and about diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes
The charity Diabetes UK provides information about diabetes in several languages, including information on healthy lifestyles for people with diabetes
Wikipedia has a page on stress hyperglycemia (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
More information about stress hyperglycemia is available in Diapedia, a living textbook of diabetes produced by the European Association for the Study of Diabetes
GUARD (Glucose on Unselected Admissions and Risk of Diabetes), a risk calculator that allows clinicians to estimate a patient's 3-year risk of diabetes following hyperglycemia at hospital admission for an acute illness, is available online
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
doi:10.1371/journal.pmed.1001708
PMCID: PMC4138030  PMID: 25136809
22.  Chronic Exposure to Ambient Ozone and Asthma Hospital Admissions among Children 
Environmental Health Perspectives  2008;116(12):1725-1730.
Background
The association between chronic exposure to air pollution and adverse health outcomes has not been well studied.
Objective
This project investigated the impact of chronic exposure to high ozone levels on childhood asthma admissions in New York State.
Methods
We followed a birth cohort born in New York State during 1995–1999 to first asthma admission or until 31 December 2000. We identified births and asthma admissions through the New York State Integrated Child Health Information System and linked these data with ambient ozone data (8-hr maximum) from the New York State Department of Environmental Conservation. We defined chronic ozone exposure using three indicators: mean concentration during the follow-up period, mean concentration during the ozone season, and proportion of follow-up days with ozone levels > 70 ppb. We performed logistic regression analysis to adjust for child’s age, sex, birth weight, and gestational age; maternal race/ethnicity, age, education, insurance status, smoking during pregnancy, and poverty level; and geographic region, temperature, and copollutants.
Results
Asthma admissions were significantly associated with increased ozone levels for all chronic exposure indicators (odds ratios, 1.16–1.68), with a positive dose–response relationship. We found stronger associations among younger children, low sociodemographic groups, and New York City residents as effect modifiers.
Conclusion
Chronic exposure to ambient ozone may increase the risk of asthma admissions among children. Younger children and those in low socioeconomic groups have a greater risk of asthma than do other children at the same ozone level.
doi:10.1289/ehp.11184
PMCID: PMC2599770  PMID: 19079727
air pollution; asthma; children; chronic; hospital admissions; ozone
23.  Modifying Effect of Age on the Association between Ambient Ozone and Nighttime Primary Care Visits Due to Asthma Attack 
Journal of Epidemiology  2009;19(3):143-151.
Background
We examined the association between short-term exposure to outdoor air pollution and nighttime primary care visits due to asthma attack. We also investigated the modifying effects of age on this association.
Methods
A case–crossover study was conducted at a primary care clinic in metropolitan Tokyo. The subjects were 308 children aged 0–14 years and 95 adolescents and adults aged 15–64 years. All subjects made visits to the clinic for an asthma attack at between 7 PM and 12 AM. Data on hourly concentrations of particulate matter with a 50% cut-off aerodynamic diameter ≤2.5 µm (PM2.5), ozone, and nitrogen dioxide (NO2) were obtained. A conditional logistic regression model was used to estimate odds ratios (ORs) of primary care visits per unit increment of each air pollutant.
Results
Among children, the ORs in warmer months per 10 ppb increment of the 24-hour mean concentration of ozone were 1.16 (95% confidential interval [CI], 1.00–1.33) adjusted for temperature, and 1.29 (95% CI, 1.08–1.55) adjusted for PM2.5, NO2, and temperature. With respect to modification of the association by age, the ORs for 24-hour mean concentration of ozone—after adjustment for PM2.5, NO2 and temperature in warmer months—in children aged 0–1 years, 2–5 years, and 6–14 years were 1.06 (95% CI, 0.63–1.78), 1.37 (95% CI, 1.05–1.71), and 1.25 (95% CI, 0.87–1.82), respectively. There was no association between ozone and primary care visits among adults.
Conclusions
An association was found between ozone and nighttime primary care visits for asthma attack in warmer months; the association was greater among preschool children.
doi:10.2188/jea.JE20081025
PMCID: PMC3924139  PMID: 19398846
air pollution; asthma; ozone; particulate matter; preschool children
24.  Inhibition of myristoylated alanine-rich C kinase substrate (MARCKS) protein inhibits ozone-induced airway neutrophilia and inflammation 
Experimental lung research  2010;36(2):75-84.
Evidence suggests inhibition of leukocyte trafficking mitigates, in part, ozone-induced inflammation. In the present study, the authors postulated that inhibition of myristoylated alanine-rich C kinase substrate (MARCKS), an 82-kDa protein with multiple biological roles, could inhibit ozone-induced leukocyte trafficking and cytokine secretions. BALB/c mice (n = 5/cohort) were exposed to ozone (100 ppb) or forced air (FA) for 4 hours. MARCKS-inhibiting peptides, MANS, BIO-11000, BIO-11006, or scrambled control peptide RNS, were intratracheally administered prior to ozone exposure. Ozone selectively enhanced bronchoalveolar lavage (BAL) levels of killer cells (KCs; 6 ± 0.9-fold), interleukin-6 (IL-6; 12.7 ± 1.9-fold), and tumor necrosis factor (TNF; 2.1 ± 0.5-fold) as compared to cohorts exposed to FA. Additionally, ozone increased BAL neutrophils by 21% ± 2% with no significant (P > .05) changes in other cell types. MANS, BIO-11000, and BIO-11006 significantly reduced ozone-induced KC secretion by 66% ± 14%, 47% ± 15%, and 71.1% ± 14%, and IL-6 secretion by 69% ± 12%, 40% ± 7%, and 86.1% ± 11%, respectively. Ozone-mediated increases in BAL neutrophils were reduced by MANS (86% ± 7%) and BIO-11006 (84% ± 2.5%), but not BIO-11000. These studies identify for the first time the novel potential of MARCKS protein inhibitors in abrogating ozone-induced increases in neutrophils, cytokines, and chemokines in BAL fluid. BIO-11006 is being developed as a treatment for chronic obstructive pulmonary disorder (COPD) and is currently being evaluated in a phase 2 clinical study.
doi:10.3109/01902140903131200
PMCID: PMC4064305  PMID: 20205598
asthma; BIO-11006; COPD; cytokines; inflammation; MANS peptide
25.  Air Pollution and the Microvasculature: A Cross-Sectional Assessment of In Vivo Retinal Images in the Population-Based Multi-Ethnic Study of Atherosclerosis (MESA) 
PLoS Medicine  2010;7(11):e1000372.
Sara Adar and colleagues show that residing in locations with higher air pollution concentrations and experiencing daily increases in air pollution are associated with narrower retinal arteriolar diameters in older individuals, thus providing a link between air pollution and cardiovascular disease.
Background
Long- and short-term exposures to air pollution, especially fine particulate matter (PM2.5), have been linked to cardiovascular morbidity and mortality. One hypothesized mechanism for these associations involves microvascular effects. Retinal photography provides a novel, in vivo approach to examine the association of air pollution with changes in the human microvasculature.
Methods and Findings
Chronic and acute associations between residential air pollution concentrations and retinal vessel diameters, expressed as central retinal arteriolar equivalents (CRAE) and central retinal venular equivalents (CRVE), were examined using digital retinal images taken in Multi-Ethnic Study of Atherosclerosis (MESA) participants between 2002 and 2003. Study participants (46 to 87 years of age) were without clinical cardiovascular disease at the baseline examination (2000–2002). Long-term outdoor concentrations of PM2.5 were estimated at each participant's home for the 2 years preceding the clinical exam using a spatio-temporal model. Short-term concentrations were assigned using outdoor measurements on the day preceding the clinical exam. Residential proximity to roadways was also used as an indicator of long-term traffic exposures. All associations were examined using linear regression models adjusted for subject-specific age, sex, race/ethnicity, education, income, smoking status, alcohol use, physical activity, body mass index, family history of cardiovascular disease, diabetes status, serum cholesterol, glucose, blood pressure, emphysema, C-reactive protein, medication use, and fellow vessel diameter. Short-term associations were further controlled for weather and seasonality. Among the 4,607 participants with complete data, CRAE were found to be narrower among persons residing in regions with increased long- and short-term levels of PM2.5. These relationships were observed in a joint exposure model with −0.8 µm (95% confidence interval [CI] −1.1 to −0.5) and −0.4 µm (95% CI −0.8 to 0.1) decreases in CRAE per interquartile increases in long- (3 µg/m3) and short-term (9 µg/m3) PM2.5 levels, respectively. These reductions in CRAE are equivalent to 7- and 3-year increases in age in the same cohort. Similarly, living near a major road was also associated with a −0.7 µm decrease (95% CI −1.4 to 0.1) in CRAE. Although the chronic association with CRAE was largely influenced by differences in exposure between cities, this relationship was generally robust to control for city-level covariates and no significant differences were observed between cities. Wider CRVE were associated with living in areas of higher PM2.5 concentrations, but these findings were less robust and not supported by the presence of consistent acute associations with PM2.5.
Conclusions
Residing in regions with higher air pollution concentrations and experiencing daily increases in air pollution were each associated with narrower retinal arteriolar diameters in older individuals. These findings support the hypothesis that important vascular phenomena are associated with small increases in short-term or long-term air pollution exposures, even at current exposure levels, and further corroborate reported associations between air pollution and the development and exacerbation of clinical cardiovascular disease.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a common cause of illness and death among adults in developed countries. In the United States, for example, the leading cause of death is coronary heart disease, a CVD in which narrowing of the heart's arteries by atherosclerotic plaques (fatty deposits that build up with age) slows the blood supply to the heart and may eventually cause a heart attack (myocardial infarction). Other types of CVD include stroke (in which atherosclerotic plaques interrupt the brain's blood supply) and peripheral arterial disease (in which the blood supply to the limbs is blocked). Smoking, high blood pressure, high blood levels of cholesterol (a type of fat), having diabetes, being overweight, and being physically inactive all increase a person's risk of developing CVD. Treatments for CVD include lifestyle changes and taking drugs that lower blood pressure or blood cholesterol levels.
Why Was This Study Done?
Another risk factor for CVD is exposure to long-term and/or short-term air pollution. Fine particle pollution or PM2.5 is particularly strongly associated with an increased risk of CVD. PM2.5—particulate matter 2.5 µm in diameter or 1/30th the diameter of a human hair—is mainly produced by motor vehicles, power plants, and other combustion sources. Why PM2.5 increases CVD risk is not clear but one possibility is that it alters the body's microvasculature (fine blood vessels known as capillaries, arterioles, and venules), thereby impairing the blood flow through the heart and brain. In this study, the researchers use noninvasive digital retinal photography to investigate whether there is an association between air pollution and changes in the human microvasculature. The retina—a light-sensitive layer at the back of the eye that converts images into electrical messages and sends them to the brain—has a dense microvasculature. Retinal photography is used to check the retinal microvasculature for signs of potentially blinding eye diseases such as diabetic retinopathy. Previous studies have found that narrower than normal retinal arterioles and wider than normal retinal venules are associated with CVD.
What Did the Researchers Do and Find?
The researchers used digital retinal photography to measure the diameters of retinal blood vessels in the participants of the Multi-Ethnic Study of Atherosclerosis (MESA). This study is investigating CVD progression in people aged 45–84 years of various ethnic backgrounds who had no CVD symptoms when they enrolled in the study in 2000–2002. The researchers modeled the long-term outdoor concentration of PM2.5 at each participant's house for the 2-year period preceding the retinal examination (which was done between 2002 and 2003) using data on PM2.5 levels collected by regulatory monitoring stations as well as study-specific air samples collected outside of the homes and in the communities of study participants. Outdoor PM2.5 measurements taken the day before the examination provided short-term PM2.5 levels. Among the 4,607 MESA participants who had complete data, retinal arteriolar diameters were narrowed among those who lived in regions with increased long- and short-term PM2.5 levels. Specifically, an increase in long-term PM2.5 concentrations of 3 µg/m3 was associated with a 0.8 µm decrease in arteriolar diameter, a reduction equivalent to that seen for a 7-year increase in age in this group of people. Living near a major road, another indicator of long-term exposure to PM2.5 pollution, was also associated with narrowed arterioles. Finally, increased retinal venular diameters were weakly associated with long-term high PM2.5 concentrations.
What Do These Findings Mean?
These findings indicate that living in areas with long-term air pollution or being exposed to short-term air pollution is associated with narrowing of the retinal arterioles in older individuals. They also show that widening of retinal venules is associated with long-term (but not short-term) PM2.5 pollution. Together, these findings support the hypothesis that long- and short-term air pollution increases CVD risk through effects on the microvasculature. However, they do not prove that PM2.5 is the constituent of air pollution that drives microvascular changes—these findings could reflect the toxicity of another pollutant or the pollution mixture as a whole. Importantly, these findings show that microvascular changes can occur at the PM2.5 levels that commonly occur in developed countries, which are well below those seen in developing countries. Worryingly, they also suggest that the deleterious cardiovascular effects of air pollution could occur at levels below existing regulatory standards.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/ 10.1371/journal.pmed.1000372.
The American Heart Association provides information for patients and caregivers on all aspects of cardiovascular disease (in several languages), including information on air pollution, heart disease, and stroke
The US Centers for Disease Control and Prevention has information on heart disease and on stroke
Information is available from the British Heart Foundation on cardiovascular disease
The UK National Health Service Choices website provides information for patients and caregivers about cardiovascular disease
MedlinePlus provides links to other sources of information on heart disease and on vascular disease (in English and Spanish)
The AIRNow site provides information about US air quality and about air pollution and health
The Air Quality Archive has up-to-date information about air pollution in the UK and information about the health effects of air pollution
The US Environmental Protection Agency has information on PM2.5
The following Web sites contain information available on the MESA and MESA Air studies
doi:10.1371/journal.pmed.1000372
PMCID: PMC2994677  PMID: 21152417

Results 1-25 (1137828)