PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1410550)

Clipboard (0)
None

Related Articles

1.  JPEG2000 Still Image Coding Quality 
Journal of Digital Imaging  2013;26(5):866-874.
This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression.
doi:10.1007/s10278-013-9603-x
PMCID: PMC3782606  PMID: 23589187
Image compression; JPEG2000; Image quality
2.  Stress Echocardiography for the Diagnosis of Coronary Artery Disease 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).
The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas"> www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Pease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website:
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: an Evidence-Based Analysis
The Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled:
The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7
Objective
The objective of the analysis is to determine the diagnostic accuracy of stress echocardiography (ECHO) in the diagnosis of patients with suspected coronary artery disease (CAD) compared to coronary angiography (CA).
Stress Echocardiography
Stress ECHO is a non-invasive technology that images the heart using ultrasound. It is one of the most commonly employed imaging techniques for investigating a variety of cardiac abnormalities in both community and hospital settings. A complete ECHO exam includes M-mode, 2-dimensional (2-D) images and Doppler imaging.
In order to diagnosis CAD and assess whether myocardial ischemia is present, images obtained at rest are compared to those obtained during or immediately after stress. The most commonly used agents used to induce stress are exercise and pharmacological agents such as dobutamine and dipyridamole. The hallmark of stress-induced myocardial ischemia is worsening of wall motion abnormalities or the development of new wall motion abnormalities. A major challenge for stress ECHO is that the interpretation of wall motion contractility and function is subjective. This leads to inter-observer variability and reduced reproducibility. Further, it is estimated that approximately 30% of patients have sub-optimal stress ECHO exams. To overcome this limitation, contrast agents for LV opacification have been developed.
Although stress ECHO is a relatively easy to use technology that poses only a low risk of adverse events compared to other imaging technologies, it may potentially be overused and/or misused in CAD diagnosis. Several recent advances have been made focusing on quantitative methods for assessment, improved image quality and enhanced portability, however, evidence on the effectiveness and clinical utility of these enhancements is limited.
Evidence-Based Analysis
Research Questions
What is the diagnostic accuracy of stress ECHO for the diagnosis of patients with suspected CAD compared to the reference standard of CA?
What is the clinical utility1 of stress ECHO?
Literature Search
A literature search was performed on August 28, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until August 21, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search.
Inclusion Criteria
Systematic reviews, meta-analyses, randomized controlled trials, prospective observational studies, retrospective analyses
Minimum sample size of 20 enrolled patients
Comparison to CA (reference standard)
Definition of CAD specified as either ≥50%, ≥70% or ≥75% coronary artery stenosis on CA
Reporting accuracy data on individual patients (rather than accuracy data stratified by segments of the heart)
English
Human
Exclusion Criteria
Duplicate studies
Non-systematic reviews, case reports
Grey literature (e.g., conference abstracts)
Insufficient data for independent calculation of sensitivity and specificity
Use of ECHO for purposes other than diagnosis of CAD (e.g., arrhythmia, valvular disease, mitral stenosis, pre-operative risk of MI)
Transesophageal ECHO since its primary use is for non-CAD indications such as endocarditis, intracardiac thrombi, valvular disorders
Only resting ECHO performed
Outcomes of Interest
Accuracy outcomes (sensitivity, specificity, positive predictive value, negative predictive value)
Costs
Summary of Findings
Given the vast amount of published literature on stress ECHO, it was decided to focus on the studies contained in the comprehensive 2007 review by Heijenbrok-Kal et al. (1) as a basis for the MAS evidence-based analysis. In applying our inclusion and exclusion criteria, 105 observational studies containing information on 13,035 patients were included. Six studies examined stress ECHO with adenosine, 26 with dipyridamole and 77 with dobutamine, the latter being the most commonly used pharmacological stress ECHO agent in Ontario. A further 18 studies employed exercise as the stressor.2 The prevalence of CAD ranged from 19% to 94% with a mean estimated prevalence of 70%. Based on the results of these studies the following conclusions were made:
Based on the available evidence, stress ECHO is a useful imaging modality for the diagnosis of CAD in patients with suspected disease. The overall pooled sensitivity is 0.80 (95% CI: 0.77 – 0.82) and the pooled specificity is 0.84 (95% CI: 0.82 – 0.87) using CA as the reference standard. The AUC derived from the sROC curve is 0.895 and the DOR is 20.64.
For pharmacological stress, the pooled sensitivity is 0.79 (95% CI: 0.71 – 0.87) and the pooled specificity is 0.85 (95% CI: 0.83 – 0.88). When exercise is employed as the stress agent, the pooled sensitivity is 0.81 (95% CI: 0.76– 0.86) and the pooled specificity is 0.79 (95% CI: 0.71 – 0.87). Although pharmacological stress and exercise stress would be indicated for different patient populations based on ability to exercise there were no significant differences in sensitivity and specificity.
Based on clinical experts, diagnostic accuracy on stress ECHO depends on the patient population, the expertise of the interpreter and the quality of the image.
PMCID: PMC3377563  PMID: 23074412
3.  Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).
The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Pease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website:
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: an Evidence-Based Analysis
The Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled:
The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7
Objective
The objective of the analysis is to determine the diagnostic accuracy of single photon emission tomography (SPECT) in the diagnosis of coronary artery disease (CAD) compared to the reference standard of coronary angiography (CA). The analysis is primarily meant to allow for indirect comparisons between non-invasive strategies for the diagnosis of CAD, using CA as a reference standard.
SPECT
Cardiac SPECT, or myocardial perfusion scintigraphy (MPS), is a widely used nuclear, non-invasive image acquisition technique for investigating ischemic heart disease. SPECT is currently appropriate for all aspects of detecting and managing ischemic heart disease including diagnosis, risk assessment/stratification, assessment of myocardial viability, and the evaluation of left ventricular function. Myocardial perfusion scintigraphy was originally developed as a two-dimensional planar imaging technique, but SPECT acquisition has since become the clinical standard in current practice. Cardiac SPECT for the diagnosis of CAD uses an intravenously administered radiopharmaceutical tracer to evaluate regional coronary blood flow usually at rest and after stress. The radioactive tracers thallium (201Tl) or technetium-99m (99mTc), or both, may be used to visualize the SPECT acquisition. Exercise or a pharmacologic agent is used to achieve stress. After the administration of the tracer, its distribution within the myocardium (which is dependent on myocardial blood flow) is imaged using a gamma camera. In SPECT imaging, the gamma camera rotates around the patients for 10 to 20 minutes so that multiple two-dimensional projections are acquired from various angles. The raw data are then processed using computational algorithms to obtain three-dimensional tomographic images.
Since its inception, SPECT has evolved and its techniques/applications have become increasingly more complex and numerous. Accordingly, new techniques such as attenuation correction and ECG gating have been developed to correct for attenuation due to motion or soft-tissue artifact and to improve overall image clarity.
Research Questions
What is the diagnostic accuracy of SPECT for the diagnosis of CAD compared to the reference standard of CA?
Is SPECT cost-effective compared to other non-invasive cardiac imaging modalities for the diagnosis of CAD?
What are the major safety concerns with SPECT when used for the diagnosis of CAD?
Methods
A preliminary literature search was performed across OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for all systematic reviews/meta-analysis published between January 1, 2004 and August 22, 2009. A comprehensive systematic review was identified from this search and used as a basis for an updated search.
A second comprehensive literature search was then performed on October 30, 2009 across the same databases for studies published between January 1, 2002 and October 30, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also hand-searched for any additional studies.
Systematic reviews, meta-analyses, controlled clinical trials, and observational studies
Minimum sample size of 20 patients who completed coronary angiography
Use of CA as a reference standard for the diagnosis of CAD
Data available to calculate true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN)
Accuracy data reported by patient not by segment
English language
Non-systematic reviews, case reports
Grey literature and abstracts
Trials using planar imaging only
Trials conducted in patients with non-ischemic heart disease
Studies done exclusively in special populations (e.g., patients with left branch bundle block, diabetics, minority populations) unless insufficient data available
Summary of Findings
Eighty-four observational studies, one non-randomized, single arm controlled clinical trial, and one poorly reported trial that appeared to be a randomized controlled trial (RCT) met the inclusion criteria for this review. All studies assessed the diagnostic accuracy of myocardial perfusion SPECT for the diagnosis of CAD using CA as a reference standard. Based on the results of these studies the following conclusions were made:
According to very low quality evidence, the addition of attenuation correction to traditional or ECG-gated SPECT greatly improves the specificity of SPECT for the diagnosis of CAD although this improvement is not statistically significant. A trend towards improvement of specificity was also observed with the addition of ECG gating to traditional SPECT.
According to very low quality evidence, neither the choice of stress agent (exercise or pharmacologic) nor the choice of radioactive tracer (technetium vs. thallium) significantly affect the diagnostic accuracy of SPECT for the diagnosis of CAD although a trend towards accuracy improvement was observed with the use of pharmacologic stress over exercise stress and technetium over thallium.
Considerably heterogeneity was observed both within and between trials. This heterogeneity may explain why some of the differences observed between accuracy estimates for various subgroups were not statistically significant.
More complex analytic techniques such as meta-regression may help to better understand which study characteristics significantly influence the diagnostic accuracy of SPECT.
PMCID: PMC3377554  PMID: 23074411
4.  Deriving Hounsfield units using grey levels in cone beam CT: a clinical application 
Dentomaxillofacial Radiology  2012;41(6):500-508.
Objective
To present a clinical study demonstrating a method to derive Hounsfield units from grey levels in cone beam CT (CBCT).
Methods
An acrylic intraoral reference object with aluminium, outer bone equivalent material (cortical bone), inner bone equivalent material (trabecular bone), polymethlymethacrylate and water equivalent material was used. Patients were asked if they would be willing to have an acrylic bite plate with the reference object placed in their mouth during a routine CBCT scan. There were 31 scans taken on the Asahi Alphard 3030 (Belmont Takara, Kyoto, Japan) and 30 scans taken on the Planmeca ProMax 3D (Planmeca, Helsinki, Finland) CBCT. Linear regression between the grey levels of the reference materials and their linear attenuation coefficients was performed for various photon energies. The energy with the highest regression coefficient was chosen as the effective energy. The attenuation coefficients for the five materials at the effective energy were scaled as Hounsfield units using the standard Hounsfield units equation and compared to those derived from the measured grey levels of the materials using the regression equation.
Results
In general, there was a satisfactory linear relation between the grey levels and the attenuation coefficients. This made it possible to calculate Hounsfield units from the measured grey levels. Uncertainty in determining effective energies resulted in unrealistic effective energies and significant variability of calculated CT numbers. Linear regression from grey levels directly to Hounsfield units at specified energies resulted in greater consistency.
Conclusions
The clinical application of a method for deriving Hounsfield units from grey levels in CBCT was demonstrated.
doi:10.1259/dmfr/31640433
PMCID: PMC3520389  PMID: 22752324
cone beam computed tomography; Hounsfield units; grey levels; bone density; linear attenuation coefficient
5.  Quality of Compressed Medical Images 
Journal of Digital Imaging  2007;20(2):149-159.
Previous studies have shown that Joint Photographic Experts Group (JPEG) 2000 compression is better than JPEG at higher compression ratio levels. However, some findings revealed that this is not valid at lower levels. In this study, the qualities of compressed medical images in these ratio areas (∼20), including computed radiography, computed tomography head and body, mammographic, and magnetic resonance T1 and T2 images, were estimated using both a pixel-based (peak signal to noise ratio) and two 8 × 8 window-based [Q index and Moran peak ratio (MPR)] metrics. To diminish the effects of blocking artifacts from JPEG, jump windows were used in both window-based metrics. Comparing the image quality indices between jump and sliding windows, the results showed that blocking artifacts were produced from JPEG compression, even at low compression ratios. However, even after the blocking artifacts were omitted in JPEG compressed images, JPEG2000 outperformed JPEG at low compression levels. We found in this study that the image contrast and the average gray level play important roles in image compression and quality evaluation. There were drawbacks in all metrics that we used. In the future, the image gray level and contrast effect should be considered in developing new objective metrics.
doi:10.1007/s10278-007-9013-z
PMCID: PMC3043905  PMID: 17318703
Image quality; JPEG; JPEG2000; image compression
6.  Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).
The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Pease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website:
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: an Evidence-Based Analysis
The Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled:
The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7
Objective
The objective of this analysis was to determine the diagnostic accuracy of cardiac magnetic resonance imaging (MRI) for the diagnosis of patients with known/suspected coronary artery disease (CAD) compared to coronary angiography.
Cardiac MRI
Stress cardiac MRI is a non-invasive, x-ray free imaging technique that takes approximately 30 to 45 minutes to complete and can be performed using to two different methods, a) perfusion imaging following a first pass of an intravenous bolus of gadolinium contrast, or b) wall motion imaging. Stress is induced pharmacologically with either dobutamine, dipyridamole, or adenosine, as physical exercise is difficult to perform within the magnet bore and often induces motion artifacts. Alternatives to stress cardiac perfusion MRI include stress single-photon emission computed tomography (SPECT) and stress echocardiography (ECHO). The advantage of cardiac MRI is that it does not pose the radiation burden associated with SPECT. During the same sitting, cardiac MRI can also assess left and right ventricular dimensions, viability, and cardiac mass. It may also mitigate the need for invasive diagnostic coronary angiography in patients with intermediate risk factors for CAD.
Evidence-Based Analysis
Literature Search
A literature search was performed on October 9, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2005 to October 9, 2008. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Given the large amount of clinical heterogeneity of the articles meeting the inclusion criteria, as well as suggestions from an Expert Advisory Panel Meeting held on October 5, 2009, the inclusion criteria were revised to examine the effectiveness of cardiac MRI for the detection of CAD.
Heath technology assessments, systematic reviews, randomized controlled trials, observational studies
≥20 adult patients enrolled.
Published 2004-2009
Licensed by Health Canada
For diagnosis of CAD:
Reference standard is coronary angiography
Significant CAD defined as ≥ 50% coronary stenosis
Patients with suspected or known CAD
Reported results by patient, not segment
Non-English studies
Grey literature
Planar imaging
MUGA
Patients with recent MI (i.e., within 1 month)
Patients with non-ischemic heart disease
Studies done exclusively in special populations (e.g., women, diabetics)
Outcomes of Interest
Sensitivity and specificity
Area under the curve (AUC)
Diagnostic odds ratio (DOR)
Summary of Findings
Stress cardiac MRI using perfusion analysis yielded a pooled sensitivity of 0.91 (95% CI: 0.89 to 0.92) and specificity of 0.79 (95% CI: 0.76 to 0.82) for the detection of CAD.
Stress cardiac MRI using wall motion analysis yielded a pooled sensitivity of 0.81 (95% CI: 0.77 to 0.84) and specificity of 0.85 (95% CI: 0.81 to 0.89) for the detection of CAD.
Based on DORs, there was no significant difference between pooled stress cardiac MRI using perfusion analysis and pooled stress cardiac MRI using wall motion analysis (P=0.26) for the detection of CAD.
Pooled subgroup analysis of stress cardiac MRI using perfusion analysis showed no significant difference in the DORs between 1.5T and 3T MRI (P=0.72) for the detection of CAD.
One study (N=60) was identified that examined stress cardiac MRI using wall motion analysis with a 3T MRI. The sensitivity and specificity of 3T MRI were 0.64 (95% CI: 0.44 to 0.81) and 1.00 (95% CI: 0.89 to 1.00), respectively, for the detection of CAD.
The effectiveness of stress cardiac MRI for the detection of CAD in unstable patients with acute coronary syndrome was reported in only one study (N=35). Using perfusion analysis, the sensitivity and specificity were 0.72 (95% CI: 0.53 to 0.87) and 1.00 (95% CI: 0.54 to 1.00), respectively, for the detection of CAD.
Ontario Health System Impact Analysis
According to an expert consultant, in Ontario:
Stress first pass perfusion is currently performed in small numbers in London (London Health Sciences Centre) and Toronto (University Health Network at the Toronto General Hospital site and Sunnybrook Health Sciences Centre).
Stress wall motion is only performed as part of research protocols and not very often.
Cardiac MRI machines use 1.5T almost exclusively, with 3T used in research for first pass perfusion.
On November 25 2009, the Cardiac Imaging Expert Advisory Panel met and made the following comments about stress cardiac MRI for perfusion analysis:
Accessibility to cardiac MRI is limited and generally used to assess structural abnormalities. Most MRIs in Ontario are already in 24–hour, constant use and it would thus be difficult to add cardiac MRI for CAD diagnosis as an additional indication.
The performance of cardiac MRI for the diagnosis of CAD can be technically challenging.
GRADE Quality of Evidence for Cardiac MRI in the Diagnosis of CAD
The quality of the body of evidence was assessed according to the GRADE Working Group criteria for diagnostic tests. For perfusion analysis, the overall quality was determined to be low and for wall motion analysis the overall quality was very low.
PMCID: PMC3377522  PMID: 23074389
7.  Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility – Reykjavik Study 
Brain  2011;134(11):3398-3407.
Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid–femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility – Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69–93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta–carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta–carotid reflection coefficient (R = −0.66, P<0.001). Carotid pulse pressure, pulsatility index and carotid–femoral pulse wave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62–1.71 per standard deviation, P<0.002). Carotid–femoral pulse wave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (−0.127 ± 0.037 SD/SD, P<0.001), grey matter (−0.079 ± 0.038 SD/SD, P = 0.038) and white matter (−0.128 ± 0.039 SD/SD, P<0.001) volumes. Carotid–femoral pulse wave velocity (−0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (−0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (−0.165 ± 0.039 SD/SD, P<0.001), slower processing speed (−0.118 ± 0.033 SD/SD, P<0.001) and worse performance on tests assessing executive function (−0.155 ± 0.041 SD/SD, P<0.001). When magnetic resonance imaging measures (grey and white matter volumes, white matter hyperintensity volumes and prevalent subcortical infarcts) were included in cognitive models, haemodynamic associations were attenuated or no longer significant, consistent with the hypothesis that increased aortic stiffness and excessive flow pulsatility damage the microcirculation, leading to quantifiable tissue damage and reduced cognitive performance. Marked stiffening of the aorta is associated with reduced wave reflection at the interface between carotid and aorta, transmission of excessive flow pulsatility into the brain, microvascular structural brain damage and lower scores in various cognitive domains.
doi:10.1093/brain/awr253
PMCID: PMC3212721  PMID: 22075523
haemodynamics; aortic stiffness; magnetic resonance imaging; brain structure; cognitive function
8.  An investigation into the use of MR imaging to determine the functional cross sectional area of lumbar paraspinal muscles 
European Spine Journal  2005;15(6):764-773.
The purpose of this study was to investigate the use of magnetic resonance (MR) imaging and image processing software to determine the functional cross-sectional area (FCSA) (the area of muscle isolated from fat) of the lumbar paraspinal muscles. The measurement of the morphology of the lumbar paraspinal muscles has become the focus of several recent investigations into the aetiology of low back pain. However, the reliability and validity of determining the FCSA of the lumbar paraspinal muscles using MR imaging are yet to be reported. T2 axial MR scans at the L1-S1 spinal levels of six subjects were obtained using identical MR systems and scanning parameters. Lean paraspinal muscle, vertebral body bone and intermuscular fat were manually segmented using image analysis software to assign a grey scale range to the MR signal intensity emitted by each tissue type. The resultant grey scale range for muscle was used to determine FCSA measurements for each of the paraspinal muscles, psoas, quadratus lumborum, erector spinae and lumbar multifidus on each scan slice. As various biological, instrument and measurement factors can affect MR signal intensity, a sensitivity analysis was conducted to determine the error associated in calculating FCSA for paraspinal muscle using a discrete grey scale range. Cross-sectional area and FCSA measurements were repeated three times and reliability indices for the FCSA measurements were obtained, showing excellent reliability, intra class correlation coefficient (mean=0.97, range 0.90–0.99) and %SEM (mean=2.6%, range 0.7–4.8%). In addition, the error associated with miscalculation of the grey scale range for the MR signal intensity of muscle was calculated and found to be low with an error of 20 grey scale units at the upper end of the muscle’s grey scale range resulting in a very small error in the measured muscle FCSA. The method presented in this paper has a variety of practical applications in areas such as evidence-based rehabilitation, biomechanical modelling and the determination of segmental inertial parameters.
doi:10.1007/s00586-005-0909-3
PMCID: PMC3489434  PMID: 15895259
Lumbar spine; Magnetic resonance imaging; Cross sectional area; Low back pain; Muscle morphology
9.  Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain 
An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.
doi:10.1155/2012/541890
PMCID: PMC3459264  PMID: 23049544
10.  Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).
The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Pease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website:
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: an Evidence-Based Analysis
The Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled:
The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7
Objective
The objective of this report is to compare echocardiography (ECHO) performed with microsphere contrast agents (contrast echocardiography) to ECHO performed without contrast and to single photon emission computed tomography (SPECT).
Contrast ECHO
Contrast agents for ECHO have been available since the technology was first introduced in the 1990s. Composed of tiny ‘microbubbles’ of an inert gas encapsulated within a lipid, protein, or polymer coat, these agents act to scatter incident ultrasound waves at the gas/liquid interface to increase the strength of a returning ECHO signal. When injected into a patient’s arm, they are transported throughout even the smallest capillaries to greatly enhance the blood pool signal, which would otherwise appear black on conventional two dimensional ECHO. The enhanced signal then helps cardiologists to determine what parts of the patient’s heart muscle are poorly perfused.
The first commercially available microsphere contrast agent was Albunex, which received approval by the Food and Drug Administration in the United States in 1994. This original microsphere agent was limited by its rapid gas volume loss which caused a decline in the ultrasound signal. It worked well in the right chambers of the heart, but dissolved when passing through the pulmonary capillaries and so was unable to provide contrast in the left side. Second generation agents employed different gases that prolonged the life of the microbubbles within the circulation and increased the reproducibility of results.
Today, the most common use for contrast ECHO is to enhance the definition of the left ventricular (LV) endocardial border for cases of LV opacification. The aim of contrast ECHO is to provide better quantification of LV volume and assessment of LV wall motion than ECHO alone. The newest area of development in the research of contrast ECHO is myocardial perfusion assessment, also known as myocardial contrast ECHO. Theoretically, since myocardial ischemia and infarction affect both perfusion and contractility (wall motion), contrast ECHO could be an ideal non-invasive imaging test as it could assess both perfusion and contractility, simultaneously and in real time.
Notably, critically ill patients on ventilators and those with lung problems are more likely to generate poor or ‘suboptimal’ echocardiograms than other patients, as are obese patients and those who’ve undergone recent chest operations. Contrast agents can potentially be used in 10% to 15% of all studies and in approximately 33% of stress tests due to from such suboptimal echocardiograms. Stress can be induced either pharmaceutically (e.g., through dobutamine, dipyrimidamole, adenosine) or with exercise. Generally, contrast agents are used more in pharmaceutical stress echocardiograms than in exercise stress echocardiograms.
Evidence-Based Analysis
This MAS analysis sought to address the following research questions:
Is contrast ECHO more effective than 99-technetium SPECT in terms its ability to detect CAD?
What is the effectiveness of contrast ECHO in assessing patients with suboptimal echocardiograms?
Is contrast ECHO safe compared to other cardiac imaging modalities?
Is contrast ECHO cost-effective compared to other cardiac imaging modalities?
Literature Search
Literature searches were performed on June 22, 2009 and July 27, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until June 30, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria; full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search.
Inclusion Criteria
Systematic reviews, meta-analyses, randomized controlled trials, prospective observational studies, retrospective analyses
Minimum sample size of 20 enrolled patients (human only)
The contrast agent used in the study must be licensed by Health Canada
Comparison to reference standard (coronary angiography for the diagnosis of coronary artery disease)
Reporting accuracy data on individual patients (rather than accuracy data stratified by segments of the heart)
English language
Exclusion Criteria
Non-systematic reviews, case reports
Grey literature (e.g. conference abstracts)
Outcomes of Interest
Accuracy outcomes (sensitivity, specificity, positive predictive value, negative predictive value)
Adverse events
Costs
Summary of Findings
Twenty-three observational studies were identified that assessed the diagnostic accuracy of contrast ECHO for the diagnosis of CAD. All of these studies used stress ECHO with contrast. In addition, nine retrospective chart reviews were identified, which assessed the safety of contrast ECHO at rest or stress. Based on the results of these studies the following conclusions were made:
Stress ECHO with contrast has a higher diagnostic accuracy in the diagnosis of CAD than stress ECHO (without contrast).
Stress ECHO with contrast seems to have a similar diagnostic accuracy to 99 technetium SPECT.
The addition of contrast to ECHO in patients with suboptimal ECHO results significantly improves interpretability of the results.
There is not a statistically significantly higher mortality rate in patients who receive contrast compared to those who do not.
PMCID: PMC3377574  PMID: 23074387
11.  Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study☆ 
NeuroImage : Clinical  2012;2:204-211.
Background
Macro- and micro-structural neuroimaging measures provide valuable information on the pathophysiology of Huntington's disease (HD) and are proposed as biomarkers. Despite theoretical advantages of microstructural measures in terms of sensitivity to pathology, there is little evidence directly comparing the two.
Methods
40 controls and 61 early HD subjects underwent 3 T MRI (T1- and diffusion-weighted), as part of the PADDINGTON study. Macrostructural volumetrics were obtained for the whole brain, caudate, putamen, corpus callosum (CC) and ventricles. Microstructural diffusion metrics of fractional anisotropy (FA), mean-, radial- and axial-diffusivity (MD, RD, AD) were computed for white matter (WM), CC, caudate and putamen. Group differences were examined adjusting for age, gender and site. A formal comparison of effect sizes determined which modality and metrics provided a statistically significant advantage over others.
Results
Macrostructural measures showed decreased regional and global volume in HD (p < 0.001); except the ventricles which were enlarged (p < 0.01). In HD, FA was increased in the deep grey-matter structures (p < 0.001), and decreased in the WM (CC, p = 0.035; WM, p = 0.053); diffusivity metrics (MD, RD, AD) were increased for all brain regions (p < 0.001). The largest effect sizes were for putamen volume, caudate volume and putamen diffusivity (AD, RD and MD); each was significantly larger than those for all other metrics (p < 0.05).
Conclusion
The highest performing macro- and micro-structural metrics had similar sensitivity to HD pathology quantified via effect sizes. Region-of-interest may be more important than imaging modality, with deep grey-matter regions outperforming the CC and global measures, for both volume and diffusivity. FA appears to be relatively insensitive to disease effects.
Highlights
► Macro and microstructural metrics are sensitive to HD pathology cross-sectionally. ► Largest effect sizes for putamen volume, caudate volume and putamen diffusivity ► No significant advantage of highest performing macro over microstructural metrics ► Grey matter regions outperformed CC and global measures within each modality. ► FA appears to be relatively insensitive to disease effects.
doi:10.1016/j.nicl.2012.12.001
PMCID: PMC3777685  PMID: 24179770
Huntington's disease; MRI; Diffusion; Volumetric
12.  Estimation of Tree Size Diversity Using Object Oriented Texture Analysis and Aster Imagery 
Sensors (Basel, Switzerland)  2008;8(8):4709-4724.
This study investigates the potential of object-based texture parameters extracted from 15m spatial resolution ASTER imagery for estimating tree size diversity in a Mediterranean forested landscape in Turkey. Tree size diversity based on tree basal area was determined using the Shannon index and Gini Coefficient at the sampling plot level. Image texture parameters were calculated based on the grey level co-occurrence matrix (GLCM) for various image segmentation levels. Analyses of relationships between tree size diversity and texture parameters found that relationships between the Gini Coefficient and the GLCM values were the most statistically significant, with the highest correlation (r=0.69) being with GLCM Homogeneity values. In contrast, Shannon Index values were weakly correlated with image derived texture parameters. The results suggest that 15m resolution Aster imagery has considerable potential in estimating tree size diversity based on the Gini Coefficient for heterogeneous Mediterranean forests.
doi:10.3390/s8084709
PMCID: PMC3705467
Tree size diversity; remote sensing; brutian pine; texture analysis; image segmentation
13.  Airway Clearance Devices for Cystic Fibrosis 
Executive Summary
Objective
The purpose of this evidence-based analysis is to examine the safety and efficacy of airway clearance devices (ACDs) for cystic fibrosis and attempt to differentiate between devices, where possible, on grounds of clinical efficacy, quality of life, safety and/or patient preference.
Background
Cystic fibrosis (CF) is a common, inherited, life-limiting disease that affects multiple systems of the human body. Respiratory dysfunction is the primary complication and leading cause of death due to CF. CF causes abnormal mucus secretion in the airways, leading to airway obstruction and mucus plugging, which in turn can lead to bacterial infection and further mucous production. Over time, this almost cyclical process contributes to severe airway damage and loss of respiratory function. Removal of airway secretions, termed airway clearance, is thus an integral component of the management of CF.
A variety of methods are available for airway clearance, some requiring mechanical devices, others physical manipulation of the body (e.g. physiotherapy). Conventional chest physiotherapy (CCPT), through the assistance of a caregiver, is the current standard of care for achieving airway clearance, particularly in young patients up to the ages of six or seven. CF patients are, however, living much longer now than in decades past. The median age of survival in Canada has risen to 37.0 years for the period of 1998-2002 (5-year window), up from 22.8 years for the 5-year window ending in 1977. The prevalence has also risen accordingly, last recorded as 3,453 in Canada in 2002, up from 1,630 in 1977. With individuals living longer, there is a greater need for independent methods of airway clearance.
Airway Clearance Devices
There are at least three classes of airway clearance devices: positive expiratory pressure devices (PEP), airway oscillating devices (AOD; either handheld or stationary) and high frequency chest compression (HFCC)/mechanical percussion (MP) devices. Within these classes are numerous different brands of devices from various manufacturers, each with subtle iterations. At least 10 devices are licensed by Health Canada (ranging from Class 1 to Class 3 devices).
Evidence-Based Analysis of Effectiveness
Research Questions
Does long-term use of ACDs improve outcomes of interest in comparison to CCPT in patients with CF?
Does long-term use of one class of ACD improve outcomes of interest in comparison to another class of ACD in CF patients?
Literature Search
A comprehensive literature search was performed on March 7, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 1950 to March 7, 2009.
Inclusion Criteria
All randomized controlled trials including those of parallel and crossover design,
Systematic reviews and/or meta-analyses. Randomized controlled trials (RCTs), systematic reviews and meta-analyses
Exclusion Criteria
Abstracts were generally excluded because their methods could not be examined; however, abstract data was included in several Cochrane meta-analyses presented in this paper;
Studies of less than seven days duration (including single treatment studies);
Studies that did not report primary outcomes;
Studies in which less than 10 patients completed the study.
Outcomes of Interest
Primary outcomes under review were percent-predicted forced expiratory volume (FEV-1), forced vital capacity (FVC), and forced expiratory flow between 25%-75% (FEF25-75). Secondary outcomes included number of hospitalizations, adherence, patient preference, quality of life and adverse events. All outcomes were decided a priori.
Summary of Findings
Literature searching and back-searching identified 13 RCTs meeting the inclusion criteria, along with three Cochrane systematic reviews. The Cochrane reviews were identified in preliminary searching and used as the basis for formulating this review. Results were subgrouped by comparison and according to the available literature. For example, results from Cochrane meta-analyses included abstract data and therefore, additional meta-analyses were also performed on trials reported as full publications only (MAS generally excludes abstracted data when full publications are available as the methodological quality of trials reported in abstract cannot be properly assessed).
Executive Summary Table 1 summarizes the results across all comparisons and subgroupings for primary outcomes of pulmonary function. Only two comparisons yielded evidence of moderate or high quality according to GRADE criteria–the comparisons of CCPT vs. PEP and handheld AOD vs. PEP–but only the comparison of CCPT vs. PEP noted a significant difference between treatment groups. In comparison to CCPT, there was a significant difference in favour of PEP for % predicted FEV-1 and FVC according to one long-term, parallel RCT. This trial was accepted as the best available evidence for the comparison. The body of evidence for the remaining comparisons was low to very low, according to GRADE criteria, being downgraded most often because of poor methodological quality and low generalizability. Specifically, trials were likely not adequately powered (low sample sizes), did not conduct intention-to-treat analyses, were conducted primarily in children and young adolescents, and outdated (conducted more than 10 years ago).
Secondary outcomes were poorly or inconsistently reported, and were generally not of value to decision-making. Of note, there were a significantly higher number of hospitalizations among participants undergoing AOD therapy in comparison to PEP therapy.
Summarization of results for primary outcomes by comparison and subgroupings
Bolding indicates significant difference
Positive summary statistics favour the former intervention
Abbreviations: AOD, airway oscillating device; CCPT, conventional chest physiotherapy; CI, confidence interval; HFCC, high frequency chest compression; MP, mechanical percussion; N/A: not applicable; PEP, positive expiratory pressure
Economic Analysis
Devices ranged in cost from around $60 for PEP and handheld AODs to upwards of $18,000 for a HFCC vest device. Although the majority of device costs are paid out-of-pocket by the patients themselves, their parents, or covered by third-party medical insurance, Ontario did provide funding assistance through the Assistive Devices Program (ADP) for postural drainage boards and MP devices. These technologies, however, are either obsolete or their clinical efficacy is not supported by evidence. ADP provided roughly $16,000 in funding for the 2008/09 fiscal year. Using device costs and prevalent and incident cases of CF in Ontario, budget impact projections were generated for Ontario. Prevalence of CF in Ontario for patients from ages 6 to 71 was cited as 1,047 cases in 2002 while incidence was estimated at 46 new cases of CF diagnosed per year in 2002. Budget impact projections indicated that PEP and handheld AODs were highly economically feasible costing around $90,000 for the entire prevalent population and less than $3,000 per year to cover new incident cases. HFCC vest devices were by far the most expensive, costing in excess of $19 million to cover the prevalent population alone.
Conclusions
There is currently a lack of sufficiently powered, long-term, parallel randomized controlled trials investigating the use of ACDs in comparison to other airway clearance techniques. While much of the current evidence suggests no significant difference between various ACDs and alternative therapies/technologies, at least according to outcomes of pulmonary function, there is a strong possibility that past trials were not sufficiently powered to identify a difference. Unfortunately, it is unlikely that there will be any future trials comparing ACDs to CCPT as withholding therapy using an ACD may be seen as unethical at present.
Conclusions of clinical effectiveness are as follows:
Moderate quality evidence suggests that PEP is at least as effective as or more effective than CCPT, according to primary outcomes of pulmonary function.
Moderate quality evidence suggests that there is no significant difference between PEP and handheld AODs, according to primary outcomes of pulmonary function; however, secondary outcomes may favour PEP.
Low quality evidence suggests that there is no significant difference between AODs or HFCC/MP and CCPT, according to both primary and secondary outcomes.
Very low quality evidence suggests that there is no significant difference between handheld AOD and CCPT, according to primary outcomes of pulmonary function.
Budget impact projections show PEP and handheld AODs to be highly economically feasible.
PMCID: PMC3377547  PMID: 23074531
14.  Automated measurement of heterogeneity in CT images of healthy and diseased rat lungs using variogram analysis of an octree decomposition 
BMC Medical Imaging  2014;14:1.
Background
Assessing heterogeneity in lung images can be an important diagnosis tool. We present a novel and objective method for assessing lung damage in a rat model of emphysema. We combined a three-dimensional (3D) computer graphics method–octree decomposition–with a geostatistics-based approach for assessing spatial relationships–the variogram–to evaluate disease in 3D computed tomography (CT) image volumes.
Methods
Male, Sprague-Dawley rats were dosed intratracheally with saline (control), or with elastase dissolved in saline to either the whole lung (for mild, global disease) or a single lobe (for severe, local disease). Gated 3D micro-CT images were acquired on the lungs of all rats at end expiration. Images were masked, and octree decomposition was performed on the images to reduce the lungs to homogeneous blocks of 2 × 2 × 2, 4 × 4 × 4, and 8 × 8 × 8 voxels. To focus on lung parenchyma, small blocks were ignored because they primarily defined boundaries and vascular features, and the spatial variance between all pairs of the 8 × 8 × 8 blocks was calculated as the square of the difference of signal intensity. Variograms–graphs of distance vs. variance–were constructed, and results of a least-squares-fit were compared. The robustness of the approach was tested on images prepared with various filtering protocols. Statistical assessment of the similarity of the three control rats was made with a Kruskal-Wallis rank sum test. A Mann-Whitney-Wilcoxon rank sum test was used to measure statistical distinction between individuals. For comparison with the variogram results, the coefficient of variation and the emphysema index were also calculated for all rats.
Results
Variogram analysis showed that the control rats were statistically indistinct (p = 0.12), but there were significant differences between control, mild global disease, and severe local disease groups (p < 0.0001). A heterogeneity index was calculated to describe the difference of an individual variogram from the control average. This metric also showed clear separation between dose groups. The coefficient of variation and the emphysema index, on the other hand, did not separate groups.
Conclusion
These results suggest the octree decomposition and variogram analysis approach may be a rapid, non-subjective, and sensitive imaging-based biomarker for characterizing lung disease.
doi:10.1186/1471-2342-14-1
PMCID: PMC3922839  PMID: 24393332
Lung imaging; Disease detection; COPD; Emphysema; Pulmonary; Octree; Variogram
15.  Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of multidisciplinary care (MDC) compared with usual care (UC, single health care provider) for the treatment of stable chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Chronic obstructive pulmonary disease is a progressive disorder with episodes of acute exacerbations associated with significant morbidity and mortality. Cigarette smoking is linked causally to COPD in more than 80% of cases. Chronic obstructive pulmonary disease is among the most common chronic diseases worldwide and has an enormous impact on individuals, families, and societies through reduced quality of life and increased health resource utilization and mortality.
The estimated prevalence of COPD in Ontario in 2007 was 708,743 persons.
Technology
Multidisciplinary care involves professionals from a range of disciplines, working together to deliver comprehensive care that addresses as many of the patient’s health care and psychosocial needs as possible.
Two variables are inherent in the concept of a multidisciplinary team: i) the multidisciplinary components such as an enriched knowledge base and a range of clinical skills and experiences, and ii) the team components, which include but are not limited to, communication and support measures. However, the most effective number of team members and which disciplines should comprise the team for optimal effect is not yet known.
Research Question
What is the effectiveness and cost-effectiveness of MDC compared with UC (single health care provider) for the treatment of stable COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on July 19, 2010 using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 1, 1995 until July 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
health technology assessments, systematic reviews, or randomized controlled trials
studies published between January 1995 and July 2010;
COPD study population
studies comparing MDC (2 or more health care disciplines participating in care) compared with UC (single health care provider)
Exclusion Criteria
grey literature
duplicate publications
non-English language publications
study population less than 18 years of age
Outcomes of Interest
hospital admissions
emergency department (ED) visits
mortality
health-related quality of life
lung function
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Six randomized controlled trials were obtained from the literature search. Four of the 6 studies were completed in the United States. The sample size of the 6 studies ranged from 40 to 743 participants, with a mean study sample between 66 and 71 years of age. Only 2 studies characterized the study sample in terms of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria, and in general the description of the study population in the other 4 studies was limited. The mean percent predicted forced expiratory volume in 1 second (% predicted FEV1) among study populations was between 32% and 59%. Using this criterion, 3 studies included persons with severe COPD and 2 with moderate COPD. Information was not available to classify the population in the sixth study.
Four studies had MDC treatment groups which included a physician. All studies except 1 reported a respiratory specialist (i.e., respiratory therapist, specialist nurse, or physician) as part of the multidisciplinary team. The UC group was comprised of a single health care practitioner who may or may not have been a respiratory specialist.
A meta-analysis was completed for 5 of the 7 outcome measures of interest including:
health-related quality of life,
lung function,
all-cause hospitalization,
COPD-specific hospitalization, and
mortality.
There was only 1 study contributing to the outcome of all-cause and COPD-specific ED visits which precluded pooling data for these outcomes. Subgroup analyses were not completed either because heterogeneity was not significant or there were a small number of studies that were meta-analysed for the outcome.
Quality of Life
Three studies reported results of quality of life assessment based on the St. George’s Respiratory Questionnaire (SGRQ). A mean decrease in the SGRQ indicates an improvement in quality of life while a mean increase indicates deterioration in quality of life. In all studies the mean change score from baseline to the end time point in the MDC treatment group showed either an improvement compared with the control group or less deterioration compared with the control group. The mean difference in change scores between MDC and UC groups was statistically significant in all 3 studies. The pooled weighted mean difference in total SGRQ score was −4.05 (95% confidence interval [CI], −6.47 to 1.63; P = 0.001). The GRADE quality of evidence was assessed as low for this outcome.
Lung Function
Two studies reported results of the FEV1 % predicted as a measure of lung function. A negative change from baseline infers deterioration in lung function and a positive change from baseline infers an improvement in lung function. The MDC group showed a statistically significant improvement in lung function up to 12 months compared with the UC group (P = 0.01). However this effect is not maintained at 2-year follow-up (P = 0.24). The pooled weighted mean difference in FEV1 percent predicted was 2.78 (95% CI, −1.82 to −7.37). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
Hospital Admissions
All-Cause
Four studies reported results of all-cause hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 4 studies were pooled to determine a summary estimate. There is a statistically significant 25% relative risk (RR) reduction in all-cause hospitalizations in the MDC group compared with the UC group (P < 0.001). The index of heterogeneity (I2) value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
COPD-Specific Hospitalization
Three studies reported results of COPD-specific hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically significant 33% RR reduction in all-cause hospitalizations in the MDC group compared with the UC group (P = 0.002). The I2 value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
Emergency Department Visits
All-Cause
Two studies reported results of all-cause ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically nonsignificant reduction in all-cause ED visits when data from these 2 studies are pooled (RR, 0.64; 95% CI, 0.31 to −1.33; P = 0.24). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
COPD-Specific
One study reported results of COPD-specific ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically significant 41% reduction in COPD-specific ED visits when the data from these 2 studies are pooled (RR, 0.59; 95% CI, 0.43−0.81; P < 0.001). The GRADE quality of evidence was assessed as moderate for this outcome.
Mortality
Three studies reported the mortality during the study follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically nonsignificant reduction in mortality between treatment groups (RR, 0.81; 95% CI, 0.52−1.27; P = 0.36). The I2 value is 19%, indicating low statistical heterogeneity between studies. All studies had a 12-month follow-up period. The GRADE quality of evidence was assessed as low for this outcome.
Conclusions
Significant effect estimates with moderate quality of evidence were found for all-cause hospitalization, COPD-specific hospitalization, and COPD-specific ED visits (Table ES1). A significant estimate with low quality evidence was found for the outcome of quality of life (Table ES2). All other outcome measures were nonsignificant and supported by low or very low quality of evidence.
Summary of Dichotomous Data
Abbreviations: CI, confidence intervals; COPD, chronic obstructive pulmonary disease; n, number.
Summary of Continuous Data
Abbreviations: CI, confidence intervals; FEV1, forced expiratory volume in 1 second; n, number; SGRQ, St. George’s Respiratory Questionnaire.
PMCID: PMC3384374  PMID: 23074433
16.  Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results  
Study type: Basic science
Introduction: Chronic back pain due to degenerative disc disease (DDD) is among the most important medical conditions causing morbidity and significant health care costs. Surgical treatment options include disc replacement or fusion surgery, but are associated with significant short- and long-term risks.1 Biological tissue-engineering of human intervertebral discs (IVD) could offer an important alternative.2 Recent in vitro data from our group have shown successful engineering and growth of ovine intervertebral disc composites with circumferentially aligned collagen fibrils in the annulus fibrosus (AF) (Figure 1).3
Tissue-engineered composite disc a Experimental steps to generate composite tissue-engineered IVDs3 b Example of different AF formulations on collagen alignment in the AF. Second harmonic generation and two-photon excited fluorescence images of seeded collagen gels (for AF) of 1 and 2.5 mg/ml over time. At seeding, cells and collagen were homogenously distributed in the gels. Over time, AF cells elongated and collagen aligned parallel to cells. Less contraction and less alignment is noted after 3 days in the 2.5 mg/mL gel. c Imaging-based creation of a virtual disc model that will serve as template for the engineered disc. Total disc dimensions (AF and NP) were retrieved from micro-computer tomography (CT) (left images), and nucleus pulposus (NP) dimensions alone were retrieved from T2-weighted MRI images (right images). Merging of MRI and micro-CT models revealed a composite disc model (middle image)—Software: Microview, GE Healthcare Inc., Princeton, NJ; and slicOmatic v4.3, TomoVision, Montreal, Canada. d Flow chart describing the process for generating multi-lamellar tissue engineered IVDs. IVDs are produced by allowing cell-seeded collagen layers to contract around a cell-seeded alginate core (NP) over time
Objective: The next step is to investigate if biological disc implants survive, integrate, and restore function to the spine in vivo. A model will be developed that allows efficient in vivo testing of tissue-engineered discs of various compositions and characteristics.
Methods: Athymic rats were anesthetized and a dorsal approach was chosen to perform a microsurgical discectomy in the rat caudal spine (Fig. 2,Fig. 3). Control group I (n = 6) underwent discectomy only, Control group II (n = 6) underwent discectomy, followed by reimplantation of the autologous disc. Two treatment groups (group III, n = 6, 1 month survival; group IV, n = 6, 6 months survival) received a tissue-engineered composite disc implant. The rodents were followed clinically for signs of infection, pain level and wound healing. X-rays and magnetic resonance imaging (MRI) were assessed postoperatively and up to 6 months after surgery (Fig. 6,Fig. 7). A 7 Tesla MRI (Bruker) was implemented for assessment of the operated level as well as the adjacent disc (hydration). T2-weighted sequences were interpreted by a semiquantitative score (0 = no signal, 1 = weak signal, 2 = strong signal and anatomical features of a normal disc). Histology was performed with staining for proteoglycans (Alcian blue) and collagen (Picrosirius red) (Fig. 4,Fig. 5).
Disc replacement surgery a Operative situs with native disc that has been disassociated from both adjacent vertebrae b Native disc (left) and tissue-engineered implant (right) c Implant in situ before wound closureAF: Annulus fi brosus, nP: nucleus pulposus, eP: endplate, M: Muscle, T: Tendon, s: skin, art: artery, GP: Growth plate, B: Bone
Disc replacement surgery. Anatomy of the rat caudal disc space a Pircrosirius red stained axial cut of native disc space b Saffranin-O stained sagittal cut of native disc space
Histologies of three separate motion segments from three different rats. Animal one = native IVD, Animal two = status after discectomy, Animal three = tissue-engineered implant (1 month) a–c H&E (overall tissue staining for light micrsocopy) d–f Alcian blue (proteoglycans) g–i Picrosirius red (collagen I and II)
Histology from one motion segment four months after implantation of a bio-engineered disc construct a Picrosirius red staining (collagen) b Polarized light microscopy showing collagen staining and collagen organization in AF region c Increased Safranin-O staining (proteoglycans) in NP region of the disc implant d Higher magnification of figure 5c: Integration between implanted tissue-engineered total disc replacement and vertebral body bone
MRI a Disc space height measurements in flash/T1 sequence (top: implant (714.0 micrometer), bottom: native disc (823.5 micrometer) b T2 sequence, red circle surrounding the implant NP
7 Tesla MRI imaging of rat tail IVDs showing axial images (preliminary pilot data) a Diffusion tensor imaging (DTI) on two explanted rat tail discs in Formalin b Higher magnification of a, showing directional alignment of collagen fibers (red and green) when compared to the color ball on top which maps fibers' directional alignment (eg, fibers directing from left to right: red, from top to bottom: blue) c Native IVD in vivo (successful imaging of top and bottom of the IVD (red) d Gradient echo sequence (GE) showing differentiation between NP (light grey) and AF (dark margin) e GE of reimplanted tail IVD at the explantation level f T1Rho sequence demonstrating the NP (grey) within the AF (dark margin), containing the yellow marked region of interest for value acquisition (preliminary data are consistent with values reported in the literature). g T2 image of native IVD in vivo for monitoring of hydration (white: NP)
Results: The model allowed reproducible and complete discectomies as well as disc implantation in the rat tail spine without any surgical or postoperative complications. Discectomy resulted in immediate collapse of the disc space. Preliminary results indicate that disc space height was maintained after disc implantation in groups II, III and IV over time. MRI revealed high resolution images of normal intervertebral discs in vivo. Eight out of twelve animals (groups III and IV) showed a positive signal in T2-weighted images after 1 month (grade 0 = 4, grade 1 = 4, grade 2 = 4). Positive staining was seen for collagen as well as proteoglycans at the site of disc implantation after 1 month in each of the six animals with engineered implants (group III). Analysis of group IV showed positive T2 signal in five out of six animals and disc-height preservation in all animals after 6 months.
Conclusions: This study demonstrates for the first time that tissue-engineered composite IVDs with circumferentially aligned collagen fibrils survive and integrate with surrounding vertebral bodies when placed in the rat spine for up to 6 months. Tissue-engineered composite IVDs restored function to the rat spine as indicated by maintenance of disc height and vertebral alignment. A significant finding was that maintenance of the composite structure in group III was observed, with increased proteoglycan staining in the nucleus pulposus region (Figure 4d–f). Proteoglycan and collagen matrix as well as disc height preservation and positive T2 signals in MRI are promising parameters and indicate functionality of the implants.
doi:10.1055/s-0028-1100918
PMCID: PMC3623095  PMID: 23637671
17.  Inter-individual differences in empathy are reflected in human brain structure 
Neuroimage  2012;62(3):2034-2039.
Empathy is a multi-faceted concept consisting of our ability not only to share emotions but also to exert cognitive control and perspective taking in our interactions with others. Here we examined whether inter-individual variability in different components of empathy was related to differences in brain structure assessed using voxel-based morphometry. Following a magnetic resonance imaging (MRI) scan, participants completed the Interpersonal Reactivity Index (IRI). Multiple regression was then used to assess the relationship between individual differences in grey matter volume and individual differences in empathy traits. We found that individual differences in affective empathic abilities oriented towards another person were negatively correlated with grey matter volume in the precuneus, inferior frontal gyrus, and anterior cingulate. Differences in self-oriented affective empathy were negatively correlated with grey matter volume of the somatosensory cortex, but positively correlated with volume in the insula; cognitive perspective taking abilities were positively correlated with grey matter volume of the anterior cingulate; and the ability to empathise with fictional characters was positively related to grey matter changes in the right dorsolateral prefrontal cortex. These findings are discussed in relation to neurocognitive models of empathy.
Highlights
► We studied how individual variability in empathy is linked to brain structure. ► Affective empathy was linked to changes in the precuneus and anterior cingulate. ► Changes in the inferior frontal gyrus were also linked with affective empathy. ► Perspective taking was related to changes in the anterior cingulate. ► Personal distress was linked to changes in the somatosensory cortex and insula.
doi:10.1016/j.neuroimage.2012.05.081
PMCID: PMC3778747  PMID: 22683384
Empathy; Voxel based morphometry; Interpersonal reactivity index; Structure; Individual differences; Social neuroscience
18.  Brain grey matter volume alterations in late-life depression 
Background
Voxel-based morphometry (VBM) studies have demonstrated that grey matter abnormalities are involved in the pathophysiology of late-life depression (LLD), but the findings are inconsistent and have not been quantitatively reviewed. The aim of the present study was to conduct a meta-analysis that integrated the reported VBM studies, to determine consistent grey matter alterations in individuals with LLD.
Methods
A systematic search was conducted to identify VBM studies that compared patients with LLD and healthy controls. We performed a meta-analysis using the effect size signed differential mapping method to quantitatively estimate regional grey matter abnormalities in patients with LLD.
Results
We included 9 studies with 11 data sets comprising 292 patients with LLD and 278 healthy controls in our meta-analysis. The pooled and subgroup meta-analyses showed robust grey matter reductions in the right lentiform nucleus extending into the parahippocampus, the hippocampus and the amygdala, the bilateral medial frontal gyrus and the right subcallosal gyrus as well as a grey matter increase in the right lingual gyrus. Meta-regression analyses showed that mean age and the percentage of female patients with LLD were not significantly related to grey matter changes.
Limitations
The analysis techniques, patient characteristics and clinical variables of the studies included were heterogeneous, and most participants were medicated.
Conclusion
The present meta-analysis is, to our knowledge, the first to overcome previous inconsistencies in the VBM studies of LLD and provide robust evidence for grey matter alterations within fronto–striatal–limbic networks, thereby implicating them in the pathophysiology of LLD. The mean age and the percentage of female patients with LLD did not appear to have a measurable impact on grey matter changes, although we cannot rule out the contributory effects of medication.
doi:10.1503/jpn.130275
PMCID: PMC4214874  PMID: 24949867
19.  How to measure image quality in tissue-based diagnosis (diagnostic surgical pathology) 
Diagnostic Pathology  2008;3(Suppl 1):S11.
Background
Automated image analysis, measurements of virtual slides, and open access electronic measurement user systems require standardized image quality assessment in tissue-based diagnosis.
Aims
To describe the theoretical background and the practical experiences in automated image quality estimation of colour images acquired from histological slides.
Theory, material and measurements
Digital images acquired from histological slides should present with textures and objects that permit automated image information analysis. The quality of digitized images can be estimated by spatial independent and local filter operations that investigate in homogenous brightness, low peak to noise ratio (full range of available grey values), maximum gradients, equalized grey value distribution, and existence of grey value thresholds. Transformation of the red-green-blue (RGB) space into the hue-saturation-intensity (HSI) space permits the detection of colour and intensity maxima/minima. The feature distance of the original image to its standardized counterpart is an appropriate measure to quantify the actual image quality. These measures have been applied to a series of H&E stained, fluorescent (DAPI, Texas Red, FITC), and immunohistochemically stained (PAP, DAB) slides. More than 5,000 slides have been measured and partly analyzed in a time series.
Results
Analysis of H&E stained slides revealed low shading corrections (10%) and moderate grey value standardization (10 – 20%) in the majority of cases. Immunohistochemically stained slides displayed greater shading and grey value correction. Fluorescent stained slides are often revealed to high brightness. Images requiring only low standardization corrections possess at least 5 different statistically significant thresholds, which are useful for object segmentation. Fluorescent images of good quality only posses one singular intensity maximum in contrast to good images obtained from H&E stained slides that present with 2 – 3 intensity maxima.
Conclusion
Evaluation of image quality and creation of formally standardized images should be performed prior to automatic analysis of digital images acquired from histological slides. Spatial dependent and local filter operations as well as analysis of the RGB and HSI spaces are appropriate methods to reproduce evaluated formal image quality.
doi:10.1186/1746-1596-3-S1-S11
PMCID: PMC2500119  PMID: 18673499
20.  Pressure and breast thickness in mammography—an exploratory calibration study 
The British Journal of Radiology  2013;86(1021):20120222.
Objective
To perform a calibration study to provide data to help improve consistency in the pressure that is applied during mammography.
Methods
Automatic readouts of breast thickness accuracy vary between mammography machines; therefore, one machine was selected for calibration. 250 randomly selected patients were invited to participate; 235 agreed, and 940 compression data sets were recorded (breast thickness, breast density and pressure). Pressure (measured in decanewtons) was increased from 5 daN through 1-daN intervals until the practitioner felt that the pressure was appropriate for imaging; at each pressure increment, breast thickness was recorded.
Results
Graphs were generated and equations derived; second-order polynomial trend lines were applied using the method of least squares. No difference existed between breast densities, but a difference did exist between “small” (15×29 cm) and “medium/large” (18×24/24×30 cm) paddles. Accordingly, data were combined. Graphs show changes in thickness from 5-daN pressure for craniocaudal and mediolateral oblique views for the small and medium/large paddles combined. Graphs were colour coded into three segments indicating high, intermediate and low gradients [≤−2 (light grey); −1.99 to −1 (mid-grey); and ≥−0.99 (dark grey)]. We propose that 13 daN could be an appropriate termination pressure on this mammography machine.
Conclusion
Using patient compression data we have calibrated a mammography machine to determine its breast compression characteristics. This calibration data could be used to guide practice to minimise pressure variations between practitioners, thereby improving patient experience and reducing potential variation in image quality.
Advances in knowledge
For the first time, pressure–thickness graphs are now available to help guide mammographers in the application of pressure.
doi:10.1259/bjr.20120222
PMCID: PMC3615392  PMID: 23239695
21.  Deriving Hounsfield units using grey levels in cone beam computed tomography 
Dentomaxillofacial Radiology  2010;39(6):323-335.
Objectives
An in vitro study was performed to investigate the relationship between grey levels in dental cone beam CT (CBCT) and Hounsfield units (HU) in CBCT scanners.
Methods
A phantom containing 8 different materials of known composition and density was imaged with 11 different dental CBCT scanners and 2 medical CT scanners. The phantom was scanned under three conditions: phantom alone and phantom in a small and large water container. The reconstructed data were exported as Digital Imaging and Communications in Medicine (DICOM) and analysed with On Demand 3D® by Cybermed, Seoul, Korea. The relationship between grey levels and linear attenuation coefficients was investigated.
Results
It was demonstrated that a linear relationship between the grey levels and the attenuation coefficients of each of the materials exists at some “effective” energy. From the linear regression equation of the reference materials, attenuation coefficients were obtained for each of the materials and CT numbers in HU were derived using the standard equation.
Conclusions
HU can be derived from the grey levels in dental CBCT scanners using linear attenuation coefficients as an intermediate step.
doi:10.1259/dmfr/19603304
PMCID: PMC3520236  PMID: 20729181
Hounsfield units; cone beam computed tomography; grey levels
22.  Reading aids for adults with low vision 
Background
The purpose of low-vision rehabilitation is to allow people to resume or to continue to perform daily living tasks, with reading being one of the most important. This is achieved by providing appropriate optical devices and special training in the use of residual-vision and low-vision aids, which range from simple optical magnifiers to high-magnification video magnifiers.
Objectives
To assess the effects of reading aids for adults with low vision.
Search methods
We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 1), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE, (January 1950 to January 2013), EMBASE (January 1980 to January 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2013), OpenGrey (System for Information on Grey Literature in Europe) (www.opengrey.eu/), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov/) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 31 January 2013. We searched the reference lists of relevant articles and used the Science Citation Index to find articles that cited the included studies and contacted investigators and manufacturers of low-vision aids. We handsearched the British Journal of Visual Impairment from 1983 to 1999 and the Journal of Visual Impairment and Blindness from 1976 to 1991.
Selection criteria
This review includes randomised and quasi-randomised trials in which any device or aid used for reading had been compared to another device or aid in people aged 16 or over with low vision as defined by the study investigators.
Data collection and analysis
At least two authors independently assessed trial quality and extracted data.
Main results
We included nine small studies with a cross-over-like design (181 people overall) and one study with three parallel arms (243 participants) in the review. All studies reported the primary outcome, results for reading speed.
Two studies including 92 participants found moderate- or low-quality evidence suggesting that reading speed is higher with stand-mounted electronic devices or electronic devices with the camera mounted in a ‘mouse’ than with optical magnifiers, which in these trials were generally stand-mounted or, less frequently, hand-held magnifiers or microscopic lenses. In another study of 20 participants there was moderate-quality evidence that optical devices are better than head-mounted electronic devices (four types).
There was low-quality evidence from three studies (93 participants) that reading using head-mounted electronic devices is slower than with stand-based electronic devices. The technology of electronic devices may have changed and improved since these studies were conducted.
One study suggested no difference between a diffractive spectacle-mounted magnifier and either refractive (15 participants) or aplanatic (15 participants) magnifiers.
One study of 10 people suggested that several overlay coloured filters were no better and possibly worse than a clear filter.
A parallel-arm study including 243 participants with age-related macular degeneration found that custom or standard prism spectacles were no different from conventional reading spectacles, although the data did not allow precise estimates of performance to be made.
Authors' conclusions
There is insufficient evidence on the effect of different types of low-vision aids on reading performance. It would be necessary to investigate which patient characteristics predict performance with different devices, including costly electronic devices. Better-quality research should also focus on assessing sustained long-term use of each device. Authors of studies testing several devices on the same person should consider design and reporting issues related to their sequential presentation and to the cross-over-like study design.
doi:10.1002/14651858.CD003303.pub3
PMCID: PMC4288929  PMID: 24154864
*Reading; *Sensory Aids; Eyeglasses; Lenses; Macular Degeneration [complications]; Optical Devices [*standards]; Randomized Controlled Trials as Topic; Vision; Low [*rehabilitation]; Visual Acuity; Visually Impaired Persons [*rehabilitation]; Adult; Humans
23.  Temporal evolution of water diffusion parameters is different in grey and white matter in human ischaemic stroke 
Objectives: Our purpose was to investigate whether differences exist in the values and temporal evolution of mean diffusivity () and fractional anisotropy (FA) of grey and white matter after human ischaemic stroke.
Methods: Thirty two patients with lesions affecting both grey and white matter underwent serial diffusion tensor magnetic resonance imaging (DT-MRI) within 24 hours, and at 4–7 days, 10–14 days, 1 month, and 3 months after stroke. Multiple small circular regions of interest (ROI) were placed in the grey and white matter within the lesion and in the contralateral hemisphere. Values of {grey}, {white}, FA{grey} and FA{white} were measured in these ROI at each time point and the ratios of ischaemic to normal contralateral values (R and FAR) calculated.
Results: and FA showed different patterns of evolution after stroke. After an initial decline, the rate of increase of {grey} was faster than {white} from 4–7 to 10–14 days. FA{white} decreased more rapidly than FA{grey} during the first week, thereafter for both tissue types the FA decreased gradually. However, FA{white} was still higher than FA{grey} at three months indicating that some organised axonal structure remained. This effect was more marked in some patients than in others. R{grey} was significantly higher than R{white} within 24 hours and at 10–14 days (p<0.05), and FAR{white} was significantly more reduced than FAR{grey} at all time points (p<0.001).
Conclusions: The values and temporal evolution of and FA are different for grey and white matter after human ischaemic stroke. The observation that there is patient-to-patient variability in the degree of white matter structure remaining within the infarct at three months may have implications for predicting patient outcome.
doi:10.1136/jnnp.2003.033852
PMCID: PMC1738833  PMID: 15548489
24.  Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis 
OBJECTIVE—To assess the feasibility of a new technique based on diffusion anisotropy to segment white and grey matter of the brain. To use this technique to measure the mean diffusivity (&Dmacr;) and magnetisation transfer ratio (MTR) of normal appearing white matter (NAWM) and grey matter (NAGM) from patients with multiple sclerosis.
METHODS—Dual echo turbo spin echo, MT, and diffusion weighted scans of the brain were obtained from 30 patients with multiple sclerosis and 18 sex and age matched healthy controls. After image coregistration and removal of T2 visible lesions, white and grey matter were segmented from 10 supratentorial slices using diffusion anisotropy thresholds. Histograms of the average MTR and &Dmacr; were created for normal white and grey matter of controls and NAWM and NAGM of patients with multiple sclerosis.
RESULTS—All the MTR histogram derived metrics of the NAWM from patients with multiple sclerosis were significantly lower than those of white matter from controls. The peak height of the &Dmacr; histogram of NAWM from patients with multiple sclerosis was also significantly different from that of normal white matter. The average MTR, the peak location of the MTR histogram, and peak height of the &Dmacr; histogram of the NAGM of patients with multiple sclerosis were significantly lower than the corresponding quantities of grey matter from controls.
CONCLUSIONS—A technique was developed for segmenting white and grey matter with the potential for improving the understanding of the pathophysiology of many neurological conditions. Its application to the study of multiple sclerosis confirms the presence of a diffuse tissue damage in the NAWM of these patients and suggests that subtle changes also occur in the NAGM.


doi:10.1136/jnnp.70.3.311
PMCID: PMC1737283  PMID: 11181851
25.  Test-retest Stability Analysis of Resting Brain Activity Revealed by BOLD fMRI 
Purpose
To assess test-retest stability of four fMRI-derived resting brain activity metrics: the seed-region-based functional connectivity (SRFC), independent component analysis (ICA)-derived network-based FC (NTFC), regional homogeneity (ReHo), and the amplitude of low frequency fluctuation (ALFF).
Methods
Simulations were used to assess the sensitivity of SRFC, ReHo, and ALFF to noise interference. Repeat resting blood-oxygen-level-dependent (BOLD) fMRI were acquired from 32 healthy subjects. The intra-class correlation coefficient (ICC) was used to assess the stability of the 4 metrics.
Results
Random noise yielded small random SRFC, small but consistent ReHo and ALFF. A neighborhood size greater than 20 voxels should be used for calculating ReHo in order to reduce the noise interference. Both the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC)-based SRFC were reproducible in more spatially extended regions than ICA NTFC. The two regional spontaneous brain activity (SBA) measures, ReHo and ALFF, showed test-retest reproducibility in almost the whole grey matter.
Conclusion
SRFC, ReHo, and ALFF are robust to random noise interference. The neighborhood size for calculating ReHo should be larger than 20 voxels. ICC>0.5 and cluster size>11 should be used to assess the ICC maps for ACC/PCC SRFC, ReHo and ALFF. BOLD fMRI-based SBA can be reliably measured using ACC/PCC SRFC, ReHo and ALFF after two months.
doi:10.1002/jmri.23670
PMCID: PMC3399952  PMID: 22535702
Functional connectivity; ICA DMN; ReHo; ALFF; fMRI; test-retest stability

Results 1-25 (1410550)