Search tips
Search criteria

Results 1-25 (1022524)

Clipboard (0)

Related Articles

1.  Optimum Methadone Compliance Testing 
Executive Summary
The objective of this analysis was to determine the diagnostic utility of oral fluid testing collected with the Intercept oral fluid collection device.
Clinical Need: Target Population and Condition
Opioids (opiates or narcotics) are a class of drugs derived from the opium poppy plant that typically relieve pain and produce a euphoric feeling. Methadone is a long-acting synthetic opioid used to treat opioid dependence and chronic pain. It prevents symptoms of opioid withdrawal, reduces opioid cravings and blocks the euphoric effects of short-acting opioids such as heroin and morphine. Opioid dependence is associated with harms including an increased risk of exposure to Human Immunodeficiency Virus and Hepatitis C as well as other health, social and psychological crises. The goal of methadone treatment is harm reduction. Treatment with methadone for opioid dependence is often a long-term therapy. The Ontario College of Physicians and Surgeons estimates that there are currently 250 physicians qualified to prescribe methadone, and 15,500 people in methadone maintenance programs across Ontario.
Drug testing is a clinical tool whose purpose is to provide objective meaningful information, which will reinforce positive behavioral changes in patients and guide further treatment needs. Such information includes knowledge of whether the patient is taking their methadone as prescribed and reducing or abstaining from using opioid and other drugs of abuse use. The results of drug testing can be used with behavior modification techniques (contingency management techniques) where positive reinforcements such as increased methadone take-home privileges, sustained employment or parole are granted for drug screens negative for opioid use, and negative reinforcement including loss of these privileges for drug screens positive for opioid used.
Body fluids including blood, oral fluid, often referred to as saliva, and urine may contain metabolites and the parent drug of both methadone and drugs of abuse and provide a means for drug testing. Compared with blood which has a widow of detection of several hours, urine has a wider window of detection, approximately 1 to 3 days, and is therefore considered more useful than blood for drug testing. Because of this, and the fact that obtaining a urine specimen is relatively easy, urine drug screening is considered the criterion measure (gold standard) for methadone maintenance monitoring. However, 2 main concerns exist with urine specimens: the possibility of sample tampering by the patient and the necessity for observed urine collection. Urine specimens may be tampered with in 3 ways: dilution, adulteration (contamination) with chemicals, and substitution (patient submits another persons urine specimen). To circumvent sample tampering the supervised collection of urine specimens is a common and recommended practice. However, it has been suggested that this practice may have negative effects including humiliation experienced by patient and staff, and may discourage patients from staying in treatment. Supervised urine specimen collection may also present an operational problem as staff must be available to provide same-sex supervision. Oral fluid testing has been proposed as a replacement for urine because it can be collected easily under direct supervision without infringement of privacy and reduces the likelihood of sample tampering. Generally, the results of oral fluid drug testing are similar to urine drug testing but there are some differences, such as lower concentrations of substances in oral fluid than urine, and some drugs remain detectable for longer periods of time in urine than oral fluid.
The Technology Being Reviewed
The Intercept Oral Specimen Collection Device (Ora-Sure Technologies, Bethlehem, PA) consists of an absorbent pad mounted on a plastic stick. The pad is coated with common salts. The absorbent pad is inserted into the mouth and placed between the cheek and gums for 3 minutes on average. The pad absorbs the oral fluid. After 3 minutes (range 2min-5 min) the collection device is removed from the mouth and the absorbent pad is placed in a small vial which contains 0.8mL of pH-balanced preservative, for transportation to a laboratory for analysis. It is recommended that the person undergoing oral fluid drug testing have nothing to eat or drink for a 10- minute period before the oral fluid specimen is collected. This will remove opportunity for adulteration. Likewise, it is recommended that the person be observed for the duration of the collection period to prevent adulteration of the specimen. An average of 0.4 mL of saliva can be collected. The specimen may be stored at 4C to 37C and tested within 21 days of collection (or within 6 weeks if frozen).
The oral fluid specimen must be analyzed in a laboratory setting. There is no point-of-care (POC) oral fluid test kit for drugs of abuse (other than for alcohol). In the laboratory the oral fluid is extracted from the vial after centrifugation and a screening test is completed to eliminate negative specimens. Similar to urinalysis, oral fluid specimens are analyzed first by enzyme immunoassay with positive specimens sent for confirmatory testing. Comparable cut-off values to urinalysis by enzyme immunoassay have been developed for oral fluids
Review Strategy
Research Question
What is the diagnostic utility of the Intercept oral specimen device?
Inclusion criteria:
Studies evaluating paired urine and oral fluid specimens from the same individual with the Intercept oral fluid collection device.
The population studied includes drug users.
Exclusion criteria:
Studies testing for marijuana (THC) only.
Sensitivity and Specificity of oral fluid testing compared to urinalysis for methadone (methadone metabolite), opiates, cocaine, benzodiazepines, and alcohol.
Quality of the Body of Evidence
The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used to evaluate the overall quality of the body of evidence (defined as 1 or more studies) supporting the research questions explored in this systematic review. A description of the GRADE system is reported in Appendix 1.
Summary of Findings
A total of 854 potential citations were retrieved. After reviewing titles and abstracts, 2 met the inclusion and exclusion criteria. Two other relevant studies were found after corresponding with the author of the 2 studies retrieved from the literature search. Therefore a total of 4 published studies are included in this analysis. All 4 studies carried out by the same investigator meet the definition of Medical Advisory Secretariat level III (not a-randomized controlled trial with contemporaneous controls) study design. In each of the studies, paired urine and oral fluid specimens where obtained from drug users. Urine collection was not observed in the studies however, laboratory tests for pH and creatinine were used to determine the reliability of the specimen. Urine specimens thought to be diluted and unreliable were removed from the evaluation. Urinalysis was used as the criterion measurement for which to determine the sensitivity and specificity of oral fluid testing by the Intercept oral fluid device for opiates, benzodiazepines, cocaine and marijuana. Alcohol was not tested in any of the 4 studies. From these 4 studies, the following conclusions were drawn:
The evidence indicates that oral fluid testing with the Intercept oral fluid device has better specificity than sensitivity for opiates, benzodiazepines, cocaine and marijuana.
The sensitivity of oral fluids testing with the Intercept oral fluid device seems to be from best to worst: cocaine > benzodiazepines >opiates> marijuana.
The sensitivity and specificity for opiates of the Intercept oral fluid device ranges from 75 to 90% and 97- 100% respectively.
The consequences of opiate false-negatives by oral fluid testing with the Intercept oral fluid device need to be weighed against the disadvantages of urine testing, including invasion of privacy issues and adulteration and substitution of the urine specimen.
The window of detection is narrower for oral fluid drug testing than urinalysis and because of this oral fluid testing may best be applied in situations where there is suspected frequent drug use. When drug use is thought to be less frequent or remote, urinalysis may offer a wider (24-48 hours more than oral fluids) window of detection.
The narrow window of detection for oral fluid testing may mean more frequent testing is needed compared to urinalysis. This may increase the expense for drug testing in general.
POC oral fluid testing is not yet available and may limit the practical utility of this drug testing methodology. POC urinalysis by immunoassay is available.
The possible applications of oral fluid testing may include:
Because of its narrow window of detection compared to urinalysis oral fluid testing may best be used during periods of suspected frequent or recent drug use (within 24 hours of drug testing). This is not to say that oral fluid testing is superior to urinalysis during these time periods.
In situations where an observed urine specimen is difficult to obtain. This may include persons with “shy bladder syndrome” or with other urinary conditions limiting their ability to provide an observed urine specimen.
When the health of the patient would make urine testing unreliable (e,g., renal disease)
As an alternative drug testing method when urine specimen tampering practices are suspected to be affecting the reliability of the urinalysis test.
Possible limiting Factors to Diffusion of Oral Fluid Technology
No oral fluid POC test equivalent to onsite urine dips or POC analyzer reducing immediacy of results for patient care.
Currently, physicians get reimbursed directly for POC urinalysis. Oral fluid must be analyzed in a lab setting removing physician reimbursement, which is a source of program funding for many methadone clinics.
Small amount of oral fluid specimen obtained; repeat testing on same sample will be difficult.
Reliability of positive oral fluid methadone (parent drug) results may decrease because of possible contamination of oral cavity after ingestion of dose. Therefore high methadone levels may not be indicative of compliance with treatment. Oral fluid does not as yet test for methadone metabolite.
There currently is no licensed provincial laboratory that analyses oral fluid specimens.
2-ethylidene- 1,5-dimethyl-3,3-diphenylpyrrolidine
enzyme immunoassay
Enzyme Linked Immunosorbent Assay (ELISA),
Enzyme Multiplied Immunoassay Test (EMIT)
Gas chromatography
gas chromatography/mass spectrometry
High-performance liquid chromatography
Limit of Detection
Mass spectrometry
Methadone Maintenance Treatment
Oral fluid testing
Point of Care Testing
11-nor-delta-9-tetrhydrocannabinol-9-carboxylic acid
urine drug testing
PMCID: PMC3379523  PMID: 23074492
2.  Point-of-Care International Normalized Ratio (INR) Monitoring Devices for Patients on Long-term Oral Anticoagulation Therapy 
Executive Summary
Subject of the Evidence-Based Analysis
The purpose of this evidence based analysis report is to examine the safety and effectiveness of point-of-care (POC) international normalized ratio (INR) monitoring devices for patients on long-term oral anticoagulation therapy (OAT).
Clinical Need: Target Population and Condition
Long-term OAT is typically required by patients with mechanical heart valves, chronic atrial fibrillation, venous thromboembolism, myocardial infarction, stroke, and/or peripheral arterial occlusion. It is estimated that approximately 1% of the population receives anticoagulation treatment and, by applying this value to Ontario, there are an estimated 132,000 patients on OAT in the province, a figure that is expected to increase with the aging population.
Patients on OAT are regularly monitored and their medications adjusted to ensure that their INR scores remain in the therapeutic range. This can be challenging due to the narrow therapeutic window of warfarin and variation in individual responses. Optimal INR scores depend on the underlying indication for treatment and patient level characteristics, but for most patients the therapeutic range is an INR score of between 2.0 and 3.0.
The current standard of care in Ontario for patients on long-term OAT is laboratory-based INR determination with management carried out by primary care physicians or anticoagulation clinics (ACCs). Patients also regularly visit a hospital or community-based facility to provide a venous blood samples (venipuncture) that are then sent to a laboratory for INR analysis.
Experts, however, have commented that there may be under-utilization of OAT due to patient factors, physician factors, or regional practice variations and that sub-optimal patient management may also occur. There is currently no population-based Ontario data to permit the assessment of patient care, but recent systematic reviews have estimated that less that 50% of patients receive OAT on a routine basis and that patients are in the therapeutic range only 64% of the time.
Overview of POC INR Devices
POC INR devices offer an alternative to laboratory-based testing and venipuncture, enabling INR determination from a fingerstick sample of whole blood. Independent evaluations have shown POC devices to have an acceptable level of precision. They permit INR results to be determined immediately, allowing for more rapid medication adjustments.
POC devices can be used in a variety of settings including physician offices, ACCs, long-term care facilities, pharmacies, or by the patients themselves through self-testing (PST) or self-management (PSM) techniques. With PST, patients measure their INR values and then contact their physician for instructions on dose adjustment, whereas with PSM, patients adjust the medication themselves based on pre-set algorithms. These models are not suitable for all patients and require the identification and education of suitable candidates.
Potential advantages of POC devices include improved convenience to patients, better treatment compliance and satisfaction, more frequent monitoring and fewer thromboembolic and hemorrhagic complications. Potential disadvantages of the device include the tendency to underestimate high INR values and overestimate low INR values, low thromboplastin sensitivity, inability to calculate a mean normal PT, and errors in INR determination in patients with antiphospholipid antibodies with certain instruments. Although treatment satisfaction and quality of life (QoL) may improve with POC INR monitoring, some patients may experience increased anxiety or preoccupation with their disease with these strategies.
Evidence-Based Analysis Methods
Research Questions
1. Effectiveness
Does POC INR monitoring improve clinical outcomes in various settings compared to standard laboratory-based testing?
Does POC INR monitoring impact patient satisfaction, QoL, compliance, acceptability, convenience compared to standard laboratory-based INR determination?
Settings include primary care settings with use of POC INR devices by general practitioners or nurses, ACCs, pharmacies, long-term care homes, and use by the patient either for PST or PSM.
2. Cost-effectiveness
What is the cost-effectiveness of POC INR monitoring devices in various settings compared to standard laboratory-based INR determination?
Inclusion Criteria
English-language RCTs, systematic reviews, and meta-analyses
Publication dates: 1996 to November 25, 2008
Population: patients on OAT
Intervention: anticoagulation monitoring by POC INR device in any setting including anticoagulation clinic, primary care (general practitioner or nurse), pharmacy, long-term care facility, PST, PSM or any other POC INR strategy
Minimum sample size: 50 patients Minimum follow-up period: 3 months
Comparator: usual care defined as venipuncture blood draw for an INR laboratory test and management provided by an ACC or individual practitioner
Outcomes: Hemorrhagic events, thromboembolic events, all-cause mortality, anticoagulation control as assessed by proportion of time or values in the therapeutic range, patient reported outcomes including satisfaction, QoL, compliance, acceptability, convenience
Exclusion criteria
Non-RCTs, before-after studies, quasi-experimental studies, observational studies, case reports, case series, editorials, letters, non-systematic reviews, conference proceedings, abstracts, non-English articles, duplicate publications
Studies where POC INR devices were compared to laboratory testing to assess test accuracy
Studies where the POC INR results were not used to guide patient management
Method of Review
A search of electronic databases (OVID MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, The Cochrane Library, and the International Agency for Health Technology Assessment [INAHTA] database) was undertaken to identify evidence published from January 1, 1998 to November 25, 2008. Studies meeting the inclusion criteria were selected from the search results. Reference lists of selected articles were also checked for relevant studies.
Summary of Findings
Five existing reviews and 22 articles describing 17 unique RCTs met the inclusion criteria. Three RCTs examined POC INR monitoring devices with PST strategies, 11 RCTs examined PSM strategies, one RCT included both PST and PSM strategies and two RCTs examined the use of POC INR monitoring devices by health care professionals.
Anticoagulation Control
Anticoagulation control is measured by the percentage of time INR is within the therapeutic range or by the percentage of INR values in the therapeutic range. Due to the differing methodologies and reporting structures used, it was deemed inappropriate to combine the data and estimate whether the difference between groups would be significant. Instead, the results of individual studies were weighted by the number of person-years of observation and then pooled to calculate a summary measure.
Across most studies, patients in the intervention groups tended to have a higher percentage of time and values in the therapeutic target range in comparison to control patients. When the percentage of time in the therapeutic range was pooled across studies and weighted by the number of person-years of observation, the difference between the intervention and control groups was 4.2% for PSM, 7.2% for PST and 6.1% for POC use by health care practitioners. Overall, intervention patients were in the target range 69% of the time and control patients were in the therapeutic target range 64% of the time leading to an overall difference between groups of roughly 5%.
Major Complications and Deaths
There was no statistically significant difference in the number of major hemorrhagic events between patients managed with POC INR monitoring devices and patients managed with standard laboratory testing (OR =0.74; 95% CI: 0.52- 1.04). This difference was non-significant for all POC strategies (PSM, PST, health care practitioner).
Patients managed with POC INR monitoring devices had significantly fewer thromboembolic events than usual care patients (OR =0.52; 95% CI: 0.37 - 0.74). When divided by POC strategy, PSM resulted in significantly fewer thromboembolic events than usual care (OR =0.46.; 95% CI: 0.29 - 0.72). The observed difference in thromboembolic events for PSM remained significant when the analysis was limited to major thromboembolic events (OR =0.40; 95% CI: 0.17 - 0.93), but was non-significant when the analysis was limited to minor thromboembolic events (OR =0.73; 95% CI: 0.08 - 7.01). PST and GP/Nurse strategies did not result in significant differences in thromboembolic events, however there were only a limited number of studies examining these interventions.
No statistically significant difference was observed in the number of deaths between POC intervention and usual care control groups (OR =0.67; 95% CI: 0.41 - 1.10). This difference was non-significant for all POC strategies. Only one study reported on survival with 10-year survival rate of 76.1% in the usual care control group compared to 84.5% in the PSM group (P=0.05).
Summary Results of Meta-Analyses of Major Complications and Deaths in POC INR Monitoring Studies
Patient Satisfaction and Quality of Life
Quality of life measures were reported in eight studies comparing POC INR monitoring to standard laboratory testing using a variety of measurement tools. It was thus not possible to calculate a quantitative summary measure. The majority of studies reported favourable impacts of POC INR monitoring on QoL and found better treatment satisfaction with POC monitoring. Results from a pre-analysis patient and caregiver focus group conducted in Ontario also indicated improved patient QoL with POC monitoring.
Quality of the Evidence
Studies varied with regard to patient eligibility, baseline patient characteristics, follow-up duration, and withdrawal rates. Differential drop-out rates were observed such that the POC intervention groups tended to have a larger number of patients who withdrew. There was a lack of consistency in the definitions and reporting for OAT control and definitions of adverse events. In most studies, the intervention group received more education on the use of warfarin and performed more frequent INR testing, which may have overestimated the effect of the POC intervention. Patient selection and eligibility criteria were not always fully described and it is likely that the majority of the PST/PSM trials included a highly motivated patient population. Lastly, a large number of trials were also sponsored by industry.
Despite the observed heterogeneity among studies, there was a general consensus in findings that POC INR monitoring devices have beneficial impacts on the risk of thromboembolic events, anticoagulation control and patient satisfaction and QoL (ES Table 2).
GRADE Quality of the Evidence on POC INR Monitoring Studies
CI refers to confidence interval; Interv, intervention; OR, odds ratio; RCT, randomized controlled trial.
Economic Analysis
Using a 5-year Markov model, the health and economic outcomes associated with four different anticoagulation management approaches were evaluated:
Standard care: consisting of a laboratory test with a venipuncture blood draw for an INR;
Healthcare staff testing: consisting of a test with a POC INR device in a medical clinic comprised of healthcare staff such as pharmacists, nurses, and physicians following protocol to manage OAT;
PST: patient self-testing using a POC INR device and phoning in results to an ACC or family physician; and
PSM: patient self-managing using a POC INR device and self-adjustment of OAT according to a standardized protocol. Patients may also phone in to a medical office for guidance.
The primary analytic perspective was that of the MOHLTC. Only direct medical costs were considered and the time horizon of the model was five years - the serviceable life of a POC device.
From the results of the economic analysis, it was found that POC strategies are cost-effective compared to traditional INR laboratory testing. In particular, the healthcare staff testing strategy can derive potential cost savings from the use of one device for multiple patients. The PSM strategy, however, seems to be the most cost-effective method i.e. patients are more inclined to adjust their INRs more readily (as opposed to allowing INRs to fall out of range).
Considerations for Ontario Health System
Although the use of POC devices continues to diffuse throughout Ontario, not all OAT patients are suitable or have the ability to practice PST/PSM. The use of POC is currently concentrated at the institutional setting, including hospitals, ACCs, long-term care facilities, physician offices and pharmacies, and is much less commonly used at the patient level. It is, however, estimated that 24% of OAT patients (representing approximately 32,000 patients in Ontario), would be suitable candidates for PST/PSM strategies and willing to use a POC device.
There are several barriers to the use and implementation of POC INR monitoring devices, including factors such as lack of physician familiarity with the devices, resistance to changing established laboratory-based methods, lack of an approach for identifying suitable patients and inadequate resources for effective patient education and training. Issues of cost and insufficient reimbursement strategies may also hinder implementation and effective quality assurance programs would need to be developed to ensure that INR measurements are accurate and precise.
For a select group of patients who are highly motivated and trained, PSM resulted in significantly fewer thromboembolic events compared to conventional laboratory-based INR testing. No significant differences were observed for major hemorrhages or all-cause mortality. PST and GP/Nurse use of POC strategies are just as effective as conventional laboratory-based INR testing for thromboembolic events, major hemorrhages, and all-cause mortality. POC strategies may also result in better OAT control as measured by the proportion of time INR is in the therapeutic range and there appears to be beneficial impacts on patient satisfaction and QoL. The use of POC devices should factor in patient suitability, patient education and training, health system constraints, and affordability.
anticoagulants, International Normalized Ratio, point-of-care, self-monitoring, warfarin.
PMCID: PMC3377545  PMID: 23074516
3.  Saliva: diagnostics and therapeutic perspectives 
Oral diseases  2010;17(4):345-354.
For the past two decades, salivary diagnostic approaches have been developed to monitor oral diseases such as periodontal diseases and to assess caries risk. Recently, the combination of emerging biotechnologies and salivary diagnostics has extended the range of saliva-based diagnostics from the oral cavity to the whole physiological system as most compounds found in blood are also present in saliva. Accordingly saliva can reflect the physiological state of the body, including emotional, endocrinal, nutritional and metabolic variations and provides a source for the monitoring of oral and also systemic health. This review presents the current status of saliva diagnostics and delves into their applications to the discovery of biomarkers for cancer detection and therapeutic applications. Translating scientific findings of nucleic acids, proteins and metabolites in body fluids to clinical applications is a cumbersome and challenging journey. Our research group is pursuing the biology of salivary analytes and the development of technologies in order to detect distinct biomarkers with high sensitivity and specificity. The avenue of saliva diagnostics incorporating transcriptomic, proteomic and metabolomic findings will enable us to connect salivary molecular analytes to monitor therapies, therapeutic outcomes, and finally disease progression in cancer.
PMCID: PMC3056919  PMID: 21122035
saliva diagnostics; biomarker; transcriptome; proteome; therapeutic perspectives
4.  Programmable Bio-Nano-Chip Systems for Serum CA125 Quantification: Towards Ovarian Cancer Diagnostics at the Point-of-Care 
Point-of-care (POC) implementation of early detection and screening methodologies for ovarian cancer may enable improved survival rates through early intervention. Current laboratory-confined immunoanalyzers have long turnaround times and are often incompatible with multiplexing and POC implementation. Rapid, sensitive and multiplexable POC diagnostic platforms compatible with promising early detection approaches for ovarian cancer are needed. To this end, we report the adaptation of the programmable bio-nano-chip (p-BNC), an integrated, microfluidic, modular (Programmable) platform for CA125 serum quantitation, a biomarker prominently implicated in multi-modal and multi-marker screening approaches. In the p-BNC, CA125 from diseased sera (Bio) is sequestered and assessed with a fluorescence-based sandwich immunoassay, completed in the nano-nets (Nano) of sensitized agarose microbeads localized in individually addressable wells (Chip), housed in a microfluidic module, capable of integrating multiple sample, reagent and biowaste processing and handling steps. Antibody pairs that bind to distinct epitopes on CA125 were screened. To permit efficient biomarker sequestration in a 3-D microfluidic environment, the p-BNC operating variables (incubation times, flow rates and reagent concentrations) were tuned to deliver optimal analytical performance under 45 minutes. With short analysis times, competitive analytical performance (Inter- and intra-assay precision of 1.2% and 1.9% and LODs of 1.0 U/mL) was achieved on this mini-sensor ensemble. Further validation with sera of ovarian cancer patients (n=20) demonstrated excellent correlation (R2 = 0.97) with gold-standard ELISA. Building on the integration capabilities of novel microfluidic systems programmed for ovarian cancer, the rapid, precise and sensitive miniaturized p-BNC system shows strong promise for ovarian cancer diagnostics.
PMCID: PMC3677577  PMID: 22490510
Programmable Bio-Nano-Chip; Serum CA125; Point-of-Care; Microfluidics; Ovarian Cancer; Early Detection; Lab-on-a-Chip
5.  Integrated Microfluidic Platform for Oral Diagnostics 
While many point-of-care (POC) diagnostic methods have been developed for blood-borne analytes, development of saliva-based POC diagnostics is in its infancy. We have developed a portable microfluidic device for detection of potential biomarkers of periodontal disease in saliva. The device performs rapid microfluidic chip-based immunoassays (<3–10 min) with low sample volume requirements (10 μL) and appreciable sensitivity (nM–pM). Our microfluidic method facilitates hands-free saliva analysis by integrating sample pretreatment (filtering, enrichment, mixing) with electrophoretic immunoassays to quickly measure analyte concentrations in minimally pretreated saliva samples. The microfluidic chip has been integrated with miniaturized electronics, optical elements, such as diode lasers, fluid-handling components, and data acquisition software to develop a portable, self-contained device. The device and methods are being tested by detecting potential biomarkers in saliva samples from patients diagnosed with periodontal disease. Our microchip-based analysis can readily be extended to detection of biomarkers of other diseases, both oral and systemic, in saliva and other oral fluids.
PMCID: PMC2572166  PMID: 17435142
microfluidics; periodontal disease; diagnostics; point-of-care; POC; immunoassay; lab-on-a-chip; saliva
6.  Current developments in salivary diagnostics 
Biomarkers in medicine  2010;4(1):171-189.
Salivary diagnostics is an emerging field that has progressed through several important developments in the past decade, including the publication of the human salivary proteome and the infusion of federal funds to integrate nanotechnologies and microfluidic engineering concepts into developing compact point-of-care devices for rapid analysis of this secretion. In this article, we discuss some of these developments and their relevance to the prognosis, diagnosis and management of periodontitis, as an oral target, and cardiovascular disease, as a systemic example for the potential of these biodiagnostics. Our findings suggest that several biomarkers are associated with distinct biological stages of these diseases and demonstrate promise as practical biomarkers in identifying and managing periodontal disease, and acute myocardial infarction. The majority of these studies have progressed through biomarker discovery, with the identified molecules requiring more robust clinical studies to enable substantive validation for disease diagnosis. It is predicted that with continued advances in this field the use of a combination of biomarkers in multiplex panels is likely to yield accurate screening tools for these diagnoses in the near future.
PMCID: PMC2857781  PMID: 20387312
acute myocardial infarction; lab-on-a-chip; periodontitis; salivary diagnosis
7.  Salivary changes and dental caries as potential oral markers of autoimmune salivary gland dysfunction in primary Sjögren's syndrome 
the classification criteria for primary Sjögren's syndrome (pSS) include a number of oral components. In this study we evaluated if salivary flow and composition as well as dental caries are oral markers of disease severity in pSS.
in 20 patients fulfilling the American-European Consensus criteria for pSS and 20 age-matched healthy controls whole and parotid saliva flow rates and composition, measures of oral dryness, scores of decayed, missing and filled tooth surfaces (DMFS), periodontal indices, oral hygiene, and dietary habits were examined.
in pSS, salivary flow rates, pH, and buffer capacities were lower, and DMFS, salivary sodium and chloride concentrations higher than in the healthy controls. DMFS also correlated inversely to salivary flow rates and positively to oral dryness. Apart from slightly increased gingival index, and more frequent dental visits in pSS, the periodontal condition, oral hygiene or sugar intake did not differ between these two groups. In pSS, findings were correlated to labial salivary gland focus score (FS) and presence of serum-autoantibodies to SSA/SSB (AB). The patients having both presence of AB and the highest FS (>2) also had the highest salivary sodium and chloride concentrations, the lowest salivary phosphate concentrations, lowest salivary flow rates, and highest DMFS compared to those with normal salivary concentrations of sodium and chloride at a given flow rate.
the salivary changes observed in some pSS patients reflect impaired ductal salt reabsorption, but unaffected acinar transport mechanisms, despite low salivary secretion. Our results suggest that changes in salivary flow and composition as well as dental caries may serve as potential markers of the extent of autoimmune-mediated salivary gland dysfunction in pSS. The study also indicates that the ductal epithelium is functionally affected in some pSS patients, which calls for future pathophysiological studies on the mechanisms underlying this impaired salt reabsorption.
PMCID: PMC554998  PMID: 15740617
8.  Estimation and correlation of salivary thiocyanate levels in healthy and different forms of tobacco users having chronic periodontitis: A cross-sectional biochemical study 
Contemporary Clinical Dentistry  2014;5(2):182-186.
Periodontitis is a common inflammatory disease with complex and multi-factorial origin. Tobacco usage has shown its adverse effect on periodontal health. Various components within saliva not only protect the integrity of oral tissues, but also provide clues to local and systemic diseases and conditions. Salivary thiocyanate (SCN) has been shown to be a chemical indicator in smokers and smokeless tobacco users. Noninvasive nature of salivary testing has made it an attractive and effective alternative to blood and urine testing. Limited studies are there comparing and correlating the salivary SCN levels in smokers with chronic periodontitis (CP). However, no studies show correlation of salivary SCN among gutka chewers with CP.
Aims and Objectives:
The objective of the following study is to estimate, compare, and correlate the SCN levels in periodontally healthy, CP, smokers with CP and gutka chewers with CP subjects.
Materials and Methods:
Study includes 120 subjects with age 18-55 years, categorized as periodonally healthy (n = 30), CP (n = 30), smokers (n = 30), and gutka chewers (n = 30) with CP. Required clinical parameters such as gingival index, probing depth and clinical attachment loss were recorded and salivary SCN levels were estimated through ultraviolet-spectrophotometer.
Mean salivary SCN level were shown to be higher among smokers and gutka chewers with CP as compared to healthy and CP alone.
The present study exhibited the significant increase in salivary SCN levels among smokers and gutka chewers when compared to others, concluding that the analysis of salivary SCN levels could be used as an adjunctive means of diagnosis.
PMCID: PMC4067780  PMID: 24963243
Chronic periodontitis; gutka chewers; salivary thiocyanate; smokers; ultraviolet-spectrophotometer
9.  C - Reactive Protein Levels in Patients with Periodontal Disease and Normal Subjects 
Although periodontitis is a chronic inflammatory disease but some factors of acute inflammation phase are involved in this disease among which is the C-Reactive protein (CRP). To minimize its effects, anti-inflammatory drugs or non-pharmacological approaches such as oral hygiene is recommended. CRP can also be used for the prediction and early detection of periodontal disease. The aim of the present study was the comparison of the amount of salivary C-Reactive protein (CRP) in healthy subjects and patients with periodontal disease. This case-control study was done on 90 patients referred to the Department of Periodontology of Babol Dentistry School. These subjects were divided into three groups of healthy (n = 30), gingivitis (n = 30), and chronic periodontitis (n = 30), based on Gingival Index (GI) and Clinical Attachment Loss (CAL) indices. 2ml saliva samples were collected from these people and clinical indicators including GI, CAL, Periodontal Pocket Depth (PPD), and Bleeding Index (BI) were assessed. ELISA method was used to evaluate the salivary CRP levels. Collected data were analyzed using SPSS statistical software by non-Parametric Kruskal-Wallis and Mann-Whitney test and Spearman correlation coefficient and P<0.05 was considered significant. The mean salivary CRP levels were 5332.62±5051.63pg/ml in periodontitis patients, 3545.41±3061.38pg/ml in gingivitis group and 3108.51±3574.47pg/ml in healthy subjects. The statistic analysis showed a significant difference in salivary CRP concentrations between the periodontitis patients and healthy subjects (P=0.045). The results indicate that there is a significant association between periodontitis and salivary CRP concentrations.
PMCID: PMC3920533  PMID: 24551806
CRP; periodontitis; gingivitis; saliva
10.  A Review on Salivary Genomics and Proteomics Biomarkers in Oral Cancer 
Oral cancer has emerged as an alarming public health problem with increasing incidence and mortality rates all over the world. Therefore, the implementation of newer screening and early detection approaches are of utmost importance which could reduce the morbidity and mortality associated with this disease. Sensitive and specific biomarkers for oral cancer are likely to be most effective for screening, diagnosis, staging and follow-up for this dreaded malignancy. Unlike other deep cancers, oral cancer is located in oral cavity. Hence, the direct contact between saliva and oral cancer lesion makes the measurement of tumor markers in saliva an attractive alternative to serum and tissue testing. The DNA, RNA and protein molecules derived from the living cancer cells can be conveniently obtained from saliva. Thus, salivary biomarkers, a non-invasive alternative to serum and tissue-based biomarkers may be an effective modality for early diagnosis, prognostication and monitoring post therapy status. In the current post-genomic era, various technologies provide opportunities for high-throughput approaches to genomics and proteomics; which have been used to evaluate altered expressions of gene and protein targets in saliva of oral cancer patients. The emerging field of salivary biomarkers has great potentials to prove its clinical significance to combat oral cancer. Hence, we have reviewed importance of several salivary genomics and proteomics biomarkers for oral cancer.
PMCID: PMC3210231  PMID: 23024467
Oral cancer; Salivary biomarkers; Proteomics; Genomics
11.  Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits 
Sensors (Basel, Switzerland)  2009;9(10):8230-8262.
Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.
PMCID: PMC3292105  PMID: 22408503
breath analysis; biomarkers, laser spectroscopic detection techniques; TDLAS; CRDS; ICOS; CEAS; CALOS; PAS; OFC-ECAS; acetone; nitric oxide; carbon dioxide
12.  Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: highlighting of new antigenic peptides as candidates of An. gambiae bites 
Parasites & Vectors  2014;7(1):599.
Malaria is the major parasitic disease worldwide caused by Plasmodium infection. The objective of integrated malaria control programs is to decrease malaria transmission, which needs specific tools to be accurately assessed. In areas where the transmission is low or has been substantially reduced, new complementary tools have to be developed to improve surveillance. A recent approach, based on the human antibody response to Anopheles salivary proteins, has been shown to be efficient in evaluating human exposure to Anopheles bites. The aim of the present study was to identify new An. gambiae salivary proteins as potential candidate biomarkers of human exposure to P. falciparum-infective bites.
Experimental infections of An. gambiae by wild P. falciparum were carried out in semi-field conditions. Then a proteomic approach, combining 2D-DIGE and mass spectrometry, was used to identify the overexpressed salivary proteins in infected salivary glands compared to uninfected An. gambiae controls. Subsequently, a peptide design of each potential candidate was performed in silico and their antigenicity was tested by an epitope-mapping technique using blood from individuals exposed to Anopheles bites.
Five salivary proteins (gSG6, gSG1b, TRIO, SG5 and long form D7) were overexpressed in the infected salivary glands. Eighteen peptides were designed from these proteins and were found antigenic in children exposed to the Anopheles bites. Moreover, the results showed that the presence of wild P. falciparum in salivary glands modulates the expression of several salivary proteins and also appeared to induce post-translational modifications.
This study is, to our knowledge, the first that compares the sialome of An. gambiae both infected and not infected by wild P. falciparum, making it possible to mimic the natural conditions of infection. This is a first step toward a better understanding of the close interactions between the parasite and the salivary gland of mosquitoes. In addition, these results open the way to define biomarkers of infective bites of Anopheles, which could, in the future, improve the estimation of malaria transmission and the evaluation of malaria vector control tools.
Electronic supplementary material
The online version of this article (doi:10.1186/s13071-014-0599-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4287575  PMID: 25526764
Anopheles gambiae; Wild Plasmodium falciparum; Salivary proteins; Biomarker; Infective bites; Proteomic
13.  Saliva/Pathogen Biomarker Signatures and Periodontal Disease Progression 
Journal of Dental Research  2011;90(6):752-758.
The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 44 exhibiting PDP, while 39 demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 82% of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 78% of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0002). The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability ( number, CT00277745).
PMCID: PMC3144122  PMID: 21406610
periodontal disease; pro-inflammatory biomarkers; saliva; periodontal pathogens; diagnosis; salivary diagnostics
14.  Rheumatoid Arthritis and Salivary Biomarkers of Periodontal Disease 
Journal of clinical periodontology  2010;37(12):1068-1074.
To test the hypothesis that rheumatoid arthritis influenced levels of salivary biomarkers of periodontal disease.
Medical assessments, periodontal examinations, and pain ratings were obtained from 35 rheumatoid arthritis, 35 chronic periodontitis and 35 age and gender-matched healthy controls in a cross-sectional, case-controlled study. Unstimulated whole saliva samples were analyzed for interleukin-1β (IL-1β), matrix-metalloproteinase-8 (MMP-8) and tumor necrosis factor-α (TNF)-α concentrations.
The arthritis and healthy groups had significantly less oral disease than the periodontitis group (p<0.0001), with the arthritis group having significantly more sites bleeding on probing (BOP) than matched controls (p=0.012). Salivary levels of MMP-8 and IL-1β were significantly elevated in the periodontal disease group (p≤0.002), and IL-1β was the only biomarker with significantly higher levels in the arthritis group compared with controls (p=0.002). Arthritis patients receiving anti-TNF-α antibody therapy had significantly lower IL-1β and TNF-α levels compared with arthritis patients not on anti-TNF-α therapy (p=0.016, p=0.024) and healthy controls (p<0.001, p=0.011), respectively.
Rheumatoid arthritis patients have higher levels of periodontal inflammation than healthy controls, ie. increased BOP. Systemic inflammation appears to influence levels of select salivary biomarkers of periodontal disease, and anti-TNF-α antibody-based disease modifying therapy significantly lowers salivary IL-1β and TNF-α levels in rheumatoid arthritis.
PMCID: PMC2980566  PMID: 20880053
Interleukin 1β; matrix metalloproteinase (MMP); tumor necrosis factor (TNF)-α; salivary biomarkers; periodontal disease; rheumatoid arthritis; saliva; inflammation; biological markers
15.  Proteomics of saliva: personal experience 
The salivary proteome is a complex protein mixture resulting from the activity of salivary glands with the contribution of other components that form the oral environment such as oral tissues and micro-organisms. For diagnosis purposes, saliva collection has the great advantage of being an easy and non-invasive technique. Human saliva proteomics have proven to be a novel approach in the search for protein biomarkers for detection of different local and systemic diseases. Currently, more than 1400 salivary proteins have been identified. In the last few years, our research group has extensively studied the salivary proteomics in order to analyse the salivary composition, investigating the major families of proteins present in human and mammalian saliva, the post-translational modifications, the different contributions of glands, the physiological and pathological modifications of saliva. The aim of this report is to present our personal experience in salivary proteomics. In conclusion, salivary proteome analysis represents an important field both for diagnosis and monitoring of various diseases and could be considered a novel approach to prevention of various pathological conditions.
PMCID: PMC2914523  PMID: 20948587
Saliva; Salivary glands; Proteomics; Salivary composition; HPLC-ESI-MS
16.  Elevated salivary C-reactive protein levels are associated with active and passive smoking in healthy youth: A pilot study 
We examined salivary C-reactive protein (CRP) levels in the context of tobacco smoke exposure (TSE) in healthy youth. We hypothesized that there would be a dose-response relationship between TSE status and salivary CRP levels.
This work is a pilot study (N = 45) for a larger investigation in which we aim to validate salivary CRP against serum CRP, the gold standard measurement of low-grade inflammation. Participants were healthy youth with no self-reported periodontal disease, no objectively measured obesity/adiposity, and no clinical depression, based on the Beck Depression Inventory (BDI-II). We assessed tobacco smoking and confirmed smoking status (non-smoking, passive smoking, and active smoking) with salivary cotinine measurement. We measured salivary CRP by the ELISA method. We controlled for several potential confounders.
We found evidence for the existence of a dose-response relationship between the TSE status and salivary CRP levels.
Our preliminary findings indicate that salivary CRP seems to have a similar relation to TSE as its widely used serum (systemic inflammatory) biomarker counterpart.
PMCID: PMC3266640  PMID: 22152006
Salivary C-reactive protein; active and passive tobacco smoke exposure; cotinine
17.  Oral Squamous Cell Carcinoma Detection By Salivary Biomarkers in a Serbian Population 
Oral oncology  2010;47(1):51-55.
Early detection of oral squamous cell cancer (OSCC) is the key to improve the low 5-year survival rate. Using proteomic and genomic technologies we have previously discovered and validated salivary OSCC markers in American patients. The question arises whether these biomarkers are discriminatory in cohorts of different ethnic background. Six transcriptome (DUSP1, IL8, IL1B, OAZ1, SAT1, S100P) and three proteome (IL1B, IL8, M2BP) biomarkers were tested on 18 early and 17 late stage OSCC patients and 51 healthy controls with quantitative PCR and ELISA. Four transcriptome (IL8, IL1B, SAT1, S100P) and all proteome biomarkers were significantly elevated (p<0.05) in OSCC patients. The combination of markers yielded an AUC of 0.86, 0.85 and 0.88 for OSCC total, T1-T2, and T3-T4 respectively. The sensitivity/specificity for OSCC total was 0.89/0.78, for T1-T2 0.67/0.96, and for T3-T4 0.82/0.84. In conclusion, seven of the nine salivary biomarkers (3 proteins and 4 mRNAs) were validated and performed strongest in late stage cancer. Patient-based salivary diagnostics is a highly promising approach for OSCC detection. This study shows that previously discovered and validated salivary OSCC biomarkers are discriminatory and reproducible in a different ethnic cohort. These findings support the feasibility to implement multi-center, multi-ethnicity clinical trials towards the pivotal validation of salivary biomarkers for OSCC detection.
PMCID: PMC3032819  PMID: 21109482
Oral cancer; biomarkers; salivary diagnostics; proteome; transcriptome
18.  Salivary Cytokine Levels in Chronic Periodontitis and Periodontally Healthy Subjects. A cross-sectional Study 
Journal of periodontal research  2009;44(3):411-417.
Background and Objective
Saliva has been proposed as a non-invasive diagnostic fluid that could be used in the diagnosis of oral and systemic diseases. The levels of salivary biomarkers such as cytokines could potentially be used as a surrogate to distinguish periodontally healthy from periodontitis subjects. Therefore, the goal of the present investigation was to determine if the levels of 10 cytokines in saliva would differ between a group of periodontally healthy and periodontitis subjects. Correlations between the concentration of these 10 cytokines and clinical parameters of periodontal disease were also examined.
Material and Methods
In this cross-sectional study, 74 chronic periodontitis and 44 periodontally healthy individuals were periodontally examined and had the levels of GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IFN-γ and TNF-α measured in whole saliva using a multiplexed bead immunoassay (Luminex). Significance of statistical differences in the levels of salivary cytokines between groups was determined using non-parametric ANCOVA adjusting for age and smoking status. The Spearman rank correlation coefficient was used to explore associations between mean levels of salivary cytokines and mean clinical parameters.
There were no statistically significant differences between groups for any of the cytokines. There were weak statistically significant positive associations between salivary IL-8 and PD (rs=0.2, p<0.05) and BOP (rs=0.2, p<0.05) and weak negative correlations between salivary IL-10 and AL (rs=−0.2, p<0.05) and BOP (rs=−0.3, p<0.001).
Mean salivary levels of GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IFN-γ and TNF-α could not discriminate between periodontal health and disease.
PMCID: PMC2712869  PMID: 19210336
saliva; cytokines; diagnosis; chronic periodontitis; periodontal health
19.  Salivary Biomarkers for Detection of Systemic Diseases 
PLoS ONE  2013;8(4):e61356.
Background and Objective
Analysis of inflammatory biomarkers in saliva could offer an attractive opportunity for the diagnosis of different systemic conditions specifically in epidemiological surveys. The aim of this study was to investigate if certain salivary biomarkers could be used for detection of common systemic diseases.
Materials and Methods
A randomly selected sample of 1000 adults living in Skåne, a county in the southern part of Sweden, was invited to participate in a clinical study of oral health. 451 individuals were enrolled in this investigation, 51% women. All participants were asked to fill out a questionnaire, history was taken, a clinical examination was made and stimulated saliva samples were collected. Salivary concentrations of IL-1β, -6, -8, TNF-α, lysozyme, MMP-8 and TIMP-1 were determined using ELISA, IFMA or Luminex assays.
Salivary IL-8 concentration was found to be twice as high in subjects who had experience of tumour diseases. In addition, IL-8 levels were also elevated in patients with bowel disease. MMP-8 levels were elevated in saliva from patients after cardiac surgery or suffering from diabetes, and muscle and joint diseases. The levels of IL-1β, IL-8 and MMP-8, as well as the MMP-8/TIMP-1 ratio were higher in subjects with muscle and joint diseases.
Biomarkers in saliva have the potential to be used for screening purposes in epidemiological studies. The relatively unspecific inflammatory markers used in this study can not be used for diagnosis of specific diseases but can be seen as markers for increased systemic inflammation.
PMCID: PMC3634781  PMID: 23637817
20.  Protection against Mycobacterium ulcerans Lesion Development by Exposure to Aquatic Insect Saliva 
PLoS Medicine  2007;4(2):e64.
Buruli ulcer is a severe human skin disease caused by Mycobacterium ulcerans. This disease is primarily diagnosed in West Africa with increasing incidence. Antimycobacterial drug therapy is relatively effective during the preulcerative stage of the disease, but surgical excision of lesions with skin grafting is often the ultimate treatment. The mode of transmission of this Mycobacterium species remains a matter of debate, and relevant interventions to prevent this disease lack (i) the proper understanding of the M. ulcerans life history traits in its natural aquatic ecosystem and (ii) immune signatures that could be correlates of protection. We previously set up a laboratory ecosystem with predatory aquatic insects of the family Naucoridae and laboratory mice and showed that (i) M. ulcerans-carrying aquatic insects can transmit the mycobacterium through bites and (ii) that their salivary glands are the only tissues hosting replicative M. ulcerans. Further investigation in natural settings revealed that 5%–10% of these aquatic insects captured in endemic areas have M. ulcerans–loaded salivary glands. In search of novel epidemiological features we noticed that individuals working close to aquatic environments inhabited by insect predators were less prone to developing Buruli ulcers than their relatives. Thus we set out to investigate whether those individuals might display any immune signatures of exposure to M. ulcerans-free insect predator bites, and whether those could correlate with protection.
Methods and Findings
We took a two-pronged approach in this study, first investigating whether the insect bites are protective in a mouse model, and subsequently looking for possibly protective immune signatures in humans. We found that, in contrast to control BALB/c mice, BALB/c mice exposed to Naucoris aquatic insect bites or sensitized to Naucoris salivary gland homogenates (SGHs) displayed no lesion at the site of inoculation of M. ulcerans coated with Naucoris SGH components. Then using human serum samples collected in a Buruli ulcer–endemic area (in the Republic of Benin, West Africa), we assayed sera collected from either ulcer-free individuals or patients with Buruli ulcers for the titre of IgGs that bind to insect predator SGH, focusing on those molecules otherwise shown to be retained by M. ulcerans colonies. IgG titres were lower in the Buruli ulcer patient group than in the ulcer-free group.
These data will help structure future investigations in Buruli ulcer–endemic areas, providing a rationale for research into human immune signatures of exposure to predatory aquatic insects, with special attention to those insect saliva molecules that bind to M. ulcerans.
Saliva from aquatic insects in areas where Buruli ulcer is endemic can protect mice against the disease's characteristic skin lesion and might play a role in natural immunity in humans.
Editors' Summary
Buruli ulcer disease is a severe skin infection caused by Mycobacterium ulcerans, a bacterium related to those that cause tuberculosis and leprosy. This poorly understood disease affects people living near slow-flowing or standing water in poor rural communities in tropical and subtropical countries. How people become infected with M. ulcerans is unclear but one possibility is that infected aquatic insects transmit it through their bites. The first sign of infection is usually a small painless swelling in the skin. Bacteria inside these swellings produce a toxin that damages nearby soft tissues until eventually the skin sloughs off to leave a large open sore. This usually heals but the resultant scar can limit limb movement. Consequently, 25% of people affected by Buruli ulcers—most of whom are children—are permanently disabled. If the disease is caught early, powerful antibiotics can prevent ulcer formation. But most patients do not seek help until the later stages when the only treatment is to cut out the infection and do a skin graft, a costly and lengthy treatment.
Why Was This Study Done?
There is currently no effective way to prevent Buruli ulcers. To develop an effective preventative strategy, researchers need to determine exactly how the infection is transmitted to people and what makes some individuals resistant to infection. Previous studies have indicated that 5%–10% of some aquatic insect predators that live in areas where Buruli ulcers occur have M. ulcerans in their salivary glands and that aquatic insects carrying M. ulcerans can transmit it to mice through bites. Furthermore, people working close to water inhabited by insect predators are less likely to develop Buruli ulcers than their relatives who do not work near water. In this study, therefore, the researchers investigated whether exposure to noninfected insect saliva provides some protection against M. ulcerans infection.
What Did the Researchers Do and Find?
The researchers let uninfected aquatic insects bite ten mice several times before exposing these mice and ten unbitten mice to M. ulcerans-infected water bugs. Only one pre-bitten mouse developed an M. ulcerans-containing lesion compared with eight control mice. Next, the researchers injected mice with insect salivary gland extracts before challenging them with “naked” M. ulcerans or bacteria coated with salivary gland extract. Most uninjected mice developed lesions when challenged with coated or naked M. ulcerans, as did experimental mice challenged with naked M. ulcerans. However, most experimental mice challenged with coated M. ulcerans remained lesion-free. In both experiments, the blood of the pre-bitten and extract-treated mice (but not the control mice) contained antibodies (immune system proteins that provide protection against infections and foreign proteins) to proteins in insect salivary gland extracts that stick to M. ulcerans. Finally, the researchers measured the blood concentration (the titer) of antibodies that bind insect salivary gland proteins in patients with Buruli ulcer and in healthy people living in the same area. People with high titers of these antibodies, they report, were less likely to have Buruli ulcers than those with low titers.
What Do These Findings Mean?
These findings suggest that exposure to aquatic insect saliva may provide some protection against M. ulcerans lesion development. However, the current results have several limitations. In particular they will only be relevant to human disease if M. ulcerans is normally transmitted by insect bites, and this has not been proven yet. Also, because the human study did not measure the overall immune status of the study participants, the people with Buruli ulcers may have had a general immune deficit rather than simply lacking antibodies against insect salivary gland proteins. However, if the human findings can be repeated and expanded, they suggest that low antibody titers to salivary gland proteins might identify those people who are most susceptible to M ulcerans infections and who would thus benefit most from regular tests for early signs of the disease. Finally, further work on the immune mechanism by which exposure to insect salivary gland proteins protects against M. ulcerans infections may help in the development of vaccines against Buruli ulcer disease.
Additional Information.
Please access these Web sites via the online version of this summary at
A related PLoS Medicine Perspective article by Manuel T. Silva and others discusses this study and others on insect-borne parasitic diseases
World Health Organization has information on Buruli ulcer disease
US Centers for Disease Control and Prevention has information on Buruli ulcer
The US Armed Forces Institute of Pathology Web site contains pages on Buruli ulcer
Leprosy Relief Emmaus Switzerland offers information on Buruli ulcer
Wikipedia contains pages on Buruli ulcer (note: Wikipedia is an online encyclopedia that anyone can edit)
PLoS Medicine has a detailed review article on Buruli ulcer by Paul D. R. Johnson and colleagues
PMCID: PMC1808094  PMID: 17326707
21.  Reduction of Melatonin Level in Patients with Type II Diabetes and Periodontal Diseases 
Background and aims. Melatonin is a circulating hormone that is mainly released from the pineal gland. It possesses antioxidant, free-radical scavenging, and immune-enhancing properties. A growing number of studies reveal a complex role for melatonin in influencing various diseases, including diabetes and periodontal diseases. The aim of this study was to examine the possible links between salivary melatonin levels and type II diabetes and periodontal diseases.
Materials and methods. A total of 30 type II diabetic patients, 30 patients with periodontal diseases, 30 type II diabetic patients with periodontal disease and 30 age- and BMI-matched controls were studied. The periodontal status was evaluated by the Community Periodontal Index (CPI). Salivary melatonin levels were determined by a commercial enzyme-linked immunosorbent assay (ELISA) kit.
Results. The mean of salivary melatonin level was significantly lower in patients with either periodontitis or diabetes compared to healthy subjects (P < 0.05). Salivary melatonin concentration decreased in type II diabetic patients and periodontitis patients, and then decreased reaching the lowest levels in type II diabetic patients with periodontal disease.
Conclusion. Based on the results of this study, it can probably be concluded that salivary level of melatonin has an important role in the pathogenesis of diabetes and periodontal diseases. It is also worth noting that this factor could probably be used as a pivotal biological marker in the diagnosis and possible treatment of these diseases, although further research is required to validate this hypothesis.
PMCID: PMC4206758  PMID: 25346835
Iran; melatonin; periodontal disease; saliva; type II diabetes
22.  Defining Salivary Biomarkers Using Mass Spectrometry-Based Proteomics: A Systematic Review 
Recent advancements in mass spectrometric proteomics provide a promising result in utilizing saliva to explore biomarkers for diagnostic purposes. However, the issues of specificity or redundancy of disease-associated salivary biomarkers have not been described. This systematic review was therefore aimed to define and summarize disease-related salivary biomarkers identified by mass spectrometry proteomics. Peer-reviewed articles published through July 2009 within three databases were reviewed. Out of 243 articles, 21 studies were selected in this systematic review with conditions including Sjögren's syndrome, squamous cell carcinoma, dental caries, diabetes, breast cancer, periodontitis, gastric cancer, systemic sclerosis, oral lichen planus, bleeding oral cavity, and graft-versus-host disease. The sample size ranged from 3–41 in both diseased and control subjects, with no consensus on sample collection protocol. One hundred eighty biomarkers were identified in total; 87 upregulated, 63 downregulated, and 30 varying based on disease. Except for Sjögren's syndrome, the majority of studies with the same disease produce inconsistent biomarkers. Larger sample size and standardization of sample collection/treatment protocol may improve future studies.
PMCID: PMC3125555  PMID: 21568728
23.  Chromogranin A: Novel biomarker between periodontal disease and psychosocial stress 
The psychosocial stress has long been regarded as a significant pre-disposing factor for periodontal disease. The association between the periodontal disease and the neuroendocrine hormones has been observed. Chromogranin A (CgA) is supposed to link the activity of the neuroendocrine system to local and systemic immune functions and to be related to periodontitis.
The aim of this study was to determine the CgA levels in saliva and plasma in periodontal health and disease and to assess their potential relationship to periodontitis.
Settings and Designs:
In this case-control study, the association between periodontal disease and stress marker has been assessed.
Materials and Methods:
Sixty subjects were chosen for this study: With case group comprising of 30 subjects with chronic periodontitis and control group comprising of 30 healthy subjects. Salivary and plasma CgA levels were determined by ELISA technique. Clinical parameters included were plaque index, papillary bleeding index and clinical attachment loss and probing depth. Correlation analysis was calculated by independent sample t-test.
Significantly higher CgA levels were found in saliva and plasma of patients with chronic periodontitis compared with healthy individuals (P < 0.05). No significant difference were observed between salivary and plasma CgA levels.
The elevated level CgA in the plasma and saliva of subjects with stress induced chronic periodontitis has yielded insights into biological plausible association between the psychosocial stress and chronic periodontitis. Thus, our results suggest that CgA is a useful biomarker for evaluating at least in part the etiopathogenesis of periodontitis.
PMCID: PMC3713754  PMID: 23869129
Biomarkers; chromogranin A; chronic periodontitis; neuroendocrine hormones; plasma; psychosocial stress; saliva
24.  Microfluidic opportunities in the field of nutrition 
Lab on a chip  2013;13(20):10.1039/c3lc90090h.
Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition.
PMCID: PMC3875330  PMID: 24056522
25.  Comparison of the Salivary and the Serum Nitric Oxide Levels in Chronic and Aggressive Periodontitis: A Biochemical Study 
Background and Objectives: Nitric oxide (NO) is a ubiquitous intercellular messenger molecule with important cardiovascular, neurological, and immune functions. In addition, it has been postulated that the pharmacological inhibition of NO or its actions may be therapeutically valuable in the disease management. The levels of nitric oxide may provide clues about the severity and the state of the underlying disease process. It could be an inflammatory biomarker that may enable clinicians to direct the environmentally based prevention or treatment programmes and to establish whether NO plays a role in the pathogenesis of periodontitis or not. Hence, the aim of the present study was to evaluate the salivary and the serum levels of NO in generalized chronic and aggressive periodontitis.
The Study Design: Unstimulated whole saliva and serum samples were collected from a total of 60 subjects who were in the age group of 18-45 years, who participated in this study. They were divided into three equal groups with 20 subjects in each group; group A (healthy controls), group B (chronic periodontitis) and group C (aggressive periodontitis). The clinical parameters were assessed, based on the oral hygiene index simplified (OHI-S), the gingival index (GI), the probing pocket depth and the clinical attachment loss (CAL). A biochemical analysis was performed to evaluate and compare the salivary and the serum nitric oxide levels of the above groups.
Statistical Analysis and Results: The statistical comparisons were done under the Griess Reaction. There were statistically significant salivary and serum levels of NO in the groups of periodontitis (group B and C) as compared to those in the healthy controls (group A). A significant positive correlation was found between the values of the salivary and the serum NO levels in chronic and aggressive periodontitis.
Conclusion: Nitric oxide is a potent modulator of the inflammatory disease processes and under pathological conditions, NO has damaging effects. As there is a paucity in the studies which have compared chronic and aggressive periodontitis, this study paved an interest for combining the serum and the salivary analysis in comparing the levels of nitric oxide in chronic and aggressive periodontitis.
PMCID: PMC3708241  PMID: 23905146
Nitric oxide (NO); Chronic Periodontitis; Aggressive Periodontitis; Saliva; Serum

Results 1-25 (1022524)