PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (867689)

Clipboard (0)
None

Related Articles

1.  Harmine, A Natural Beta-Carboline Alkaloid, Upregulates Astroglial Glutamate Transporter Expression 
Neuropharmacology  2010;60(7-8):1168-1175.
Glutamate is the predominant excitatory amino acid neurotransmitter in the mammalian central nervous system (CNS). Glutamate transporter EAAT2 /GLT-1 is the physiologically dominant astroglial protein that inactivates synaptic glutamate. Previous studies have shown that EAAT2 dysfunction leads to excessive extracellular glutamate and may contribute to various neurological disorders including amyotrophic lateral sclerosis (ALS). The recent discovery of the neuroprotective properties of ceftriaxone, a beta lactam antibiotic, suggested that increasing EAAT2 /GLT-1 gene expression might be beneficial in ALS and other neurological/psychiatric disorders by augmenting astrocytic glutamate uptake. Here we report our efforts to develop a new screening assay for identifying compounds that activate EAAT2 gene expression. We generated fetal derived-human immortalized astroglial cells that are stably expressing a firefly luciferase reporter under the control of the human EAAT2 promoter. When screening a library of 1040 FDA approved compounds and natural products, we identified harmine, a naturally occurring beta-carboline alkaloid, as one of the top hits for activating the EAAT2 promoter. We further tested harmine in our in vitro cell culture systems and confirmed its ability to increase EAAT2/GLT1 gene expression and functional glutamate uptake activity. We next tested its efficacy in both wild type animals and in an ALS animal model of disease and demonstrated that harmine effectively increased GLT-1 protein and glutamate transporter activity in vivo. Our studies provide potential novel neurotherapeutics by modulating the activity of glutamate transporters via gene activation.
doi:10.1016/j.neuropharm.2010.10.016
PMCID: PMC3220934  PMID: 21034752
harmine; GLT-1; EAAT2; glutamate transporter; astroglia; ALS
2.  Klotho Sensitivity of the Neuronal Excitatory Amino Acid Transporters EAAT3 and EAAT4 
PLoS ONE  2013;8(7):e70988.
Klotho, a transmembrane protein, which can be cleaved off as β-glucuronidase and hormone, is released in both, kidney and choroid plexus and encountered in blood and cerebrospinal fluid. Klotho deficiency leads to early appearance of age-related disorders and premature death. Klotho may modify transport by inhibiting 1,25(OH)2D3 formation or by directly affecting channel and carrier proteins. The present study explored whether Klotho influences the activity of the Na+-coupled excitatory amino acid transporters EAAT3 and EAAT4, which are expressed in kidney (EAAT3), intestine (EAAT3) and brain (EAAT3 and EAAT4). To this end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho. EAAT expressing Xenopus oocytes were further treated with recombinant human β-Klotho protein with or without β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL). Electrogenic excitatory amino acid transport was determined as L-glutamate-induced current (Iglu) in two electrode voltage clamp experiments. EAAT3 and EAAT4 protein abundance in the Xenopus oocyte cell membrane was visualized by confocal microscopy and quantified utilizing chemiluminescence. As a result, coexpression of Klotho cRNA significantly increased Iglu in both, EAAT3 or EAAT4-expressing Xenopus oocytes. Klotho cRNA coexpression significantly increased the maximal current and cell membrane protein abundance of both EAAT3 and EAAT4. The effect of Klotho coexpression on EAAT3 and EAAT4 activity was mimicked by treating EAAT3 or EAAT4-expressing Xenopus oocytes with recombinant human β-Klotho protein. The effects of Klotho coexpression and of treatment with recombinant human β-Klotho protein were both abrogated in the presence of DSAL (10 µM). In conclusion, Klotho is a novel, powerful regulator of the excitatory amino acid transporters EAAT3 and EAAT4.
doi:10.1371/journal.pone.0070988
PMCID: PMC3726597  PMID: 23923038
3.  Identification of Translational Activators of Glial Glutamate Transporter EAAT2 through Cell-Based High-Throughput Screening: An Approach to Prevent Excitotoxicity 
Journal of biomolecular screening  2010;15(6):653-662.
Excitotoxicity has been implicated as the mechanism of neuronal damage resulting from acute insults such as stroke, epilepsy, and trauma, as well as during the progression of adult-onset neurodegenerative disorders such as Alzheimer’s disease and amyotrophic lateral sclerosis (ALS). Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. One potential approach to protect against excitotoxic neuronal damage is enhanced glutamate reuptake. The glial glutamate transporter EAAT2 is the quantitatively dominant glutamate transporter and plays a major role in clearance of glutamate. Expression of EAAT2 protein is highly regulated at the translational level. In an effort to identify compounds that can induce translation of EAAT2 transcripts, a cell-based enzyme-linked immunosorbent assay was developed using a primary astrocyte line stably transfected with a vector designed to identify modulators of EAAT2 translation. This assay was optimized for high-throughput screening, and a library of approximately 140,000 compounds was tested. In the initial screen, 293 compounds were identified as hits. These 293 hits were retested at 3 concentrations, and a total of 61 compounds showed a dose-dependent increase in EAAT2 protein levels. Selected compounds were tested in full 12-point dose-response experiments in the screening assay to assess potency as well as confirmed by Western blot, immunohistochemistry, and glutamate uptake assays to evaluate the localization and function of the elevated EAAT2 protein. These hits provide excellent starting points for developing therapeutic agents to prevent excitotoxicity.
doi:10.1177/1087057110370998
PMCID: PMC3016154  PMID: 20508255
excitotoxicity; glutamate transporter; EAAT2; high-throughput screen; neurodegeneration
4.  Expression of EAAT2 in Neurons and Protoplasmic Astrocytes during Human Cortical Development 
The Journal of comparative neurology  2012;520(17):3912-3932.
The major regulators of synaptic glutamate in the cerebral cortex are the excitatory amino acid transporters 1–3 (EAAT1–3). In this study, we determined the cellular and temporal expression of EAAT1–3 in the developing human cerebral cortex. We applied single- and double-label immunocytochemistry to normative frontal or parietal (associative) cortex samples from 14 cases ranging in age from 23 gestational weeks to 2.5 postnatal years. The most striking finding was the transient expression of EAAT2 in layer V pyramidal neuronal cell bodies up until 8 postnatal months prior to its expression in protoplasmic astrocytes at 41 postconceptional weeks onward. EAAT2 was also expressed in neurons in layer I (presumed Cajal-Retzius cells), and white matter (interstitial) neurons. This expression in neurons in the developing human cortex contrasts with findings by others of transient expression exclusively in axon tracts in the developing sheep and rodent brain. With western blotting, we found that EAAT2 was expressed as a single band until two postnatal months after which it was expressed as two bands. The expression of EAAT2 in pyramidal neurons during human brain development may contribute to cortical vulnerability to excitotoxicity during the critical period for perinatal hypoxic-ischemic encephalopathy. In addition, by studying the expression of EAAT1 and EAAT2 glutamate transporters it was possible to document the development of protoplasmic astrocytes.
doi:10.1002/cne.23130
PMCID: PMC3781602  PMID: 22522966
Cajal-Retzius cell; ischemia; periventricular leukomalacia; prematurity; pyramidal; subplate; cerebral palsy
5.  Glutamate transporter type 3 knockout mice have a decreased isoflurane requirement to induce loss of righting reflex 
Neuroscience  2010;171(3):788-793.
Excitatory amino acid transporters (EAAT) uptake extracellular glutamate, the major excitatory neurotransmitter in the brain. EAAT type 3 (EAAT3), the main neuronal EAAT, is expressed widely in the central nervous system. We have shown that the volatile anesthetic isoflurane increases EAAT3 activity and trafficking to the plasma membrane. Thus, we hypothesize that EAAT3 mediates isoflurane-induced anesthesia. To test this hypothesis, the potency of isoflurane to induce immobility and hypnosis, two major components of general anesthesia, was compared in the CD-1 wild-type mice and EAAT knockout mice that had a CD-1 strain gene background. Hypnosis was assessed by loss of righting reflex in this study. The expression of EAAT1 and EAAT2, two widely expressed EAATs in the central nervous system, in the cerebral cortex and spinal cord was not different between the EAAT3 knockout mice and wild-type mice. The concentration required for isoflurane to cause immobility to painful stimuli, a response involving primarily reflex loops in the spinal cord, was not changed by EAAT3 knockout. However, the EAAT3 knockout mice were more sensitive to isoflurane-induced hypnotic effects, which may be mediated by hypothalamic sleep neural circuits. Interestingly, the EAAT3 knockout mice did not have an altered sensitivity to the hypnotic effects caused by ketamine, an intravenous anesthetic that is a glutamate receptor antagonist and does not affect EAAT3 activity. These results suggest that EAAT3 modulates the sensitivity of neural circuits to isoflurane. These results, along with our previous findings that isoflurane increases EAAT3 activity, indicate that EAAT3 may regulate isoflurane-induced behavioral changes, including anesthesia.
doi:10.1016/j.neuroscience.2010.09.044
PMCID: PMC3401886  PMID: 20875840
anesthesia; glutamate transporter; gene expression; hypnosis; isoflurane
6.  A β-Lactam Antibiotic Dampens Excitotoxic Inflammatory CNS Damage in a Mouse Model of Multiple Sclerosis 
PLoS ONE  2008;3(9):e3149.
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis.
doi:10.1371/journal.pone.0003149
PMCID: PMC2522272  PMID: 18773080
7.  Abnormal Expression of Glutamate Transporter and Transporter Interacting Molecules in Prefrontal Cortex in Elderly Patients with Schizophrenia 
Schizophrenia research  2008;104(1-3):108-120.
Glutamate cycling is critically important for neurotransmission, and may be altered in schizophrenia. The excitatory amino acid transporters (EAATs) facilitate the reuptake of glutamate from the synaptic cleft and have a key role in glutamate cycling. We hypothesized that expression of the EAATs and the EAAT regulating proteins ARHGEF11, JWA, G protein suppressor pathway 1 (GPS1), and KIAA0302 are altered in the brain in schizophrenia. To test this, we measured expression of EAAT1, EAAT2, EAAT3, and EAAT interacting proteins in postmortem tissue from the dorsolateral prefrontal and anterior cingulate cortex of patients with schizophrenia and a comparison group using in situ hybridization and Western blot analysis. We found increased EAAT1 transcripts and decreased protein expression, increased EAAT3 transcripts and protein, and elevated protein expression of both GPS1 and KIAA0302 protein. We did not find any changes in expression of EAAT2. These data indicate that proteins involved in glutamate reuptake and cycling are altered in the cortex in schizophrenia, and may provide potential targets for future treatment strategies.
doi:10.1016/j.schres.2008.06.012
PMCID: PMC2656372  PMID: 18678470
GPS1; anterior cingulate cortex; dorsolateral prefrontal cortex; postmortem; Western blot; in situ hybridization
8.  Striatal Adenosine Signaling Regulates EAAT2 and Astrocytic AQP4 Expression and Alcohol Drinking in Mice 
Neuropsychopharmacology  2012;38(3):437-445.
Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.
doi:10.1038/npp.2012.198
PMCID: PMC3547194  PMID: 23032072
ENT1; astrocytes; aquaporin 4; EAAT2; Alcoholism; ceftriaxone; ENT1; Astrocytes; Aquaporin 4; EAAT2; Alcoholism; Ceftriaxone
9.  ENT1 Regulates Ethanol-Sensitive EAAT2 Expression and Function in Astrocytes 
Background
Equilibrative nucleoside transporter 1 (ENT1) and excitatory amino acid transporter 2 (EAAT2) are predominantly expressed in astrocytes where they are thought to regulate synaptic adenosine and glutamate levels. Because mice lacking ENT1 display increased glutamate levels in the ventral striatum, we investigated whether ENT1 regulates the expression and function of EAAT2 in astrocytes, which could contribute to altered glutamate levels in the striatum.
Methods
We examined the effect of ENT1 inhibition and overexpression on the expression of EAAT2 using quantitative real-time PCR and measured glutamate uptake activity in cultured astrocytes. We also examined the effect of 0 to 200 mM ethanol doses for 0 to 24 hours of ethanol exposure on EAAT2 expression and glutamate uptake activity. We further examined the effect of ENT1 knockdown by a specific siRNA on ethanol-induced EAAT2 expression.
Results
An ENT1-specific antagonist and siRNA treatments significantly reduced both EAAT2 expression and glutamate uptake activity while ENT1 overexpression up-regulated EAAT2 mRNA expression. Interestingly, 100 or 200 mM ethanol exposure increased EAAT2 mRNA expression as well as glutamate uptake activity. Moreover, we found that ENT1 knockdown inhibited the ethanol-induced EAAT2 up-regulation.
Conclusions
Our results suggest that ENT1 regulates glutamate uptake activity by altering EAAT2 expression and function, which might be implicated in ethanol intoxication and preference.
doi:10.1111/j.1530-0277.2010.01187.x
PMCID: PMC2913860  PMID: 20374202
Excitatory Amino Acid Transporter 2 (EAAT2); Equilibrative Nucleoside Transporter 1 (ENT1); Glutamate Uptake; Adenosine Uptake
10.  Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation 
Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release.
doi:10.3389/fncel.2013.00251
PMCID: PMC3857901  PMID: 24368897
glutamate transporters; extracellular microvesicles; astrocyte; glia; protein kinase C; nerve injury; spinal cord
11.  Impaired RNA splicing of 5'-regulatory sequences of the astroglial glutamate transporter EAAT2 in human astrocytoma 
A loss of the glutamate transporter EAAT2 has been reported in the neoplastic transformation of astrocytic cells and astrocytoma. The RNA expression of EAAT2 and five 5'-regulatory splice variants was investigated to identify alterations of the post-transcriptional EAAT2 gene regulation in human astrocytic tumours.
Three known (EAAT2, HBGTII, and HBGTIIC) and two novel (EAAT2/3 and EAAT2/31) EAAT2 transcripts originating from alternative splicing of 5'-regulatory sequences were subject to an RNA expression analysis using reverse transcription and competitive PCR. Specimens of astrocytoma World Health Organisation (WHO) grade I-IV in 14patients and control brain tissue obtained from three normal persons were studied.
The main EAAT2 RNA was found to be equally expressed in normal human brain and astrocytic tumour samples. By contrast, the expression pattern of four 5'-variants of the transporter transcript was altered in the investigated series of astrocytoma compared with normal brain. HBGTII, HBGTIIC, and EAAT2/3 were amplified from seven and four tumours and one sample, respectively. EAAT2/31 was expressed in none of the tumour specimens studied.
In conclusion, in astrocytic tumours of different histopathological grades there was a substantial reduction of RNA splicing events in EAAT2. The impairment of EAAT2 splicing indicates an altered expression which is not primarily involved in the tumorigenesis but may contribute to some biological properties of astrocytoma such as oedema, necrosis, and tumour related seizures.


doi:10.1136/jnnp.71.5.675
PMCID: PMC1737593  PMID: 11606683
12.  GABA and Glutamate Transporters in Brain 
The mammalian genome contains four genes encoding GABA transporters (GAT1, slc6a1; GAT2, slc6a13; GAT3, slc6a11; BGT1, slc6a12) and five glutamate transporter genes (EAAT1, slc1a3; EAAT2, slc1a2; EAAT3, slc1a1; EAAT4, slc1a6; EAAT5, slc1a7). These transporters keep the extracellular levels of GABA and excitatory amino acids low and provide amino acids for metabolic purposes. The various transporters have different properties both with respect to their transport functions and with respect to their ability to act as ion channels. Further, they are differentially regulated. To understand the physiological roles of the individual transporter subtypes, it is necessary to obtain information on their distributions and expression levels. Quantitative data are important as the functional capacity is limited by the number of transporter molecules. The most important and most abundant transporters for removal of transmitter glutamate in the brain are EAAT2 (GLT-1) and EAAT1 (GLAST), while GAT1 and GAT3 are the major GABA transporters in the brain. EAAT3 (EAAC1) does not appear to play a role in signal transduction, but plays other roles. Due to their high uncoupled anion conductance, EAAT4 and EAAT5 seem to be acting more like inhibitory glutamate receptors than as glutamate transporters. GAT2 and BGT1 are primarily expressed in the liver and kidney, but are also found in the leptomeninges, while the levels in brain tissue proper are too low to have any impact on GABA removal, at least in normal young adult mice. The present review will provide summary of what is currently known and will also discuss some methodological pitfalls.
doi:10.3389/fendo.2013.00165
PMCID: PMC3822327  PMID: 24273530
GABA uptake; glutamate uptake; BGT1; GAT1; GAT3; GAT2; EAAT2; EAAT1
13.  Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases 
Future medicinal chemistry  2012;4(13):1689-1700.
Glutamate is the primary excitatory amino acid neurotransmitter in the CNS. The concentration of glutamate in the synaptic cleft is tightly controlled by interplay between glutamate release and glutamate clearance. Abnormal glutamate release and/or dysfunction of glutamate clearance can cause overstimulation of glutamate receptors and result in neuronal injury known as excitotoxicity. The glial glutamate transporter EAAT2 plays a major role in glutamate clearance. Dysfunction or reduced expression of EAAT2 has been documented in many neurodegenerative diseases. In addition, many studies in animal models of disease indicate that increased EAAT2 expression provides neuronal protection. Here, we summarize these studies and suggest that EAAT2 is a potential target for the prevention of excitotoxicity. EAAT2 can be upregulated by transcriptional or translational activation. We discuss current progress in the search for EAAT2 activators, which is a promising direction for the treatment of neurodegenerative diseases.
doi:10.4155/fmc.12.122
PMCID: PMC3580837  PMID: 22924507
14.  Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity 
Cancer research  2011;71(20):6514-6523.
Aggressive tumor growth, diffuse tissue invasion and neurodegeneration are hallmarks of malignant glioma. Although glutamate excitotoxicity is considered to play a key role in glioma-induced neurodegeneration, the mechanism(s) controlling this process is poorly understood. AEG-1 is an oncogene overexpressed in multiple types of human cancers including >90% of brain tumors. AEG-1 also promotes gliomagenesis particularly in the context of tumor growth and invasion, two primary characteristics of glioma. In the present study, we investigated the contribution of AEG-1 to glioma-induced neurodegeneration. Pearson correlation coefficient analysis in normal brain tissues and glioma patient samples indicated a strong negative correlation between expression of AEG-1 and a primary glutamate transporter of astrocytes EAAT2. Gain and loss of function studies in normal primary human fetal astrocytes and T98G glioblastoma multiforme cells revealed that AEG-1 repressed EAAT2 expression at a transcriptional level by inducing YY1 activity to inhibit CBP function as a coactivator on the EAAT2 promoter. In addition, AEG-1-mediated EAAT2 repression caused a reduction of glutamate uptake by glial cells, resulting in induction of neuronal cell death. These findings were also confirmed in glioma patient samples demonstrating that AEG-1 expression negatively correlated with NeuN expression. Taken together, our findings suggest that AEG-1 contributes to glioma-induced neurodegeneration, a hallmark of this fatal tumor, through regulation of EAAT2 expression.
doi:10.1158/0008-5472.CAN-11-0782
PMCID: PMC3193553  PMID: 21852380
AEG-1; glioma; EAAT2; glutamate; glioma-induced neurodegeneration
15.  Amitriptyline inhibits the activity of the rat glutamate transporter EAAT3 expressed in Xenopus oocytes1 
A growing body of evidence suggests that glutamatergic systems may be involved in the pathophysiology of major depression and the mechanism of action of antidepressants. We investigated the effects of amitriptyline, a tricyclic antidepressant, on the activity of excitatory amino acid transporter type 3 (EAAT3), proteins that can regulate extracellular glutamate concentrations in the brain. EAAT3 was expressed in the Xenopus oocytes. Using two-electrode voltage clamp, membrane currents were recorded after application of 30 µM L-glutamate in the presence or absence of various concentrations of amitriptyline or after application of various concentrations of L-glutamate in the presence or absence of 0.64 µM amitriptyline. Amitriptyline concentration-dependently reduced EAAT3 activity. This inhibition reached statistical significance at 0.38 – 1.27 µM amitriptyline. Amitriptyline at 0.64 µM reduced the Vmax, but did not affect the Km, of EAAT3 for L-glutamate. The amitriptyline inhibition disappeared after a 4-min washout. Phorbol-12-myrisate-13-acetate, a protein kinase C activator, increased EAAT3 activity. However, 0.64 µM amitriptyline induced a similar degree of decrease in EAAT3 activity in the presence or absence of phorbol-12-myrisate-13-acetate. Our results suggest that amitriptyline at clinically relevant concentrations reversibly reduces EAAT3 activity via decreasing its maximal velocity of glutamate transporting function. The effects of amitriptyline on EAAT3 activity may represent a novel site of action for amitriptyline to increase glutamatergic neurotransmission. Protein kinase C may not be involved in the effects of amitriptyline on EAAT3.
doi:10.1211/jpp/61.05.0005
PMCID: PMC2730111  PMID: 19405995
Amitriptyline; glutamate; glutamate transporters; protein kinase C
16.  Selective Over Expression Of EAAT2 In Astrocytes Enhances Neuroprotection From Moderate But Not Severe Hypoxia-Ischemia 
Neuroscience  2008;155(4):1204-1211.
Attempts have been made to elevate EAAT2 expression in effort to compensate for loss of function and expression associated with disease or pathology. Increased EAAT2 expression has been noted following treatment with β-lactam antibiotics, and during ischemic preconditioning (IPC). However, both of these conditions induce multiple changes in addition to alterations in EAAT2 expression that could potentially contribute to neuroprotection. Therefore, the aim of this study was to selectively overexpress EAAT2 in astrocytes and characterize the cell type specific contribution of this transporter to neuroprotection. To accomplish this we used a recombinant Adeno-associated virus vector, AAV1-GFAP-EAAT2, designed to selectively drive the overexpression of EAAT2 within astrocytes. Both viral mediated gene delivery and β-lactam antibiotic (penicillin-G) treatment of rat hippocampal slice cultures resulted in a significant increase in both the expression of EAAT2, and dihydrokainate (DHK) sensitive glutamate uptake. Penicillin-G provided significant neuroprotection in rat hippocampal slice cultures under conditions of both moderate and severe oxygen glucose deprivation (OGD). In contrast, the overexpression of EAAT2 in astrocytes provided enhanced neuroprotection only following a moderate OGD insult. These results indicate that functional EAAT2 can be selectively overexpressed in astrocytes, leading to enhanced neuroprotection. However, this cell type specific-increase in EAAT2 expression offers only limited protection compared to treatment with penicillin-G.
doi:10.1016/j.neuroscience.2008.05.059
PMCID: PMC2729515  PMID: 18620031
17.  Nuclear Factor Erythroid 2-Related Factor 2 Facilitates Neuronal Glutathione Synthesis by Upregulating Neuronal Excitatory Amino Acid Transporter 3 Expression 
The Journal of Neuroscience  2011;31(20):7392-7401.
Astrocytes support neuronal antioxidant capacity by releasing glutathione, which is cleaved to cysteine in brain extracellular space. Free cysteine is then taken up by neurons through excitatory amino acid transporter 3 [EAAT3; also termed Slc1a1 (solute carrier family 1 member 1)] to support de novo glutathione synthesis. Activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) pathway by oxidative stress promotes astrocyte release of glutathione, but it remains unknown how this release is coupled to neuronal glutathione synthesis. Here we evaluated transcriptional regulation of the neuronal cysteine transporter EAAT3 by the Nrf2-ARE pathway. Nrf2 activators and Nrf2 overexpression both produced EAAT3 transcriptional activation in C6 cells. A conserved ARE-related sequence was found in the EAAT3 promoter of several mammalian species. This ARE-related sequence was bound by Nrf2 in mouse neurons in vivo as observed by chromatin immunoprecipitation. Chemical activation of the Nrf2-ARE pathway in mouse brain increased both neuronal EAAT3 levels and neuronal glutathione content, and these effects were abrogated in mice genetically deficient in either Nrf2 or EAAT3. Selective overexpression of Nrf2 in brain neurons by lentiviral gene transfer was sufficient to upregulate both neuronal EAAT3 protein and glutathione content. These findings identify a mechanism whereby Nrf2 activation can coordinate astrocyte glutathione release with neuronal glutathione synthesis through transcriptional upregulation of neuronal EAAT3 expression.
doi:10.1523/JNEUROSCI.6577-10.2011
PMCID: PMC3339848  PMID: 21593323
18.  Epigenetic Regulation of Neuron-Dependent Induction of Astroglial Synaptic Protein GLT1 
Glia  2010;58(3):277-286.
Astroglial glutamate transporter EAAT2/GLT1 prevents glutamate-induced excitotoxicity in the central nervous system. Expression of EAAT2/GLT1 is dynamically regulated by neurons. The pathogenesis of amyotrophic lateral sclerosis (ALS) involves astroglial dysfunction, including dramatic loss of EAAT2/GLT1. DNA methylation of gene promoters represents one of the most important epigenetic mechanisms in regulating gene expression. The involvement of DNA methylation in the regulation of astroglial EAAT2/GLT1 expression in different conditions, especially in ALS has not been explored. In this study, we established a procedure to selectively isolate a pure astrocyte population in vitro and in vivo from BAC GLT1 eGFP mice using an eGFP-based fluorescence-activated cell sorting approach. Astrocytes isolated from this procedure are GFAP+ and GLT1+ and respond to neuronal stimulation, enabling direct methylation analysis of GLT1 promoter in these astrocytes. To investigate the role of DNA methylation in physiological and pathological EAAT2/GLT1 expression, methylation status of the EAAT2/GLT1 promoter was analyzed in astrocytes from in vitro and in vivo paradigms or postmortem ALS motor cortex by bisulfite sequencing method. DNA demethylation on selective CpG sites of the GLT1 promoter was highly correlated to increased GLT1 mRNA levels in astrocytes in response to neuronal stimulation; however, low level of methylation was found on CpG sites of EAAT2 promoter from postmortem motor cortex of human amyotrophic lateral sclerosis patients. In summary, hypermethylation on selective CpG sites of the GLT1 promoter is involved in repression of GLT1 promoter activation, but this regulation does not play a role in astroglial dysfunction of EAAT2 expression in patients with ALS.
doi:10.1002/glia.20922
PMCID: PMC2794958  PMID: 19672971
epigenetic; astrocyte; GLT1
19.  The Role of Glutamate Transporters in Neurodegenerative Diseases and Potential Opportunities for Intervention 
Neurochemistry international  2007;51(6-7):333-355.
Extracellular concentrations of the predominant excitatory neurotransmitter, glutamate, and related excitatory amino acids are maintained at relatively low levels to ensure an appropriate signal-to-noise ratio and to prevent excessive activation of glutamate receptors that can result in cell death. The later phenomenon is known as ‘excitotoxicity’ and has been associated with a wide range of acute and chronic neurodegenerative disorders, as well as disorders that result in the loss of non-neural cells such as oligodendroglia in multiple sclerosis. Unfortunately clinical trials with glutamate receptor antagonists that would logically seem to prevent the effects of excessive receptor activation have been associated with untoward side effects or little clinical benefit. In the mammalian CNS, the extracellular concentrations of glutamate are controlled by two transporters; these include a family of Na+-dependent transporters and a cystine-glutamate exchange process, referred to as system Xc−. In this review, we will focus primarily on the Na+-dependent transporters. A brief introduction to glutamate as a neurotransmitter will be followed by an overview of the properties of these transporters, including a summary of the presumed physiologic mechanisms that regulate these transporters. Many studies have provided compelling evidence that impairing the function of these transporters can increase the sensitivity of tissue to deleterious effects of aberrant activation of glutamate receptors. Over the last decade, it has become clear that many neurodegenerative disorders are associated with a change in localization and/or expression of some of the subtypes of these transporters. This would suggest that therapies directed toward enhancing transporter expression might be beneficial. However, there is also evidence that glutamate transporters might increase the susceptibility of tissue to the consequences of insults that result in a collapse of the electrochemical gradients required for normal function such as stroke. In spite of the potential adverse effects of upregulation of glutamate transporters, there is recent evidence that up-regulation of one of the glutamate transporters, GLT-1 (also called EAAT2), with β-lactam antibiotics attenuates the damage observed in models of both acute and chronic neurodegenerative disorders. While it seems somewhat unlikely that antibiotics specifically target GLT-1 expression, these studies identify a potential strategy to limit excitotoxicity. If successful, this type of approach could have widespread utility given the large number of neurodegenerative diseases associated with decreases in transporter expression and excitotoxicity. However, given the massive effort directed at developing glutamate receptor agents during the 1990s and the relatively modest advances to date, one wonders if we will maintain the patience needed to carefully understand the glutamatergic system so that it will be successfully targeted in the future.
doi:10.1016/j.neuint.2007.03.012
PMCID: PMC2075474  PMID: 17517448
20.  Increased expression of cholesterol 24S-hydroxylase results in disruption of glial glutamate transporter EAAT2 association with lipid rafts: a potential role in Alzheimer’s disease 
Journal of neurochemistry  2010;113(4):978-989.
The glial glutamate transporter EAAT2 is the major mediator of glutamate clearance that terminates glutamate-mediated neurotransmission. Loss of EAAT2 and associated glutamate uptake function has been reported in the brains of patients with Alzheimer’s disease (AD). We previously reported that EAAT2 is associated with lipid raft microdomains of the plasma membrane. In the present study, we demonstrated that association of EAAT2 with lipid rafts is disrupted in AD brains. This abnormality is not a consequence of neuron degeneration, oxidative stress, or amyloid beta toxicity. In AD brains, cholesterol 24S-hydroxylase (CYP46), a key enzyme in maintenance of cholesterol homeostasis in the brain, is markedly increased in astrocytes but decreased in neurons. We demonstrated that increased expression of CYP46 in primary astrocytes results in a reduction of membrane cholesterol levels and leads to the dissociation of EAAT2 from lipid rafts and the loss of EAAT2 and associated glutamate uptake function. These results suggest that a disturbance of cholesterol metabolism may contribute to loss of EAAT2 in AD.
doi:10.1111/j.1471-4159.2010.06661.x
PMCID: PMC3010752  PMID: 20193040
glutamate transporter EAAT2; lipid raft microdomain; Alzheimer’s disease; cholesterol 24S-hydroxylase; excitotoxicity
21.  Pre-synaptic regulation of astroglial excitatory neurotransmitter transporter GLT1 
Neuron  2009;61(6):880-894.
SUMMARY
The neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia play a central role in the regulation of synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. The astroglial mechanisms underlying this essential neuron-glial communication are not known. Here we show that presynaptic terminals are sufficient and necessary for GLT1/EAAT2 transcriptional activation and have identified the molecular pathway that regulates astroglial responses to presynaptic input. Presynaptic terminals regulate astroglial GLT1/EAAT2 via kappa B-motif binding phosphoprotein (KBBP), the mouse homologue of human heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds to an essential element of GLT1/EAAT2 promoter. This neuron-stimulated factor is required for GLT1/EATT2 transcriptional activation and is responsible for astroglial alterations in neural injury. Denervation of neuron-astrocyte signaling in vivo, by acute corticospinal tract transection, ricin-induced motor neuron death, or chronic neurodegeneration in amyotrophic lateral sclerosis (ALS) all result in reduced astroglial KBBP expression and transcriptional dysfunction of astroglial transporter expression. Our studies indicate that presynaptic elements dynamically coordinate normal astroglial function and also provide a fundamental signaling mechanism by which altered neuronal function and injury leads to dysregulated astroglia in CNS disease.
doi:10.1016/j.neuron.2009.02.010
PMCID: PMC2743171  PMID: 19323997
22.  Glutamate Transporter EAAT2 Expression is Up-Regulated in Reactive Astrocytes in Human Periventricular Leukomalacia 
The major neuropathological correlate of cerebral palsy in premature infants is periventricular leukomalacia (PVL), a disorder of the immature cerebral white matter. Cerebral ischemia leading to excitotoxicity is thought to be important in the pathogenesis of this disorder, implying a critical role for glutamate transporters, the major determinants of extracellular glutamate concentration. Previously, we found that EAAT2 expression is limited primarily to premyelinating oligodendrocytes early in development and is rarely observed in astrocytes until >40 weeks. In this study, we analyzed the expression of EAAT2 in cerebral white matter from PVL and control cases. Western blot analysis suggested an up-regulation of EAAT2 in PVL compared with control cases. Single- and double-label immunocytochemistry showed a significantly higher percentage of EAAT2-immunopositive astrocytes in PVL (51.8% ± 5.6%) compared with control white matter (21.4% ± 5.6%; P = 0.004). Macrophages in the necrotic foci in PVL also expressed EAAT2. Premyelinating oligodendrocytes in both PVL and control cases expressed EAAT2, without qualitative difference in expression. The previously unrecognized up-regulation of EAAT2 in reactive astrocytes and its presence in macrophages in PVL reported here may reflect a response to either hypoxic-ischemic injury or inflammation.
doi:10.1002/cne.21667
PMCID: PMC2911955  PMID: 18314905
cerebral palsy; reactive astrocytes; inflammation; microglia; oligodendrocytes; prematurity
23.  The Glutamate Transporter Subtypes EAAT4 and EAATs 1-3 Transport Glutamate with Dramatically Different Kinetics and Voltage Dependence but Share a Common Uptake Mechanism 
The Journal of General Physiology  2005;126(6):571-589.
Here, we report the application of glutamate concentration jumps and voltage jumps to determine the kinetics of rapid reaction steps of excitatory amino acid transporter subtype 4 (EAAT4) with a 100-μs time resolution. EAAT4 was expressed in HEK293 cells, and the electrogenic transport and anion currents were measured using the patch-clamp method. At steady state, EAAT4 was activated by glutamate and Na+ with high affinities of 0.6 μM and 8.4 mM, respectively, and showed kinetics consistent with sequential binding of Na+-glutamate-Na+. The steady-state cycle time of EAAT4 was estimated to be >300 ms (at −90 mV). Applying step changes to the transmembrane potential, Vm, of EAAT4-expressing cells resulted in the generation of transient anion currents (decaying with a τ of ∼15 ms), indicating inhibition of steady-state EAAT4 activity at negative voltages (<−40 mV) and activation at positive Vm (>0 mV). A similar inhibitory effect at Vm < 0 mV was seen when the electrogenic glutamate transport current was monitored, resulting in a bell-shaped I-Vm curve. Jumping the glutamate concentration to 100 μM generated biphasic, saturable transient transport and anion currents (Km ∼ 5 μM) that decayed within 100 ms, indicating the existence of two separate electrogenic reaction steps. The fast electrogenic reaction was assigned to Na+ binding to EAAT4, whereas the second reaction is most likely associated with glutamate translocation. Together, these results suggest that glutamate uptake of EAAT4 is based on the same molecular mechanism as transport by the subtypes EAATs 1–3, but that its kinetics and voltage dependence are dramatically different from the other subtypes. EAAT4 kinetics appear to be optimized for high affinity binding of glutamate, but not rapid turnover. Therefore, we propose that EAAT4 is a high-affinity/low-capacity transport system, supplementing low-affinity/high-capacity synaptic glutamate uptake by the other subtypes.
doi:10.1085/jgp.200509365
PMCID: PMC2266596  PMID: 16316976
24.  Mislocalization of the exitatory amino-acid transporters (EAATs) in human astrocytoma and non-astrocytoma cancer cells: effect of the cell confluence 
Background
Astrocytomas are cancers of the brain in which high levels of extracellular glutamate plays a critical role in tumor growth and resistance to conventional treatments. This is due for part to a decrease in the activity of the glutamate transporters, i.e. the Excitatory Amino Acid Transporters or EAATs, in relation to their nuclear mislocalization in astrocytoma cells. Although non-astrocytoma cancers express EAATs, the localization of EAATs and the handling of L-glutamate in that case have not been investigated.
Methods
We looked at the cellular localization and activity of EAATs in human astrocytoma and non-astrocytoma cancer cells by immunofluorescence, cell fractionation and L-glutamate transport studies.
Results
We demonstrated that the nuclear mislocalization of EAATs was not restricted to astrocytoma and happened in all sub-confluent non-astrocytoma cancer cells we tested. In addition, we found that cell-cell contact caused the relocalization of EAATs from the nuclei to the plasma membrane in all human cancer cells tested, except astrocytoma.
Conclusions
Taken together, our results demonstrated that the mislocalization of the EAATs and its associated altered handling of glutamate are not restricted to astrocytomas but were also found in human non-astrocytoma cancers. Importantly, we found that a cell contact-dependent signal caused the relocalization of EAATs at the plasma membrane at least in human non-astrocytoma cancer cells, resulting in the correction of the altered transport of glutamate in such cancer cells but not in astrocytoma.
doi:10.1186/1423-0127-19-10
PMCID: PMC3293732  PMID: 22296701
Astrocytoma; Cancer; GLAST; GLT-1; Glutamate; EAAT; Mislocalization; STTG-1
25.  Regional Distribution of Sodium-Dependent Excitatory Amino Acid Transporters in Rat Spinal Cord 
Background/Objective:
The excitatory amino acid transporters (EAATs), or sodium-dependent glutamate transporters, provide the primary mechanism for glutamate removal from the synaptic cleft. EAAT distribution has been determined in the rat brain, but it is only partially characterized in the spinal cord.
Methods:
The regional anatomic distribution of EAATs in spinal cord was assessed by radioligand autoradiography throughout cervical, thoracic, and lumbar cord levels in female Sprague-Dawley rats. EAAT subtype regional distribution was evaluated by inclusion of pharmacologic transport inhibitors in the autoradiography assays and by immunohistochemistry using subtype-specific polyclonal antibodies to rat GLT1 (EAAT2), GLAST (EAAT1), and EAAC1 (EAAT3) rat transporter subtypes.
Results:
[3H]-D-Aspartate binding was distributed throughout gray matter at the 3 spinal cord levels, with negligible binding in white matter. Inclusion of pharmacologic transport inhibitors indicates that the EAAT2/GLT1 subtype represents 21% to 40% of binding. Both EAAT1/GLAST and EAAT3/EAAC1 contributed the remainder of binding. Immunoreactivity to subtype-specific antibodies varied, depending on cord level, and was present in both gray and white matter. All 3 subtypes displayed prominent immunoreactivity in the dorsal horn. EAAT3/EAAC1 and to a lesser extent EAAT1/GLAST immunoreactivity also occurred in a punctate pattern in the ventral horn.
Conclusions:
The results indicate heterogeneity of EAAT distribution among spinal cord levels and regions. The presence of these transporters throughout rat spinal cord suggests the importance of their contributions to spinal cord function.
PMCID: PMC2031954  PMID: 17684893
Spinal cord; Glutamate plasma membrane proteins; Autoradiography; Immunohistochemistry; Amino acid transporters, Excitatory

Results 1-25 (867689)