PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (980504)

Clipboard (0)
None

Related Articles

1.  Subjects harboring presenilin familial Alzheimer’s disease mutations exhibit diverse white matter biochemistry alterations 
Alzheimer’s disease (AD) dementia impacts all facets of higher order cognitive function and is characterized by the presence of distinctive pathological lesions in the gray matter (GM). The profound alterations in GM structure and function have fostered the view that AD impacts are primarily a consequence of GM damage. However, the white matter (WM) represents about 50% of the cerebrum and this area of the brain is substantially atrophied and profoundly abnormal in both sporadic AD (SAD) and familial AD (FAD). We examined the WM biochemistry by ELISA and Western blot analyses of key proteins in 10 FAD cases harboring mutations in the presenilin genes PSEN1 and PSEN2 as well as in 4 non-demented control (NDC) individuals and 4 subjects with SAD. The molecules examined were direct substrates of PSEN1 such as Notch-1 and amyloid precursor protein (APP). In addition, apolipoproteins, axonal transport molecules, cytoskeletal and structural proteins, neurotrophic factors and synaptic proteins were examined. PSEN-FAD subjects had, on average, higher amounts of WM amyloid-beta (Aβ) peptides compared to SAD, which may play a role in the devastating dysfunction of the brain. However, the PSEN-FAD mutations we examined did not produce uniform increases in the relative proportions of Aβ42 and exhibited substantial variability in total Aβ levels. These observations suggest that neurodegeneration and dementia do not depend solely on enhanced Aβ42 levels. Our data revealed additional complexities in PSEN-FAD individuals. Some direct substrates of γ-secretase, such as Notch, N-cadherin, Erb-B4 and APP, deviated substantially from the NDC group baseline for some, but not all, mutation types. Proteins that were not direct γ-secretase substrates, but play key structural and functional roles in the WM, likewise exhibited varied concentrations in the distinct PSEN mutation backgrounds. Detailing the diverse biochemical pathology spectrum of PSEN mutations may offer valuable insights into dementia progression and the design of effective therapeutic interventions for both SAD and FAD.
PMCID: PMC3783832  PMID: 24093083
Sporadic Alzheimer’s disease; familial Alzheimer’s disease; presenilin; γ-secretase; white matter; gray matter; amyloid precursor protein; amyloid-beta
2.  Evidence that the beta-catenin nuclear translocation assay allows for measuring presenilin 1 dysfunction. 
Molecular Medicine  2000;6(7):570-580.
BACKGROUND: Mutations in the presenilin (PSEN) genes are responsible for the majority of early-onset Alzheimer disease (AD) cases. PSEN1 is a component of a high molecular weight, endoplasmic reticulum, membrane-bound protein complex, including beta-catenin. Pathogenic PSEN1 mutations were demonstrated to have an effect on beta-catenin and glycogen synthase kinase-3beta(GSK-3beta), two members of the wingless Wnt pathway. The nuclear translocation and the stability of beta-catenin, and the interaction between GSK3beta and PSEN1 were influenced. MATERIALS AND METHODS: Stably transfected human embryonic kidney (HEK) 293 cells overexpressing wild-type (wt) and mutant (mt) PSEN1, treated with and without LiCl, were used to isolate cytoplasmic and nuclear fractions. By Western blot analysis, endogenous beta-catenin levels were examined. By analyzing cytosolic fractions of PSEN1, transfected and nontransfected HEK 293 cells, and total brain extracts of AD patients and controls, we evaluated the effect of PSEN1 overexpression on beta-catenin stability. Finally, we analyzed the effect of pathogenic PSEN1 mutations on the interaction between PSEN1 and GSK3beta by co-immunoprecipitation experiments. RESULTS: We report reduced nuclear translocation of beta-catenin in cells stably expressing I143T, G384A, and T113-114ins PSEN1. The G384A PSEN1 mutation showed a similar pronounced effect on nuclear translocation of beta-catenin, as reported for processing of amyloid precursor protein (APP) into amyloid beta(Abeta). Overexpression of PSEN1 and the presence of pathogenic mutations in PSEN1 had no significant effect on the stability of beta-catenin. Nonspecific binding of overexpressed PSEN1 to endogenous GSK3beta was observed when GSK3beta was immunoprecipitated. Immunoprecipitation of PSEN1 in cells overexpressing PSEN1 and in native cells, however, did not result in co-immunoprecipitation of endogenous GSK3beta. CONCLUSION: Our results further establish the nuclear translocation assay of beta-catenin as an adequate alternative for traditional Abeta measurement to evaluate the effect of PSEN1 mutations on biochemical processes. We detected no significant effect of overexpressed wt or mt PSEN1 on the stability of beta-catenin. Finally, co-immunoprecipitation between PSEN1 and GSK3beta was not observed in our experimental setup.
PMCID: PMC1949967  PMID: 10997338
3.  Presenilin-1 regulates induction of hypoxia inducible factor-1α: altered activation by a mutation associated with familial Alzheimer's disease 
Background
Mutations in presenilin-1 (Psen1) cause familial Alzheimer's disease (FAD). Both hypoxia and ischemia have been implicated in the pathological cascade that leads to amyloid deposition in AD. Here we investigated whether Psen1 might regulate hypoxic responses by modulating induction of the transcription factor hypoxia inducible factor 1-α (HIF-1α).
Results
In fibroblasts that lack Psen1 induction of HIF-1α was impaired in response to the hypoxia mimetic cobalt chloride, as well as was induction by insulin and calcium chelation. Reintroduction of human Psen1 using a lentiviral vector partially rescued the responsiveness of Psen1-/- fibroblasts to cobalt chloride induction. HIF-1α induction did not require Psen1's associated γ-secretase activity. In addition, the failure of insulin to induce HIF-1α was not explicable on the basis of failed activation of the phosphatidylinositol 3-kinase (PI3K/Akt) pathway which activated normally in Psen1-/- fibroblasts. Rather we found that basal levels of HIF-1α were lower in Psen1-/- fibroblasts and that the basis for lower constitutive levels of HIF-1α was best explained by accelerated HIF-1α degradation. We further found that Psen1 and HIF-1α physically interact suggesting that Psen1 may protect HIF-1α from degradation through the proteasome. In fibroblasts harboring the M146V Psen1 FAD mutation on a mouse Psen1 null background, metabolic induction of HIF-1α by insulin was impaired but not hypoxic induction by cobalt chloride. Unlike Psen1-/- fibroblasts, basal levels of HIF-1α were normal in FAD mutant fibroblasts but activation of the insulin-receptor pathway was impaired. Interestingly, in Psen1-/- primary neuronal cultures HIF-1α was induced normally in response to cobalt chloride but insulin induction of HIF-1α was impaired even though activation of the PI3K/Akt pathway by insulin proceeded normally in Psen1-/- neuronal cultures. Basal levels of HIF-1α were not significantly different in Psen1-/- neurons and HIF-1α levels were normal in Psen1-/- embryos.
Conclusions
Collectively these studies show that Psen1 regulates induction of HIF-1α although they indicate that cell type specific differences exist in the effect of Psen1 on induction. They also show that the M146V Psen1 FAD mutation impairs metabolic induction of HIF-1α, an observation that may have pathophysiological significance for AD.
doi:10.1186/1750-1326-5-38
PMCID: PMC2955646  PMID: 20863403
4.  The mechanism of γ-Secretase dysfunction in familial Alzheimer disease 
The EMBO Journal  2012;31(10):2261-2274.
The mechanism of γ-Secretase dysfunction in familial Alzheimer disease
Mutations in presenilin (PSEN) and amyloid precursor protein (APP) cause dominant early-onset Alzheimer's disease (AD), but the mechanism involved is debated. Here, such mutations are shown to alter γ-secretase activity, leading to changes in Aβ peptide cleavage patterns.
The mechanisms by which mutations in the presenilins (PSEN) or the amyloid precursor protein (APP) genes cause familial Alzheimer disease (FAD) are controversial. FAD mutations increase the release of amyloid β (Aβ)42 relative to Aβ40 by an unknown, possibly gain-of-toxic-function, mechanism. However, many PSEN mutations paradoxically impair γ-secretase and ‘loss-of-function' mechanisms have also been postulated. Here, we use kinetic studies to demonstrate that FAD mutations affect Aβ generation via three different mechanisms, resulting in qualitative changes in the Aβ profiles, which are not limited to Aβ42. Loss of ɛ-cleavage function is not generally observed among FAD mutants. On the other hand, γ-secretase inhibitors used in the clinic appear to block the initial ɛ-cleavage step, but unexpectedly affect more selectively Notch than APP processing, while modulators act as activators of the carboxypeptidase-like (γ) activity. Overall, we provide a coherent explanation for the effect of different FAD mutations, demonstrating the importance of qualitative rather than quantitative changes in the Aβ products, and suggest fundamental improvements for current drug development efforts.
doi:10.1038/emboj.2012.79
PMCID: PMC3364747  PMID: 22505025
Alzheimer; amyloid; FAD mutations; γ-secretase; presenilin
5.  Familial Alzheimer’s Disease Mutations in Presenilin 1 Do Not Alter Levels of the Secreted Amyloid-β Protein Precursor Generated by β-Secretase Cleavage 
Current Alzheimer Research  2010;7(1):21-26.
Alzheimer’s disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid β-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than ~80% of all FAD mutations. All PSEN1 FAD mutations can increase the Aβ42:Aβ40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of β-secretase-derived secreted form of APP (sAPPβ), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPβ levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPβ levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPβ.
PMCID: PMC3260056  PMID: 20205669
Alzheimer’s disease; FAD mutation; APP; PSEN1; N-APP; sAPPβ
6.  Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease 
Acta Neuropathologica  2012;125(2):201-213.
Autosomal-dominant Alzheimer disease (ADAD) is a genetic disorder caused by mutations in Amyloid Precursor Protein (APP) or Presenilin (PSEN) genes. Studies from families with ADAD have been critical to support the amyloid cascade hypothesis of Alzheimer disease (AD), the basis for the current development of amyloid-based disease-modifying therapies in sporadic AD (SAD). However, whether the pathological changes in APP processing in the CNS in ADAD are similar to those observed in SAD remains unclear. In this study, we measured β-site APP-cleaving enzyme (BACE) protein levels and activity, APP and APP C-terminal fragments in brain samples from subjects with ADAD carrying APP or PSEN1 mutations (n = 18), patients with SAD (n = 27) and age-matched controls (n = 22). We also measured sAPPβ and BACE protein levels, as well as BACE activity, in CSF from individuals carrying PSEN1 mutations (10 mutation carriers and 7 non-carrier controls), patients with SAD (n = 32) and age-matched controls (n = 11). We found that in the brain, the pattern in ADAD was characterized by an increase in APP β-C-terminal fragment (β-CTF) levels despite no changes in BACE protein levels or activity. In contrast, the pattern in SAD in the brain was mainly characterized by an increase in BACE levels and activity, with less APP β-CTF accumulation than ADAD. In the CSF, no differences were found between groups in BACE activity or expression or sAPPβ levels. Taken together, these data suggest that the physiopathological events underlying the chronic Aβ production/clearance imbalance in SAD and ADAD are different. These differences should be considered in the design of intervention trials in AD.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-012-1062-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-012-1062-9
PMCID: PMC3623032  PMID: 23224319
Amyloid precursor protein; Autosomal-dominant Alzheimer disease; β-Site APP-cleaving enzyme; Presenilin; β-Amyloid
7.  Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations 
Background
Mutations in the presenilin (PSEN) genes are associated with early-onset familial Alzheimer's disease (FAD). Biochemical characterizations and comparisons have revealed that many PSEN mutations alter γ-secretase activity to promote accumulation of toxic Aβ42 peptides. In this study, we compared the histopathologic and biochemical profiles of ten FAD cases expressing independent PSEN mutations and determined the degradation patterns of amyloid-β precursor protein (AβPP), Notch, N-cadherin and Erb-B4 by γ-secretase. In addition, the levels of Aβ40/42 peptides were quantified by ELISA.
Results
We observed a wide variation in type, number and distribution of amyloid deposits and neurofibrillary tangles. Four of the ten cases examined exhibited a substantial enrichment in the relative proportions of Aβ40 over Aβ42. The AβPP N-terminal and C-terminal fragments and Tau species, assessed by Western blots and scanning densitometry, also demonstrated a wide variation. The Notch-1 intracellular domain was negligible by Western blotting in seven PSEN cases. There was significant N-cadherin and Erb-B4 peptide heterogeneity among the different PSEN mutations.
Conclusion
These observations imply that missense mutations in PSEN genes can alter a range of key γ-secretase activities to produce an array of subtly different biochemical, neuropathological and clinical manifestations. Beyond the broad common features of dementia, plaques and tangles, the various PSEN mutations resulted in a wide heterogeneity and complexity and differed from sporadic AD.
doi:10.1186/1750-1326-3-20
PMCID: PMC2600784  PMID: 19021905
8.  Investigating the role of rare coding variability in Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP) in late-onset Alzheimer's disease 
Neurobiology of Aging  2014;35(12):2881.e1-2881.e6.
The overlapping clinical and neuropathologic features between late-onset apparently sporadic Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and other neurodegenerative dementias (frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, and Creutzfeldt-Jakob disease) raise the question of whether shared genetic risk factors may explain the similar phenotype among these disparate disorders. To investigate this intriguing hypothesis, we analyzed rare coding variability in 6 Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP), in 141 LOAD patients and 179 elderly controls, neuropathologically proven, from the UK. In our cohort, 14 LOAD cases (10%) and 11 controls (6%) carry at least 1 rare variant in the genes studied. We report a novel variant in PSEN1 (p.I168T) and a rare variant in PSEN2 (p.A237V), absent in controls and both likely pathogenic. Our findings support previous studies, suggesting that (1) rare coding variability in PSEN1 and PSEN2 may influence the susceptibility for LOAD and (2) GRN, MAPT, and PRNP are not major contributors to LOAD. Thus, genetic screening is pivotal for the clinical differential diagnosis of these neurodegenerative dementias.
Highlights
•We have used exome sequencing to investigate rare coding variability in Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP) in a cohort composed of 141 late-onset sporadic Alzheimer's disease cases and 179 elderly controls, autopsy proven from the UK.•We report a novel mutation in PSEN1 (p.I168T) and a rare variant in PSEN2 (p.A237V), both likely pathogenic.•We conclude that PSEN1 and PSEN2 harbor susceptibility factors for sporadic Alzheimer's disease. By contrast, GRN, MAPT, and PRNP do not play a major role for the development of late-onset sporadic Alzheimer's disease.•Genetic screening is therefore pivotal for a clinical differential diagnosis of sporadic late-onset Alzheimer's disease and other neurodegenerative dementias (frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, and Creutzfeldt-Jakob disease).
doi:10.1016/j.neurobiolaging.2014.06.002
PMCID: PMC4236585  PMID: 25104557
Alzheimer's disease; Neurodegenerative dementia; APP; PSEN1; PSEN2; MAPT; GRN; PRNP; Exome sequencing
9.  Modeling Alzheimer’s Disease in Mouse without Mutant Protein Overexpression: Cooperative and Independent Effects of Aβ and Tau 
PLoS ONE  2013;8(11):e80706.
Background
Alzheimer’s disease (AD), the most common cause of dementia in the elderly, has two pathological hallmarks: Aβ plaques and aggregation of hyperphosphorylated tau (p-tau). Aβ is a cleavage product of Amyloid Precursor Protein (APP). Presenilin 1 (PS1) and presenilin 2 (PS2) are the catalytic subunit of γ-secretase, which cleaves APP and mediates Aβ production. Genetic mutations in APP, PSEN1 or PSEN2 can lead to early onset of familial AD (FAD). Although mutations in the tau encoding gene MAPT leads to a subtype of frontotemporal dementia and these mutations have been used to model AD tauopathy, no MAPT mutations have been found to be associated with AD.
Results
To model AD pathophysiology in mice without the gross overexpression of mutant transgenes, we created a humanized AD mouse model by crossing the APP and PSEN1 FAD knock-in mice with the htau mice which express wildtype human MAPT genomic DNA on mouse MAPT null background (APP/PS1/htau). The APP/PS1/htau mice displayed mild, age-dependent, Aβ plaques and tau hyperphosphorylation, thus successfully recapitulating the late-onset AD pathological hallmarks. Selected biochemical analyses, including p-tau western blot, γ-secretase activity assay, and Aβ ELISA, were performed to study the interaction between Aβ and p-tau. Subsequent behavioral studies revealed that the APP/PS1/htau mice showed reduced mobility in old ages and exaggerated fear response. Genetic analysis suggested that the fear phenotype is due to a synergic interaction between Aβ and p-tau, and it can be completely abolished by tau deletion.
Conclusion
The APP/PS1/htau model represents a valuable and disease-relevant late-onset pre-clinical AD animal model because it incorporates human AD genetics without mutant protein overexpression. Analysis of the mice revealed both cooperative and independent effects of Aβ and p-tau.
doi:10.1371/journal.pone.0080706
PMCID: PMC3835479  PMID: 24278307
10.  Molecular diagnosis of autosomal dominant early onset Alzheimer's disease: an update 
Journal of Medical Genetics  2005;42(10):793-795.
Background: Autosomal dominant early onset Alzheimer's disease (ADEOAD) is genetically heterogeneous. Mutations of the amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes have been identified.
Objective: To further clarify the respective contribution of these genes to ADEOAD.
Methods: 31 novel families were investigated. They were ascertained using stringent criteria (the occurrence of probable or definite cases of Alzheimer's disease with onset before 60 years of age in three generations). All cases fulfilled the NINCDS-ADRDA criteria for probable or definite Alzheimer's disease. The entire coding regions of PSEN1 and PSEN2 genes and exons 16 and 17 of APP gene were sequenced from genomic DNA
Results: PSEN1 mutations, including eight previously unreported mutations, were detected in 24 of the 31 families, and APP mutations were found in five families. In this sample, the mean ages of disease onset in PSEN1 and APP mutation carriers were 41.7 and 51.2 years, respectively.
Conclusions: Combining these data with previously published data, yielding 65 ADEOAD families, 66% of the cases were attributable to PSEN1 mutations and 16% to APP mutations, while 18% remained unexplained.
doi:10.1136/jmg.2005.033456
PMCID: PMC1735922  PMID: 16033913
11.  Familial frontotemporal dementia-associated presenilin-1 c.548G>T mutation causes decreased mRNA expression and reduced presenilin function in knockin mice 
The Journal of Neuroscience  2012;32(15):5085-5096.
Mutations in the presenilin-1 (PSEN1) gene are associated with familial Alzheimer's disease and frontotemporal dementia (FTD). Interestingly, neuropathological analysis of a Belgian FTD family carrying a PSEN1 c.548G>T mutation confirmed neurodegeneration in the absence of amyloid plaques. To investigate the impact of the c.548G>T mutation on presenilin-1 (PS1) function in vivo, we introduced this mutation into the genomic Psen1 locus. The resulting c.548G>T knockin (KI) mice are viable but express markedly lower levels of Psen1 mRNA and protein in the brain. This reduction is due to production of aberrantly spliced transcripts lacking either exon 6 or exons 6 and 7 and their subsequent degradation via nonsense-mediated decay (NMD); inhibition of NMD by cycloheximide treatment stabilized these transcripts and restored the level of Psen1 mRNA in KI/KI brains. Interestingly, the reduction of Psen1 mRNA expression and the degradation of aberrant Psen1 splice products occur exclusively in the brain but not in other tissues. Consistent with decreased Psen1 expression, γ-secretase activity was strongly reduced in the cerebral cortex of KI mice, as measured by de novo γ-secretase-mediated cleavage of APP and Notch. Moreover, PS1 expressed from Psen1 cDNA carrying the c.548G>T mutation displayed normal γ-secretase activity in cultured cells, indicating that the corresponding p.183G>V amino acid substitution does not affect γ-secretase activity. Finally, Psen1 c.548G>T KI/KI; Psen2−/− mice exhibited mild spatial memory deficits in the Morris water maze task. Together, our findings demonstrate that the c.548G>T mutation results in a brain-specific loss of presenilin function due to decreased Psen1 mRNA expression.
doi:10.1523/JNEUROSCI.0317-12.2012
PMCID: PMC3340902  PMID: 22496554
12.  Exome sequencing identifies 2 novel presenilin 1 mutations (p.L166V and p.S230R) in British early-onset Alzheimer's disease☆ 
Neurobiology of Aging  2014;35(10):2422.e13-2422.e16.
Early-onset Alzheimer's disease (EOAD) represents 1%–2% of the Alzheimer's disease (AD) cases, and it is generally characterized by a positive family history and a rapidly progressive symptomatology. Rare coding and fully penetrant variants in amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) are the only causative mutations reported for autosomal dominant AD. Thus, in this study we used exome sequencing data to rapidly screen rare coding variability in APP, PSEN1, and PSEN2, in a British cohort composed of 47 unrelated EOAD cases and 179 elderly controls, neuropathologically proven. We report 2 novel and likely pathogenic variants in PSEN1 (p.L166V and p.S230R). A comprehensive catalog of rare pathogenic variants in the AD Mendelian genes is pivotal for a premortem diagnosis of autosomal dominant EOAD and for the differential diagnosis with other early onset dementias such as frontotemporal dementia (FTD) and Creutzfeldt-Jakob disease (CJD).
doi:10.1016/j.neurobiolaging.2014.04.026
PMCID: PMC4099516  PMID: 24880964
Early-onset Alzheimer's disease; APP; PSEN1; PSEN2; British cohort
13.  Identification of PSEN1 and APP Gene Mutations in Korean Patients with Early-Onset Alzheimer's Disease 
Journal of Korean Medical Science  2008;23(2):213-217.
Although mutations in three genes, amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2), have been identified as genetic causes of early-onset Alzheimer's disease (EOAD), there has been a single report on a PSEN1 mutation in Koreans. In the present study, we performed a genetic analysis of six Korean patients with EOAD. Direct sequencing analysis of the APP, PSEN1 and PSEN2 genes revealed two different mutations of the PSEN1 gene (G206S and M233T) and one mutation of the APP gene (V715M) in three patients with age-at-onset of 34, 35, and 42 yr, respectively. In addition, two patients with age-at-onset of 55 and 62 yr, respectively, were homozygous for APOE ε4 allele. One woman had no genetic alterations. These findings suggest that PSEN1 and APP gene mutations may not be uncommon in Korean patients with EOAD and that genetic analysis should be provided to EOAD patients not only for the identification of their genetic causes but also for the appropriate genetic counseling.
doi:10.3346/jkms.2008.23.2.213
PMCID: PMC2526428  PMID: 18437002
Amyloid beta-Protein Precursor; Alzheimer Disease; Presenilin-1; Presenilin-2; Mutation
14.  Pathological and physiological functions of presenilins 
Mutations in PSEN1 and PSEN2 genes account for the majority of cases of early-onset familial Alzheimer disease. Since the first prediction of a genetic link between PSEN1 and PSEN2 with Alzheimer's disease, many research groups from both academia and pharmaceutical industry have sought to unravel how pathogenic mutations in PSEN cause presenile dementia. PSEN genes encode polytopic membrane proteins termed presenilins (PS1 and PS2), which function as the catalytic subunit of γ-secretase, an intramembrane protease that has a wide spectrum of type I membrane protein substrates. Sequential cleavage of amyloid precursor protein by BACE and γ-secretase releases highly fibrillogenic β-amyloid peptides, which accumulate in the brains of aged individuals and patients with Alzheimer's disease. Familial Alzheimer's disease-associated presenilin variants are thought to exert their pathogenic function by selectively elevating the levels of highly amyloidogenic Aβ42 peptides. In addition to Alzheimer's disease, several recent studies have linked PSEN1 to familiar frontotemporal dementia. Here, we review the biology of PS1, its role in γ-secretase activity, and discuss recent developments in the cell biology of PS1 with respect to Alzheimer's disease pathogenesis.
doi:10.1186/1750-1326-1-4
PMCID: PMC1513131  PMID: 16930451
15.  Regional brain volume differences in symptomatic and presymptomatic carriers of familial Alzheimer’s disease mutations 
Background
Mutations in the presenilin (PSEN1, PSEN2) and amyloid precursor protein (APP) genes cause familial Alzheimer’s disease (FAD) in a nearly fully penetrant, autosomal dominant manner, providing a unique opportunity to study presymptomatic individuals who can be predicted to develop Alzheimer’s disease (AD) with essentially 100% certainty. Using tensor-based morphometry (TBM), we examined brain volume differences between presymptomatic and symptomatic FAD mutation carriers and non-carrier (NC) relatives.
Methods
Twenty-five mutation carriers and 10 NC relatives underwent brain MRI and clinical assessment. Four mutation carriers had dementia (MUT-Dem), 12 had amnestic mild cognitive impairment (MUT-aMCI) and nine were cognitively normal (MUT-Norm). TBM brain volume maps of MUT-Norm, MUT-aMCI and MUT-Dem subjects were compared to NC subjects.
Results
MUT-Norm subjects exhibited significantly smaller volumes in the thalamus, caudate and putamen. MUT-aMCI subjects had smaller volumes in the thalamus, splenium and pons, but not in the caudate or putamen. MUT-Dem subjects demonstrated smaller volumes in temporal, parietal and left frontal regions. As non-demented carriers approached the expected age of dementia diagnosis, this was associated with larger ventricular and caudate volumes and a trend towards smaller temporal lobe volume.
Conclusions
Cognitively intact FAD mutation carriers had lower thalamic, caudate and putamen volumes, and we found preliminary evidence for increasing caudate size during the predementia stage. These regions may be affected earliest during prodromal stages of FAD, while cortical atrophy may occur in later stages, when carriers show cognitive deficits. Further studies of this population will help us understand the progression of neurobiological changes in AD.
doi:10.1136/jnnp-2011-302087
PMCID: PMC3779052  PMID: 23085935
16.  Trans-Dominant Negative Effects of Pathogenic PSEN1 Mutations on γ-Secretase Activity and Aβ Production 
The Journal of Neuroscience  2013;33(28):11606-11617.
Mutations in the PSEN1 gene encoding Presenilin-1 (PS1) are the predominant cause of familial Alzheimer's disease (FAD), but the underlying mechanisms remain unresolved. To reconcile the dominant action of pathogenic PSEN1 mutations with evidence that they confer a loss of mutant protein function, we tested the hypothesis that PSEN1 mutations interfere with γ-secretase activity in a dominant-negative manner. Here, we show that pathogenic PSEN1 mutations act in cis to impair mutant PS1 function and act in trans to inhibit wild-type PS1 function. Coexpression of mutant and wild-type PS1 at equal gene dosage in presenilin-deficient mouse embryo fibroblasts resulted in trans-dominant-negative inhibition of wild-type PS1 activity, suppressing γ-secretase-dependent cleavage of APP and Notch. Surprisingly, mutant PS1 could stimulate production of Aβ42 by wild-type PS1 while decreasing its production of Aβ40. Mutant and wild-type PS1 efficiently coimmunoprecipitated, suggesting that mutant PS1 interferes with wild-type PS1 activity via physical interaction. These results support the conclusion that mutant PS1 causes wild-type PS1 to adopt an altered conformation with impaired catalytic activity and substrate specificity. Our findings reveal a novel mechanism of action for pathogenic PSEN1 mutations and suggest that dominant-negative inhibition of presenilin activity plays an important role in FAD pathogenesis.
doi:10.1523/JNEUROSCI.0954-13.2013
PMCID: PMC3724549  PMID: 23843529
17.  Characterization and Molecular Profiling of PSEN1 Familial Alzheimer's Disease iPSC-Derived Neural Progenitors 
PLoS ONE  2014;9(1):e84547.
Presenilin 1 (PSEN1) encodes the catalytic subunit of γ-secretase, and PSEN1 mutations are the most common cause of early onset familial Alzheimer's disease (FAD). In order to elucidate pathways downstream of PSEN1, we characterized neural progenitor cells (NPCs) derived from FAD mutant PSEN1 subjects. Thus, we generated induced pluripotent stem cells (iPSCs) from affected and unaffected individuals from two families carrying PSEN1 mutations. PSEN1 mutant fibroblasts, and NPCs produced greater ratios of Aβ42 to Aβ40 relative to their control counterparts, with the elevated ratio even more apparent in PSEN1 NPCs than in fibroblasts. Molecular profiling identified 14 genes differentially-regulated in PSEN1 NPCs relative to control NPCs. Five of these targets showed differential expression in late onset AD/Intermediate AD pathology brains. Therefore, in our PSEN1 iPSC model, we have reconstituted an essential feature in the molecular pathogenesis of FAD, increased generation of Aβ42/40, and have characterized novel expression changes.
doi:10.1371/journal.pone.0084547
PMCID: PMC3885572  PMID: 24416243
18.  Early Onset Alzheimer’s Disease with Spastic Paraparesis, Dysarthria and Seizures and N135S Mutation in PSEN1 
Objective
Early onset familial Alzheimer’s disease (EOFAD) can be caused by mutations in genes for amyloid precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2). There is considerable phenotypic variability in EOFAD, including some patients with spastic paraparesis. The objective is to describe clinical and neuropathologic features of a family with a PSEN1 mutation that has been reported previously, without autopsy confirmation, in a single Greek family whose affected members presented with memory loss in their thirties, as well as variable limb spasticity and seizures.
Methods
We prospectively evaluated two children (son and daughter) with EOFAD and reviewed medical records on their mother. Archival material from the autopsy of the mother was reviewed and postmortem studies were performed on the brain of the daughter.
Results
All three individuals in this family had disease onset in their thirties, with cognitive deficits in multiple domains, including memory, language and attention, as well as less common features such as spastic dysarthria, limb spasticity and seizures. At autopsy both the mother and her daughter had pathologic findings of AD, as well as histological evidence of corticospinal tract degeneration. Genetic studies revealed a mutation in PSEN1 leading to an asparagine to serine substitution at amino acid residue 135 (N135S) in presenilin-1.
Conclusions
This is the first description of neuropathologic findings in EOFAD due to N135S PSEN1 mutation. The clinical phenotype was remarkable for spastic dysarthria, limb spasticity and seizures, in addition to more typical features of EOFAD.
doi:10.1097/WAD.0b013e3181732399
PMCID: PMC2750842  PMID: 18580586
Alzheimer disease; Genetics; Neuropathology; Presenilin; Spasticity
19.  C9ORF72 repeat expansions and other FTD gene mutations in a clinical AD patient series from Mayo Clinic 
Alzheimer disease (AD) and frontotemporal dementia (FTD) are two frequent forms of primary neurodegenerative dementias with overlapping clinical symptoms. Pathogenic mutations of the amyloid precursor protein (APP) and presenilins 1 and 2 (PSEN1, PSEN2) genes have been linked to familial early-onset forms of AD; however, more recently mutations in the common FTD genes encoding the microtubule associated protein tau (MAPT), progranulin (GRN) and C9ORF72, have also been reported in clinically diagnosed AD patients. To access the contribution of mutations in a well-characterized series of patients, we systematically performed genetic analyses of these EOAD and FTD genes in a novel cohort of 227 unrelated probands clinically diagnosed as probable AD which were ascertained at Mayo Clinic Florida between 1997 and 2011. All patients showed first symptoms of dementia before 70 years. We identified 9 different pathogenic mutations in the EOAD genes in a total of 11 patients explaining 4.8% of the patient population. Two mutations were novel: PSEN1 p.Pro218Leu and PSEN2 p.Phe183Ser. Importantly, mutations were also identified in all FTD genes: one patient carried a MAPT p.R406W mutation, one patient carried the p.Arg198Glyfs19X loss-of-function mutation in GRN and two patients were found to carry expanded GGGGCC repeats in the non-coding region of C9ORF72. Together the FTD genes explained the disease in 1.8% of our probable AD population. The identification of mutations in all major FTD genes in this novel cohort of clinically diagnosed AD patients underlines the challenges associated with the differential diagnosis of AD and FTD resulting from overlapping symptomatology and has important implications for molecular diagnostic testing and genetic counseling of clinically diagnosed AD patients. Our findings suggest that in clinically diagnosed AD patients, genetic analyses should include not only the well-established EOAD genes APP, PSEN1 and PSEN2 but also genes that are usually associated with FTD. Finally, the overall low frequency of mutation carriers observed in our study (6.6%) suggests the involvement of other as yet unknown genetic factors associated with AD.
PMCID: PMC3560455  PMID: 23383383
Alzheimer’s disease; frontotemporal dementia; amyloid precursor protein; presenilin 1; presenilin 2; progranulin; microtubule associated protein tau; C9ORF72; mutation; diagnosis.
20.  The amyloid-β isoform pattern in cerebrospinal fluid in familial PSEN1 M139T- and L286P-associated Alzheimer's disease 
Molecular Medicine Reports  2012;5(4):1111-1115.
There are several familial forms of Alzheimer's disease (AD) most of which are caused by mutations in the genes that encode the presenilin enzymes involved in the production of amyloid-β (Aβ) from the amyloid precursor protein (APP). In AD, Aβ forms fibrils that are deposited in the brain as plaques. Much of the fibrillar Aβ found in the plaques consists of the 42 amino acid form of Aβ (Aβ1-–2) and it is now widely accepted that Aβ is related to the pathogenesis of AD and that Aβ may both impair memory and be neurotoxic. In human cerebrospinal fluid (CSF) several C- and N-terminally truncated Aβ isoforms have been detected and their relative abundance pattern is thought to reflect the production and clearance of Aβ. By using immunoprecipitation and mass spectrometry, we have previously demonstrated that carriers of the familial AD (FAD)-associated PSEN1 A431E mutation have low CSF levels of C-terminally truncated Aβ isoforms shorter than Aβ1-40. Here we replicate this finding in symptomatic carriers of the FAD-causing PSEN1 L286P mutation. Furthermore, we show that preclinical carriers of the PSEN1 M139T mutation may overexpress Aβ1-42 suggesting that this particular mutation may cause AD by stimulating γ-secretase-mediated cleavage at amino acid 42 in the Aβ sequence.
doi:10.3892/mmr.2012.774
PMCID: PMC3493058  PMID: 22307680
familial Alzheimer's; mass spectrometry; presenilin; amyloid-β isoforms
21.  Distinct cerebrospinal fluid amyloid β peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease 
Background
Alzheimer's disease (AD) is associated with deposition of amyloid β (Aβ) in the brain, which is reflected by low concentration of the Aβ1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional Aβ peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of Aβ. Here, we test the hypothesis that AD is characterized by a specific CSF Aβ isoform pattern that is distinct when comparing sporadic AD (SAD) and familial AD (FAD) due to different mechanisms underlying brain amyloid pathology in the two disease groups.
Results
We measured Aβ isoform concentrations in CSF from 18 patients with SAD, 7 carriers of the FAD-associated presenilin 1 (PSEN1) A431E mutation, 17 healthy controls and 6 patients with depression using immunoprecipitation-mass spectrometry. Low CSF levels of Aβ1-42 and high levels of Aβ1-16 distinguished SAD patients and FAD mutation carriers from healthy controls and depressed patients. SAD and FAD were characterized by similar changes in Aβ1-42 and Aβ1-16, but FAD mutation carriers exhibited very low levels of Aβ1-37, Aβ1-38 and Aβ1-39.
Conclusion
SAD patients and PSEN1 A431E mutation carriers are characterized by aberrant CSF Aβ isoform patterns that hold clinically relevant diagnostic information. PSEN1 A431E mutation carriers exhibit low levels of Aβ1-37, Aβ1-38 and Aβ1-39; fragments that are normally produced by γ-secretase, suggesting that the PSEN1 A431E mutation modulates γ-secretase cleavage site preference in a disease-promoting manner.
doi:10.1186/1750-1326-5-2
PMCID: PMC2818651  PMID: 20145736
22.  Age-Dependent, Non-Cell-Autonomous Deposition of Amyloid from Synthesis of β-Amyloid by Cells Other Than Excitatory Neurons 
The Journal of Neuroscience  2014;34(10):3668-3673.
Rare, familial, early-onset autosomal dominant forms of familial Alzheimer's disease (FAD) are caused by mutations in genes encoding β-amyloid (Aβ) precursor protein (APP), presenilin-1 (PS1), and presenilin-2. Each of these genes is expressed ubiquitously throughout the CNS, but a widely held view is that excitatory neurons are the primary (or sole) source of the Aβ peptides that promote synaptic dysfunction and neurodegeneration. These efforts notwithstanding, APP and the enzymes required for Aβ production are synthesized by many additional cell types, and the degree to which those cells contribute to the production of Aβ that drives deposition in the CNS has not been tested. We generated transgenic mice in which expression of an ubiquitously expressed, FAD-linked mutant PSEN1 gene was selectively inactivated within postnatal forebrain excitatory neurons, with continued synthesis in all other cells in the CNS. When combined with an additional transgene encoding an FAD-linked APP “Swedish” variant that is synthesized broadly within the CNS, cerebral Aβ deposition during aging was found to be unaffected relative to mice with continued mutant PS1 synthesis in excitatory neurons. Thus, Aβ accumulation is non-cell autonomous, with the primary age-dependent contribution to cerebral Aβ deposition arising from mutant PS1-dependent cleavage of APP within cells other than excitatory neurons.
doi:10.1523/JNEUROSCI.5079-13.2014
PMCID: PMC3942582  PMID: 24599465
amyloid deposition; APP; dementia; mouse model; neurodegeneration; presenilin
23.  Alzheimer's Disease-Linked Mutations in Presenilin-1 Result in a Drastic Loss of Activity in Purified γ-Secretase Complexes 
PLoS ONE  2012;7(4):e35133.
Background
Mutations linked to early onset, familial forms of Alzheimer's disease (FAD) are found most frequently in PSEN1, the gene encoding presenilin-1 (PS1). Together with nicastrin (NCT), anterior pharynx-defective protein 1 (APH1), and presenilin enhancer 2 (PEN2), the catalytic subunit PS1 constitutes the core of the γ-secretase complex and contributes to the proteolysis of the amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides. Although there is a growing consensus that FAD-linked PS1 mutations affect Aβ production by enhancing the Aβ1–42/Aβ1–40 ratio, it remains unclear whether and how they affect the generation of APP intracellular domain (AICD). Moreover, controversy exists as to how PS1 mutations exert their effects in different experimental systems, by either increasing Aβ1–42 production, decreasing Aβ1–40 production, or both. Because it could be explained by the heterogeneity in the composition of γ-secretase, we purified to homogeneity complexes made of human NCT, APH1aL, PEN2, and the pathogenic PS1 mutants L166P, ΔE9, or P436Q.
Methodology/Principal Findings
We took advantage of a mouse embryonic fibroblast cell line lacking PS1 and PS2 to generate different stable cell lines overexpressing human γ-secretase complexes with different FAD-linked PS1 mutations. A multi-step affinity purification procedure was used to isolate semi-purified or highly purified γ-secretase complexes. The functional characterization of these complexes revealed that all PS1 FAD-linked mutations caused a loss of γ-secretase activity phenotype, in terms of Aβ1–40, Aβ1–42 and APP intracellular domain productions in vitro.
Conclusion/Significance
Our data support the view that PS1 mutations lead to a strong γ-secretase loss-of-function phenotype and an increased Aβ1–42/Aβ1–40 ratio, two mechanisms that are potentially involved in the pathogenesis of Alzheimer's disease.
doi:10.1371/journal.pone.0035133
PMCID: PMC3329438  PMID: 22529981
24.  Differential Regulation of Amyloid Precursor Protein/Presenilin 1 Interaction during Ab40/42 Production Detected Using Fusion Constructs 
PLoS ONE  2012;7(11):e48551.
Beta amyloid peptides (Aβ) play a key role in the pathogenesis of Alzheimer disease (AD). Presenilins (PS) function as the catalytic subunits of γ-secretase, the enzyme that releases Aβ from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Familial Alzheimer disease (FAD)-linked PSEN mutations alter APP processing in a manner that increases the relative abundance of longer Aβ42 peptides to that of Aβ40 peptides. The mechanisms by which Aβ40 and Aβ42 peptides are produced in a ratio of ten to one by wild type presenilin (PS) and by which Aβ42 is overproduced by FAD-linked PS variants are not completely understood. We generated chimeras of the amyloid precursor protein C-terminal fragment (C99) and PS to address this issue. We found a chimeric protein where C99 is fused to the PS1 N-terminus undergoes in cis processing to produce Aβ and that a fusion protein harboring FAD-linked PS1 mutations overproduced Aβ42. To change the molecular interactions within the C99-PS1 fusion protein, we made sequential deletions of the junction between C99 and PS1. We found differential effects of deletion in C99-PS1 on Aβ40 and 42 production. Deletion of the junction between APP CTF and PS1 in the fusion protein decreased Aβ40, while it did not decrease Aβ42 production in the presence or absence of FAD-linked PS1 mutation. These results are consistent with the idea that the APP/PS interaction is differentially regulated during Aβ40 and 42 production.
doi:10.1371/journal.pone.0048551
PMCID: PMC3495957  PMID: 23152781
25.  Caspase-9 mediates synaptic plasticity and memory deficits of Danish dementia knock-in mice: caspase-9 inhibition provides therapeutic protection 
Background
Mutations in either Aβ Precursor protein (APP) or genes that regulate APP processing, such as BRI2/ITM2B and PSEN1/PSEN2, cause familial dementias. Although dementias due to APP/PSEN1/PSEN2 mutations are classified as familial Alzheimer disease (FAD) and those due to mutations in BRI2/ITM2B as British and Danish dementias (FBD, FDD), data suggest that these diseases have a common pathogenesis involving toxic APP metabolites. It was previously shown that FAD mutations in APP and PSENs promote activation of caspases leading to the hypothesis that aberrant caspase activation could participate in AD pathogenesis.
Results
Here, we tested whether a similar mechanism applies to the Danish BRI2/ITM2B mutation. We have generated a genetically congruous mouse model of FDD, called FDDKI, which presents memory and synaptic plasticity deficits. We found that caspase-9 is activated in hippocampal synaptic fractions of FDDKI mice and inhibition of caspase-9 activity rescues both synaptic plasticity and memory deficits.
Conclusion
These data directly implicate caspase-9 in the pathogenesis of Danish dementia and suggest that reducing caspase-9 activity is a valid therapeutic approach to treating human dementias.
doi:10.1186/1750-1326-7-60
PMCID: PMC3543220  PMID: 23217200

Results 1-25 (980504)