Search tips
Search criteria

Results 1-25 (529738)

Clipboard (0)

Related Articles

1.  Dietary Supplementation with Lactobacilli Improves Emergency Granulopoiesis in Protein-Malnourished Mice and Enhances Respiratory Innate Immune Response 
PLoS ONE  2014;9(4):e90227.
This work studied the effect of protein malnutrition on the hemato-immune response to the respiratory challenge with Streptococcus pneumoniae and evaluated whether the dietary recovery with a probiotic strain has a beneficial effect in that response. Three important conclusions can be inferred from the results presented in this work: a) protein-malnutrition significantly impairs the emergency myelopoiesis induced by the generation of the innate immune response against pneumococcal infection; b) repletion of malnourished mice with treatments including nasally or orally administered Lactobacillus rhamnosus CRL1505 are able to significantly accelerate the recovery of granulopoiesis and improve innate immunity and; c) the immunological mechanisms involved in the protective effect of immunobiotics vary according to the route of administration. The study demonstrated that dietary recovery of malnourished mice with oral or nasal administration of L. rhamnosus CRL1505 improves emergency granulopoiesis and that CXCR4/CXCR12 signaling would be involved in this effect. Then, the results summarized here are a starting point for future research and open up broad prospects for future applications of probiotics in the recovery of immunocompromised malnourished hosts.
PMCID: PMC3972161  PMID: 24691464
2.  Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells 
BMC Microbiology  2014;14:126.
Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized.
We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs.
It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge.
PMCID: PMC4035899  PMID: 24886142
Lactobacillus rhamnosus; Poly(I:C); Antiviral immunity; PIE cells; Intestinal antigen presenting cells; TLR2
3.  Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection 
BMC Immunology  2013;14:40.
Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before.
The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection.
Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-β and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains.
The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible to beneficially modulate the respiratory defenses against RSV by using heat-killed immunobiotics.
PMCID: PMC3751766  PMID: 23947615
Lactobacillus rhamnosus; Nasal treatment; Poly(I:C); Sntiviral immunity; Respiratory tract; Respiratory syncytial virus
4.  Dietary Supplementation with Probiotics Improves Hematopoiesis in Malnourished Mice 
PLoS ONE  2012;7(2):e31171.
Lactobacillus rhamnosus CRL1505 (Lr) administered during the repletion of immunocompromised-malnourished mice improves the resistance against intestinal and respiratory infections. This effect is associated with an increase in the number and functionality of immune cells, indicating that Lr could have some influence on myeloid and lymphoid cell production and maturation.
This study analyzed the extent of the damage caused by malnutrition on myeloid and lymphoid cell development in the spleen and bone marrow (BM). We also evaluated the impact of immunobiotics on the recovery of hematopoiesis affected in malnourished mice.
Protein malnourished mice were fed on a balanced conventional diet for 7 or 14 consecutive d with or without supplemental Lr or fermented goat's milk (FGM). Malnourished mice and well-nourished mice were used as controls. Histological and flow cytometry studies were carried out in BM and spleen to study myeloid and lymphoid cells.
Malnutrition induced quantitative alterations in spleen B and T cells; however, no alteration was observed in the ability of splenic B cells to produce immunoglobulins after challenge with LPS or CpG. The analysis of BM B cell subsets based on B220, CD24, IgM and IgD expression showed that malnutrition affected B cell development. In addition, BM myeloid cells decreased in malnourished mice. On the contrary, protein deprivation increased BM T cell number. These alterations were reverted with Lr or FGM repletion treatments since normal numbers of BM myeloid, T and B cells were observed in these groups.
Protein malnutrition significantly alters B cell development in BM. The treatment of malnourished mice with L. rhamnosus CRL1505 was able to induce a recovery of B cells that would explain its ability to increase immunity against infections. This work highlights the possibility of using immunobiotics to accelerate the recovery of lymphopoyesis in immunocompromised-malnourished hosts.
PMCID: PMC3275617  PMID: 22347448
5.  Comparative Genome Analysis of Lactobacillus rhamnosus Clinical Isolates from Initial Stages of Dental Pulp Infection: Identification of a New Exopolysaccharide Cluster 
PLoS ONE  2014;9(3):e90643.
The human oral microbiome has a major role in oral diseases including dental caries. Our studies on progression of caries infection through dentin and more recently, the invasion of vital dental pulp, detected Lactobacillus rhamnosus in the initial stages of infection of vital pulp tissue. In this study employing current high-throughput next generation sequencing technology we sought to obtain insight into genomic traits of tissue invasive L. rhamnosus, to recognise biomarkers that could provide an understanding of pathogenic potential of lactobacilli, generally regarded as safe. Roche GS FLX+ technology was used to generate whole genome sequences of two clinical isolates of L. rhamnosus infecting vital pulp. Detailed genome-wide comparison of the genetic profiles of tissue invasive L. rhamnosus with probiotic L. rhamnosus was performed to test the hypothesis that specific strains of L. rhamnosus possessing a unique gene complement are selected for the capacity to invade vital pulp tissue. Analysis identified 264 and 258 genes respectively, from dental pulp-invasive L. rhamnosus strains LRHMDP2 and LRHMDP3 isolated from two different subjects that were not present in the reference probiotic L. rhamnosus strain ATCC 53103 (GG). Distinct genome signatures identified included the presence of a modified exopolysaccharide cluster, a characteristic confirmed in a further six clinical isolates. Additional features of LRHMDP2 and LRHMDP3 were altered transcriptional regulators from RpoN, NtrC, MutR, ArsR and zinc-binding Cro/CI families, as well as changes in the two-component sensor kinase response regulator and ABC transporters for ferric iron. Both clinical isolates of L. rhamnosus contained a single SpaFED cluster, as in L. rhamnosus Lc705, instead of the two Spa clusters (SpaCBA and SpaFED) identified in L. rhamnosus ATCC 53103 (GG). Genomic distance analysis and SNP divergence confirmed a close relationship of the clinical isolates but segregation from the reference probiotic L. rhamnosus strain ATCC 53103 (GG).
PMCID: PMC3954586  PMID: 24632842
6.  Draft Genome Sequence of Lactobacillus rhamnosus CRL1505, an Immunobiotic Strain Used in Social Food Programs in Argentina 
Genome Announcements  2013;1(4):e00627-13.
We report the draft genome sequence of the probiotic Lactobacillus rhamnosus strain CRL1505. This new probiotic strain has been included into official Nutritional Programs in Argentina. The draft genome sequence is composed of 3,417,633 bp with 3,327 coding sequences.
PMCID: PMC3744685  PMID: 23950129
7.  Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿  
Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35.
PMCID: PMC2394868  PMID: 18326671
8.  Dose-Dependent Effects of Lactobacillus rhamnosus on Serum Interleukin-17 Production and Intestinal T-Cell Responses in Pigs Challenged with Escherichia coli 
The mechanism underlying the dose effect of probiotics on ameliorating diarrhea has not been fully elucidated. Here, low (1 × 109 CFU/ml) or high (1 × 1011 CFU/ml) doses of Lactobacillus rhamnosus ATCC 7469 were administered orally to piglets for 1 week before F4 (K88)-positive enterotoxigenic Escherichia coli (F4+ ETEC) challenge. Administration of a low, but not a high, dose of L. rhamnosus decreased the percentage of CD3+ CD4+ CD8− T cells in the peripheral blood. Notably, transiently increased serum concentrations of interleukin-17A (IL-17A) were observed after F4+ ETEC challenge in pigs pretreated with a high dose of L. rhamnosus. Administration of L. rhamnosus increased the percentage of the small intestinal lamina propria CD3+ CD4+ CD8− cells and Peyer's patch CD3+ CD4− CD8− and CD3− CD4− CD8+ cells. The percentage of ileal intraepithelial CD3+ CD4− CD8+ cells increased only in the high-dose piglets. Administration of L. rhamnosus downregulated expression of ileal IL-17A after F4+ ETEC challenge but had no effect on expression of gamma interferon (IFN-γ), IL-12, IL-4, and FOXP3 mRNA in the small intestine. Expression of jejunal IL-2, ileal transforming growth factor β1 (TGF-β1), and ileal IL-10 was upregulated in the low-dose piglets after F4+ ETEC challenge. Our findings suggest that amelioration of infectious diarrhea in piglets by L. rhamnosus is associated with the generation of lamina propria CD3+ CD4+ CD8− T cells, the expansion of Peyer's patch CD3+ CD4− CD8− and CD3− CD4− CD8+ cells, and the attenuation of F4+ ETEC-induced increase in CD3+ CD4+ CD8+ T cells in the small intestine. However, consumption of high doses of L. rhamnosus may increase levels of serum IL-17A after F4+ ETEC challenge, thus eliciting a strong proinflammatory response.
PMCID: PMC3957626  PMID: 24389928
9.  Lactobacillus rhamnosus GG and Bifidobacterium longum Attenuate Lung Injury and Inflammatory Response in Experimental Sepsis 
PLoS ONE  2014;9(5):e97861.
Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored.
Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury.
3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle) immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105) and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA.
LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged.
Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis.
PMCID: PMC4022641  PMID: 24830455
10.  Probiotics 
Canadian Family Physician  2005;51(11):1487-1493.
To define the term probiotics, to indicate how to identify products that have been proven beneficial, and to assess the quality of evidence regarding probiotics.
A few level I studies support the effectiveness of specific probiotics for certain diagnoses. For most so-called probiotics, however, weak or no evidence supports their effectiveness.
Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Level I evidence supports use of VSL#3 for maintaining remission of inflammatory colitis. Probiotics for treating vaginal infections, Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14, have level I evidence of effectiveness, but are not available in Canada. Specific probiotics taken for certain indications improve health and have few side effects.
Limited but good evidence supports the role of certain probiotics in medical practice. Because consumer pressure will undoubtedly stimulate further interest in probiotics, family doctors need to be informed about them so they can advise their patients appropriately.
PMCID: PMC1479479  PMID: 16353831
11.  Preliminary evaluation of Lactobacillus rhamnosus strain GG, a potential probiotic in dogs 
The Canadian Veterinary Journal  2002;43(10):771-774.
Lactobacillus rhamnosus strain GG (LGG) has been studied extensively as a probiotic in humans. However, the ability of an organism to survive passage through the intestinal tract and exert beneficial effects cannot be directly extrapolated between species. This study evaluated the ability of LGG to survive gastrointestinal transit in dogs and assessed whether oral administration of LGG is safe, in order to determine whether studies evaluating the efficacy of LGG in the treatment of canine disease are indicated. Dogs were divided into 5 groups receiving doses of 0 (control group, n = 4), 1 × 109 (group 1, n = 8), 1 × 1010 (group 2, n = 8), 5 × 1010 (group 3, n = 8) and 5 × 1011 (group 4, n = 4) colony forming units per day, orally, for 5 days. Lactobacillus rhamnosus GG was detected in the feces of 4/8 dogs in groups 1 and 2, 5/8 dogs in group 3, 4/4 dogs in group 4, and 0/4 dogs in the control group. Fecal colonization was significantly greater in group 4 than in any other group (P < 0.001). Differences between groups 1, 2, and 3 were not significant. No adverse effects were noted. Fecal colonization of LGG in dogs is somewhat variable; however, clinical studies are indicated to evaluate this organism in the treatment and prevention of canine disease.
PMCID: PMC339608  PMID: 12395758
12.  Microarray Analysis and Motif Detection Reveal New Targets of the Salmonella enterica Serovar Typhimurium HilA Regulatory Protein, Including hilA Itself 
Journal of Bacteriology  2005;187(13):4381-4391.
DNA regulatory motifs reflect the direct transcriptional interactions between regulators and their target genes and contain important information regarding transcriptional networks. In silico motif detection strategies search for DNA patterns that are present more frequently in a set of related sequences than in a set of unrelated sequences. Related sequences could be genes that are coexpressed and are therefore expected to share similar conserved regulatory motifs. We identified coexpressed genes by carrying out microarray-based transcript profiling of Salmonella enterica serovar Typhimurium in response to the spent culture supernatant of the probiotic strain Lactobacillus rhamnosus GG. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. They are known to antagonize intestinal pathogens in vivo, including salmonellae. S. enterica serovar Typhimurium causes human gastroenteritis. Infection is initiated by entry of salmonellae into intestinal epithelial cells. The expression of invasion genes is tightly regulated by environmental conditions, as well as by many bacterial factors including the key regulator HilA. One mechanism by which probiotics may antagonize intestinal pathogens is by influencing invasion gene expression. Our microarray experiment yielded a cluster of coexpressed Salmonella genes that are predicted to be down-regulated by spent culture supernatant. This cluster was enriched for genes known to be HilA dependent. In silico motif detection revealed a motif that overlaps the previously described HilA box in the promoter region of three of these genes, spi4_H, sicA, and hilA. Site-directed mutagenesis, β-galactosidase reporter assays, and gel mobility shift experiments indicated that sicA expression requires HilA and that hilA is negatively autoregulated.
PMCID: PMC1151768  PMID: 15968047
13.  Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly 
Age  2011;34(1):133-143.
Aging is associated with alterations in the intestinal microbiota and with immunosenescence. Probiotics have the potential to modify a selected part of the intestinal microbiota as well as improve immune functions and may, therefore, be particularly beneficial to elderly consumers. In this randomized, controlled cross-over clinical trial, we assessed the effects of a probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM on the intestinal microbiota and fecal immune markers of 31 elderly volunteers and compared these effects with the administration of the same cheese without probiotics. The probiotic cheese was found to increase the number of L. rhamnosus and L. acidophilus NCFM in the feces, suggesting the survival of the strains during the gastrointestinal transit. Importantly, probiotic cheese administration was associated with a trend towards lower counts of Clostridium difficile in the elderly, as compared with the run-in period with the plain cheese. The effect was statistically significant in the subpopulation of the elderly who harbored C. difficile at the start of the study. The probiotic cheese was not found to significantly alter the levels of the major microbial groups, suggesting that the microbial changes conferred by the probiotic cheese were limited to specific bacterial groups. Despite that the administration of the probiotic cheese to the study population has earlier been shown to significantly improve the innate immunity of the elders, we did not observe measurable changes in the fecal immune IgA concentrations. No increase in fecal calprotectin and β-defensin concentrations suggests that the probiotic treatment did not affect intestinal inflammatory markers. In conclusion, the administration of probiotic cheese containing L. rhamnosus HN001 and L. acidophilus NCFM, was associated with specific changes in the intestinal microbiota, mainly affecting specific subpopulations of intestinal lactobacilli and C. difficile, but did not have significant effects on the major microbial groups or the fecal immune markers.
PMCID: PMC3260371  PMID: 21264685
Probiotics; Elderly; Gut microbiota; Cheese; Clostridium difficile
14.  Probiotic Lactobacillus rhamnosus GG mono-association suppresses human rotavirus-induced autophagy in the gnotobiotic piglet intestine 
Gut Pathogens  2013;5:22.
Human rotavirus (HRV) is the most important cause of severe diarrhea in infants and young children. Probiotic Lactobacillus rhamnosus GG (LGG) reduces rotavirus infection and diarrhea. However, the molecular mechanisms of LGG-mediated protection from rotavirus infection are poorly understood. Autophagy plays an essential role in responses to microbial pathogens. However, the role of autophagy in HRV infection and LGG treatment is unknown. We hypothesize that rotavirus gastroenteritis activates autophagy and that LGG suppresses virus-induced autophagy and prevents intestinal damage in infected piglets.
We used LGG feeding to combat viral gastroenteritis in the gnotobiotic pig model of virulent HRV infection.
We found that LGG feeding did not increase autophagy, whereas virus infection induced autophagy in the piglet intestine. Virus infection increased the protein levels of the autophagy markers ATG16L1 and Beclin-1 and the autophagy regulator mTOR. LGG treatment during viral gastroenteritis reduced autophagy marker expression to normal levels, induced apoptosis and partially prevented virus-induced tissue damage.
Our study provides new insights into virus-induced autophagy and LGG suppression of uncontrolled autophagy and intestinal injury. A better understanding of the antiviral activity of LGG will lead to novel therapeutic strategies for infant infectious diseases.
PMCID: PMC3750464  PMID: 23924832
Autophagy; Apoptosis; Diarrhea; Gnotobiotic pig; Lactobacillus rhamnosus GG; Infectious disease; Intestinal inflammation; Intestinal injury; Probiotics; Rotavirus
15.  Strain-dependent release of cytokines modulated by Lactobacillus salivarius human isolates in an in vitro model 
BMC Research Notes  2010;3:44.
Oral administration of probiotics is known to modulate cytokines profile not only locally, but also systemically. Four strains of Lactobacillus salivarius, LDR0723, BNL1059, RGS1746 and CRL1528, were evaluated for their ability to modulate release of pro- and anti-inflammatory cytokines.
Strains were assessed for effects on production of Interleukin-12 (IL-12), Interferon-γ (IFN-γ), Interleukin-4 (IL-4) and Interleukin-5 (IL-5) by incubating bacterial suspensions with THP-1 macrophage like cells. Cytokines were determined by means of specific quantitative enzyme-linked immunosorbent assays.
LDR0723 and CRL1528 led to a sustained increment in production of IL-12 and IFN-γ and to a decrease in release of IL-4 and IL-5, while BNL1059 and RGS1746 favoured Th2 response, leading to a decrease in Th1/Th2 ratio with respect to unstimulated cells.
In conclusion, capability of L. salivarius to modulate immune response was strictly strain dependent and strains of the same species might have opposite effects. Therefore, a careful evaluation of anti-inflammatory properties of lactobacilli should be performed on single strain, before any consideration on potential probiotic use.
PMCID: PMC2848054  PMID: 20184725
16.  Risks Associated with High-Dose Lactobacillus rhamnosus in an Escherichia coli Model of Piglet Diarrhoea: Intestinal Microbiota and Immune Imbalances 
PLoS ONE  2012;7(7):e40666.
Probiotic could be a promising alternative to antibiotics for the prevention of enteric infections; however, further information on the dose effects is required. In this study, weanling piglets were orally administered low- or high-dose Lactobacillus rhamnosus ACTT 7469 (1010 CFU/d or 1012 CFU/d) for 1 week before F4 (K88)-positive Escherichia coli challenge. The compositions of faecal and gastrointestinal microbiota were recorded; gene expression in the intestines was assessed by real-time PCR; serum tumour necrosis factor-α (TNF-α) concentrations and intestinal Toll-like receptor 4 (TLR4) were detected by ELISA and immunohistochemistry, respectively. Unexpectedly, high-dose administration increased the incidence of diarrhoea before F4+ETEC challenge, despite the fact that both doses ameliorated F4+ETEC-induced diarrhoea with increased Lactobacillus and Bifidobacterium counts accompanied by reduced coliform shedding in faeces. Interestingly, L. rhamnosus administration reduced Lactobacillus and Bifidobacterium counts in the colonic contents, and the high-dose piglets also had lower Lactobacillius and Bacteroides counts in the ileal contents. An increase in the concentration of serum TNF-α induced by F4+ETEC was observed, but the increase was delayed by L. rhamnosus. In piglets exposed to F4+ETEC, jejunal TLR4 expression increased at the mRNA and protein levels, while jejunal interleukin (IL)-8 and ileal porcine β-defensins 2 (pBD2) mRNA expression increased; however, these increases were attenuated by administration of L. rhamnosus. Notably, expression of jejunal TLR2, ileal TLR9, Nod-like receptor NOD1 and TNF-α mRNA was upregulated in the low-dose piglets after F4+ETEC challenge, but not in the high-dose piglets. These findings indicate that pretreatment with a low dose of L. rhamnosus might be more effective than a high dose at ameliorating diarrhoea. There is a risk that high-dose L. rhamnosus pretreatment may negate the preventative effects, thus decreasing the prophylactic benefits against potential enteric pathogens. Our data suggest a safe threshold for preventative use of probiotics in clinical practice.
PMCID: PMC3407149  PMID: 22848393
17.  Lactobacillus rhamnosus GR-1 enhances NF-kappaB activation in Escherichia coli-stimulated urinary bladder cells through TLR4 
BMC Microbiology  2012;12:15.
Epithelial cells of the urinary tract recognize pathogenic bacteria through pattern recognition receptors on their surface, such as toll-like receptors (TLRs), and mount an immune response through the activation of the NF-kappaB pathway. Some uropathogenic bacteria can subvert these cellular responses, creating problems with how the host eliminates pathogens. Lactobacillus is a genus of lactic acid bacteria that are part of the microbiota and consist of many probiotic strains, some specifically for urogenital infections. Immunomodulation has emerged as an important mode of action of probiotic and commensal lactobacilli and given the importance of epithelial cells, we evaluated the effect of the urogenital probiotic Lactobacillus rhamnosus GR-1 on epithelial immune activation.
Immune activation through the NF-kappaB pathway was initiated by stimulation of T24 urothelial cells with heat-killed Escherichia coli and this was further potentiated when cells were co-cultured with live L. rhamnosus GR-1. Heat-killed lactobacilli were poor activators of NF-kappaB. Concomitant stimulation of bladder cells with E. coli and L. rhamnosus GR-1 increased the levels of the pro-inflammatory cytokine TNF, whereas IL-6 and CXCL8 levels were reduced. Another probiotic, L. rhamnosus GG, was also able to potentiate NF-kappaB in these cells although at a significantly reduced level compared to the GR-1 strain. The transcript numbers and protein levels of the lipopolysaccharide receptor TLR4 were significantly increased after co-stimulation with E. coli and lactobacilli compared to controls. Furthermore, inhibition of TLR4 activation by polymixin B completely blocked the lactobacilli potentiation of NF-kappaB.
The immunological outcome of E. coli challenge of bladder cells was influenced by probiotic L. rhamnosus GR-1, by enhancing the activation of NF-kappaB and TNF release. Thus the urogenital probiotic L. rhamnosus GR-1 modulated the activation of the NF-kappaB through increased levels of TLR4 on the bladder cells and altered subsequent release of cytokines from urothelial cells. By influencing immunological factors such as TLR4, important in the process of fighting pathogens, lactobacilli could facilitate pathogen recognition and infection clearance.
PMCID: PMC3305351  PMID: 22264349
18.  Differential Toll-Like Receptor Recognition and Induction of Cytokine Profile by Bifidobacterium breve and Lactobacillus Strains of Probiotics ▿ 
The use of probiotics as a food supplement has gained tremendous interest in the last few years as beneficial effects were reported in gut homeostasis and nutrient absorption but also in immunocompromised patients, supporting protection from colonization or infection with pathogenic bacteria or fungi. As a treatment approach for inflammatory bowel diseases, a suitable probiotic strain would ideally be one with a low immunogenic potential. Insight into the immunogenicities and types of T-cell responses induced by potentially probiotic strains allows a more rational selection of a particular strain. In the present study, the bacterial strains Bifidobacterium breve (NumRes 204), Lactobacillus rhamnosus (NumRes1), and Lactobacillus casei (DN-114 001) were compared concerning their capacity to induce inflammatory responses in terms of cytokine production by human and mouse primary immune cells. It was demonstrated that the B. breve strain induced lower levels of the proinflammatory cytokine gamma interferon (IFN-γ) than the tested L. rhamnosus and L. casei strains. Both B. breve and lactobacilli induced cytokines in a Toll-like receptor 9 (TLR9)-dependent manner, while the lower inflammatory profile of B. breve was due to inhibitory effects of TLR2. No role for TLR4, NOD2, and C-type lectin receptors was apparent. In conclusion, TLR signaling is involved in the differentiation of inflammatory responses between probiotic strains used as food supplements.
PMCID: PMC3122558  PMID: 21288993
19.  Lactobacillus plantarum DK119 as a Probiotic Confers Protection against Influenza Virus by Modulating Innate Immunity 
PLoS ONE  2013;8(10):e75368.
Lactobacillus plantarum DK119 (DK119) isolated from the fermented Korean cabbage food was used as a probiotic to determine its antiviral effects on influenza virus. DK119 intranasal or oral administration conferred 100% protection against subsequent lethal infection with influenza A viruses, prevented significant weight loss, and lowered lung viral loads in a mouse model. The antiviral protective efficacy was observed in a dose and route dependent manner of DK119 administration. Mice that were treated with DK119 showed high levels of cytokines IL-12 and IFN-γ in bronchoalveolar lavage fluids, and a low degree of inflammation upon infection with influenza virus. Depletion of alveolar macrophage cells in lungs and bronchoalveolar lavages completely abrogated the DK119-mediated protection. Modulating host innate immunity of dendritic and macrophage cells, and cytokine production pattern appeared to be possible mechanisms by which DK119 exhibited antiviral effects on influenza virus infection. These results indicate that DK119 can be developed as a beneficial antiviral probiotic microorganism.
PMCID: PMC3790790  PMID: 24124485
20.  Increased Enterocyte Production in Gnotobiotic Rats Mono-Associated with Lactobacillus rhamnosus GG 
There is increasing scientific and commercial interest in using beneficial microorganisms (i.e., probiotics) to enhance intestinal health. Of the numerous microbial strains examined, Lactobacillus rhamnosus GG has been most extensively studied. Daily intake of L. rhamnosus GG shortens the course of rotavirus infection by mechanisms that have not been fully elucidated. Comparative studies with germfree and conventional rats have shown that the microbial status of an animal influences the intestinal cell kinetics and morphology. The present study was undertaken to study whether establishment of L. rhamnosus GG as a mono-associate in germfree rats influences intestinal cell kinetics and morphology. L. rhamnosus GG was easily established in germfree rats. After 3 days of mono-association, the rate of mitoses in the upper part of the small intestine (jejunum 1) increased as much as 14 and 22% compared to the rates in germfree and conventional counterparts, respectively. The most striking alteration in morphology was an increase in the number of cells in the villi. We hypothesis that the compartmentalized effects of L. rhamnosus GG may represent a reparative event for the mucosa.
PMCID: PMC123962  PMID: 12039764
21.  Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease 
Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry.
PMCID: PMC3911440  PMID: 24131686
22.  Maternal Supplementation with LGG Reduces Vaccine-Specific Immune Responses in Infants at High-Risk of Developing Allergic Disease 
Probiotics are defined as live micro-organisms that when administered in adequate amounts confer a health benefit on the host. Among their pleiotropic effects, inhibition of pathogen colonization at the mucosal surface as well as modulation of immune responses are widely recognized as the principal biological activities of probiotic bacteria. In recent times, the immune effects of probiotics have led to their application as vaccine adjuvants, offering a novel strategy for enhancing the efficacy of current vaccines. Such an approach is particularly relevant in regions where infectious disease burden is greatest and where access to complete vaccination programs is limited. In this study, we report the effects of the probiotic, Lactobacillus rhamnosus GG (LGG) on immune responses to tetanus, Haemophilus influenzae type b (Hib) and pneumococcal conjugate (PCV7) vaccines in infants. This study was conducted as part of a larger clinical trial assessing the impact of maternal LGG supplementation in preventing the development of atopic eczema in infants at high-risk for developing allergic disease. Maternal LGG supplementation was associated with reduced antibody responses against tetanus, Hib, and pneumococcal serotypes contained in PCV7 (N = 31) compared to placebo treatment (N = 30) but not total IgG levels. Maternal LGG supplementation was also associated with a trend to increased number of tetanus toxoid-specific T regulatory in the peripheral blood compared to placebo-treated infants. These findings suggest that maternal LGG supplementation may not be beneficial in terms of improving vaccine-specific immunity in infants. Further clinical studies are needed to confirm these findings. As probiotic immune effects can be species/strain specific, our findings do not exclude the potential use of other probiotic bacteria to modulate infant immune responses to vaccines.
PMCID: PMC3840393  PMID: 24324465
vaccine; LGG; probiotic; pneumococcal; Treg; immune modulation
23.  Persistence of Lactobacillus fermentum RC-14 and Lactobacillus rhamnosus GR-1 but Not L. rhamnosus GG in the Human Vagina as Demonstrated by Randomly Amplified Polymorphic DNA 
Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 are well-characterized probiotic strains with efficacy in the prevention and treatment of urogenital infections in women. The aim of the present study was to apply a molecular biology-based methodology for the detection of these strains and L. rhamnosus GG (a commercially available intestinal probiotic) in the human vagina in order to assess probiotic persistence at this site. Ten healthy women inserted vaginally a capsule containing either a combination of strains GR-1 and RC-14 or the GG strain for 3 consecutive nights. Vaginal swabs taken before and at various time points after probiotic insertion were analyzed, and the Lactobacillus flora was assessed by randomly amplified polymorphic DNA (RAPD) analysis. This method generated discrete DNA fingerprints for GR-1, RC-14, and GG and enabled successful detection of these strains in the vagina. Strain GR-1 and/or strain RC-14 was found to persist in the vaginal tract for up to 19 days after vaginal instillation, while L. rhamnosus GG was detectable for up to 5 days postadministration. In conclusion, the fates of probiotic L. rhamnosus and L. fermentum strains were successfully monitored in the human vagina by RAPD analysis. This technique provides molecular biology-based evidence that RC-14 and GR-1, strains selected as urogenital probiotics, persist in the human vagina and may be more suited to vaginal colonization than L. rhamnosus GG. This highlights the importance of proper selection of strains for urogenital probiotic applications.
PMCID: PMC119863  PMID: 11777835
24.  Assessment of Safety of Lactobacillus Strains Based on Resistance to Host Innate Defense Mechanisms 
Seven Lactobacillus strains belonging to four species were evaluated for pathogenicity as well as for in vitro sensitivity to the bactericidal mechanisms of macrophages in a rabbit infective endocarditis (IE) model. Two bacteremia-associated strains, L. rhamnosus PHLS A103/70 and L. casei PHLS A357/84, as well as the L. rhamnosus type strain and the probiotic L. rhamnosus strain ATCC 53103, showed moderate infectivity, and the virulence of the probiotic L. casei strain Shirota and type strains such as L. acidophilus ATCC 4356T and L. gasseri DSM 20243T in the model was negligible. The strains that showed pathogenic potential in the rabbit IE model (PHLS A357/84, PHLS A103/70, and ATCC 53103) were more resistant than strain Shirota to intracellular killing activity by mouse macrophages in vitro and also to bactericidal nitrogen intermediates, such as nitric oxide and NO2− ions. These results suggest that resistance to host innate defense systems, which would function at inflammatory lesions, should be considered in the safety assessment of Lactobacillus strains.
PMCID: PMC145284  PMID: 12522056
25.  Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 May Help Downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12 (p70) in the Neurogenic Bladder of Spinal Cord Injured Patient with Urinary Tract Infections: A Two-Case Study 
Advances in Urology  2009;2009:680363.
The management of urinary tract infection (UTI) in individuals with spinal cord injury (SCI) continues to be of concern, due to complications that can occur. An emerging concept that is a common underlying pathophysiological process is involved, wherein pathogens causing UTI have a role in inflammatory progression. We hypothesized that members of the commensal flora, such as lactobacilli, may counter this reaction through anti-inflammatory mediation. This was assessed in a pilot two-patient study in which probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri were administered to one patient and placebo to another, both along with antibiotics to treat acute UTI. Urinary TNF-alpha was significantly downregulated (P = .015) in the patient who received the probiotic and who used intermittent catheterization compared with patient on placebo and using an indwelling catheter. The extent to which this alteration resulted in improved well-being in spinal cord injured patients remains to be determined in a larger study.
PMCID: PMC2694319  PMID: 19753131

Results 1-25 (529738)