Search tips
Search criteria

Results 1-25 (839849)

Clipboard (0)

Related Articles

1.  HLA DR-DQ Haplotypes and Genotypes and Type 1 Diabetes Risk 
Diabetes  2008;57(4):1084-1092.
The Type 1 Diabetes Genetics Consortium has collected type 1 diabetic families worldwide for genetic analysis. The major genetic determinants of type 1 diabetes are alleles at the HLA-DRB1 and DQB1 loci, with both susceptible and protective DR-DQ haplotypes present in all human populations. The aim of this study is to estimate the risk conferred by specific DR-DQ haplotypes and genotypes.
Six hundred and seven Caucasian families and 38 Asian families were typed at high resolution for the DRB1, DQA1, and DQB1 loci. The association analysis was performed by comparing the frequency of DR-DQ haplotypes among the chromosomes transmitted to an affected child with the frequency of chromosomes not transmitted to any affected child.
A number of susceptible, neutral, and protective DR-DQ haplotypes have been identified, and a statistically significant hierarchy of type 1 diabetes risk has been established. The most susceptible haplotypes are the DRB1*0301-DQA1*0501-DQB1*0201 (odds ratio [OR] 3.64) and the DRB1*0405-DQA1*0301-DQB1*0302, DRB1*0401-DQA1*0301-DQB*0302, and DRB1*0402-DQA1*0301-DQB1*0302 haplotypes (ORs 11.37, 8.39, and 3.63), followed by the DRB1*0404-DQA1*0301-DQB1*0302 (OR 1.59) and the DRB1*0801-DQB1*0401-DQB1*0402 (OR 1.25) haplotypes. The most protective haplotypes are DRB1*1501-DQA1*0102-DQB1*0602 (OR 0.03), DRB1*1401-DQA1*0101-DQB1*0503 (OR 0.02), and DRB1*0701-DQA1*0201-DQB1*0303 (OR 0.02).
Specific combinations of alleles at the DRB1, DQA1, and DQB1 loci determine the extent of haplotypic risk. The comparison of closely related DR-DQ haplotype pairs with different type 1 diabetes risks allowed identification of specific amino acid positions critical in determining disease susceptibility. These data also indicate that the risk associated with specific HLA haplotypes can be influenced by the genotype context and that the trans-complementing heterodimer encoded by DQA1*0501 and DQB1*0302 confers very high risk.
PMCID: PMC4103420  PMID: 18252895
2.  Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls 
Annals of the rheumatic diseases  2009;69(5):822-827.
To determine human leucocyte antigen-class II (HLA-class II) (DRB1, DQB1, DQA1 and DPB1) alleles, haplotypes and shared epitopes associated with scleroderma (systemic sclerosis (SSc)) and its subphenotypes in a large multi-ethnic US cohort by a case–control association study.
Patients and methods
1300 SSc cases (961 white, 178 black and 161 Hispanic subjects) characterised for clinical skin forms (limited vs diffuse), SSc-specific autoantibodies (anticentromere (ACA), anti-topoisomerase I (ATA), anti-RNA polymerase III (ARA), anti-U3 ribonucleoprotein (fibrillarin)) and others were studied using molecular genotyping. Statistical analyses in SSc itself by ethnicity, gender, skin type and autoantibodies were performed using exact logistic regression modelling for dominant, additive and recessive effects from HLA.
The strongest positive class II associations with SSc in white and Hispanic subjects were the DRB1*1104, DQA1*0501, DQB1*0301 haplotype and DQB1 alleles encoding a non-leucine residue at position 26 (DQB1 26 epi), while the DRB1*0701, DQA1*0201, DQB1*0202 haplotype and DRB1*1501 haplotype were negatively correlated and possibly protective in dominant and recessive models, respectively. These associations did not discriminate between limited and diffuse SSc. SSc in black subjects was associated with DRB1*0804, DQA1*0501, DQB1*0301 alleles. DPB1*1301 showed the highest odds ratio for ATA (OR = 14). Moreover, it showed no linkage disequilibrium or gene interaction with DR/DQ. ACA was best explained by DQB1*0501 and DQB1*26 epi alleles and ARA by DRB1*0404, DRB1*11 and DQB1*03 alleles in white and Hispanic subjects but DRB1*08 in black subjects.
These data indicate unique and multiple HLA-class II effects in SSc, especially on autoantibody markers of different subphenotypes.
PMCID: PMC2916702  PMID: 19596691
3.  Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls 
Annals of the Rheumatic Diseases  2010;69(5):822-827.
To determine human leucocyte antigen-class II (HLA-class II) (DRB1, DQB1, DQA1 and DPB1) alleles, haplotypes and shared epitopes associated with scleroderma (systemic sclerosis (SSc)) and its subphenotypes in a large multi-ethnic US cohort by a case–control association study.
Patients and methods
1300 SSc cases (961 white, 178 black and 161 Hispanic subjects) characterised for clinical skin forms (limited vs diffuse), SSc-specific autoantibodies (anticentromere (ACA), anti-topoisomerase I (ATA), anti-RNA polymerase III (ARA), anti-U3 ribonucleoprotein (fibrillarin)) and others were studied using molecular genotyping. Statistical analyses in SSc itself by ethnicity, gender, skin type and autoantibodies were performed using exact logistic regression modelling for dominant, additive and recessive effects from HLA.
The strongest positive class II associations with SSc in white and Hispanic subjects were the DRB1*1104, DQA1*0501, DQB1*0301 haplotype and DQB1 alleles encoding a non-leucine residue at position 26 (DQB1 26 epi), while the DRB1*0701, DQA1*0201, DQB1*0202 haplotype and DRB1*1501 haplotype were negatively correlated and possibly protective in dominant and recessive models, respectively. These associations did not discriminate between limited and diffuse SSc. SSc in black subjects was associated with DRB1*0804, DQA1*0501, DQB1*0301 alleles. DPB1*1301 showed the highest odds ratio for ATA (OR = 14). Moreover, it showed no linkage disequilibrium or gene interaction with DR/DQ. ACA was best explained by DQB1*0501 and DQB1*26 epi alleles and ARA by DRB1*0404, DRB1*11 and DQB1*03 alleles in white and Hispanic subjects but DRB1*08 in black subjects.
These data indicate unique and multiple HLA-class II effects in SSc, especially on autoantibody markers of different subphenotypes.
PMCID: PMC2916702  PMID: 19596691
4.  HLA class II DR and DQ genotypes and haplotypes associated with rheumatic fever among a clinically homogeneous patient population of Latvian children 
The HLA system is being paid more and more attention because it is very significant in polymorphous immunological reactions. Several studies have suggested that genetic susceptibility to rheumatic fever (RF) and rheumatic heart disease (RHD) is linked to HLA class II alleles. We hypothesized that HLA class II associations within RHD may be more consistent if analysed amongst patients with a relatively homogeneous clinical outcome. A total of 70 RF patients under the age of 18 years were surveyed and analysed in Latvia. HLA genotyping of DQA1, DQB1 and DRB1 was performed using PCR with amplification with sequence-specific primers. We also used results from a previous study of DQB1 and DRB1 genotyping. In the RF patients, HLA class II DQA1*0401 was found more frequently compared to DQA1*0102. In the RF homogeneous patient groups, DQA1*0402 has the highest odds ratio. This is also the case in the multivalvular lesion (MVL) group, together with DQA1*0501 and DQA1*0301. In the chorea minor patients, DQA1*0201 was often found. Significant HLA DQA1 protective genotypes were not detected, although DQA1 genotypes *0103/*0201 and *0301/*0501 were found significantly and frequently. In the distribution of HLA DRB1/DQA1 genotypes, *07/*0201 and *01/*0501 were frequently detected; these also occurred significantly often in the MVL group. The genotype *07/*0201 was frequently found in Sydenhamn's chorea patients that had also acquired RHD, but DRB1*04/DQA1*0401 was often apparent in RF patients without RHD. In the distribution of HLA DQA1/DQB1 genotypes, both in RF patients and in the homogeneous patient groups, the least frequent were *0102/*0602-8. The genotype DQA1*0501 with the DQB1 risk allele *0301 was often found in the MVL group. The genotype *0301/*0401-2 was frequently found in the RF and Sydenhamn's chorea patient groups. The haplotype *07-*0201-*0302 was frequently found in RF and homogeneous patient groups, including the MVL group. In addition, haplotypes *04-*0401-*0301 and *04-*0301-*0401-2 were frequent amongst patients with Sydenhamn's chorea. The protective alleles DQA1*0102 and DQB1*0602-8 in the haplotype DRB1*15 were less frequently found in RF patients. The results of the present study support our hypothesis and indicate that certain HLA class II haplotypes are associated with risk for or protection against RHD and that these associations are more evident in patients in clinically homogeneous groups.
PMCID: PMC2206337  PMID: 17559688
5.  A cis-eQTL of HLA-DRB1 and a frameshift mutation of MICA contribute to the pattern of association of HLA alleles with cervical cancer 
Cancer Medicine  2014;3(2):445-452.
The association of classic human leukocyte antigen (HLA) alleles with risk of cervical cancer has been extensively studied, and a protective effect has consistently been found for DRB1*1301, DQA1*0103, and/or DQB1*0603 (these three alleles are in perfect linkage disequilibrium [LD] and often occur on the same haplotype in Europeans), while reports have differed widely with respect to the effect of HLA-B*07, DRB1*1501, and/or DQB1*0602 (the last two alleles are also in perfect LD in Europeans). It is not clear whether the reported HLA alleles are responsible for the differences in cervical cancer susceptibility, or if functional variants at other locations within the major histocompatibility complex (MHC) region may explain the effect. In order to assess the relative contribution of both classic HLA alleles and single-nucleotide polymorphisms (SNPs) within the MHC region to cervical cancer susceptibility, we have imputed classic HLA alleles in 1034 cervical cancer patients and 3948 controls in a Swedish population for an integrated analysis. We found that the protective haplotype DRB1*1301-DQA1*0103-DQB1*0603 has a direct effect on cervical cancer and always occurs together with the C allele of a HLA-DRB1 cis-eQTL (rs9272143), which increases the expression of HLA-DRB1. The haplotype rs9272143C-DRB1*1301-DQA1*0103-DQB1*0603 conferred the strongest protection against cervical cancer (odds ratio [OR] = 0.41, 95% confidence interval [CI] = 0.32–0.52, P = 6.2 × 10−13). On the other hand, the associations with HLA-B*0702 and DRB1*1501-DQB1*0602 are attributable to the joint effects of both the HLA-DRB1 cis-eQTL (rs9272143) and a frameshift mutation (G inserion of rs67841474, also known as A5.1) of the MHC class I polypeptide-related sequence A gene (MICA). Variation in LD between the classic HLA loci, rs9272143 and rs67841474 between populations may explain the different associations of HLA-B*07 and DRB1*1501-DQB1*0602 with cervical cancer between studies. The mechanism suggested may also explain similar inconsistent results for other HLA-associated diseases.
PMCID: PMC3987094  PMID: 24520070
Cervical cancer; cis-eQTL; frameshift mutation; HLA; MICA
6.  HLA-DR-DQ haplotypes and genotypes in Finnish patients with rheumatoid arthritis 
Annals of the Rheumatic Diseases  2004;63(11):1406-1412.
Objectives: To elucidate the contribution of HLA-DR-DQ haplotypes and their genotypic combinations to susceptibility to rheumatoid arthritis, and to evaluate the various models for HLA associated risk for the disease in a series of Finnish patients.
Methods: 322 Finnish patients with rheumatoid arthritis were typed for common north European HLA-DR-DQ haplotypes and compared with a series of 1244 artificial family based control haplotypes.
Results: The association of the so called shared epitope (SE) haplotypes (DRB1*0401, *0404, *0408, and *01) with rheumatoid arthritis was confirmed. The DRB1*0401 haplotypes carried a far stronger risk for the disease than the (DRB1*01/10)-(DQA1*01)-DQB1*0501 haplotypes. Seven protective HLA haplotypes—(DRB1*15)-(DQA1*01)-DQB1*0602; (DRB1*08)-(DQA1*04)-DQB1*04; (DRB1*11/12)-DQA1*05-DQB1*0301; (DRB1*1301)-(DQA1*01)-DQB1*0603; (DRB1*1302)-(DQA1*01)-DQB1*0604; (DRB1*07)-DQA1*0201-DQB1*0303; and (DRB1*16)- (DQA1*01)-DQB1*0502—were identified. In accordance with the reshaped shared epitope hypothesis, all the protective DRB1 alleles in these haplotypes share either isoleucine at position 67 or aspartic acid at position 70 in their third hypervariable region motif. However, differences in the disease risk of haplotypes carrying the same DR but different DQ alleles were also found: (DRB1*07)-DQA1*0201-DQB1*0303 was protective, while (DRB1*07)-DQA1*0201-DQB1*02 was neutral. The same haplotypes carried different risks for rheumatoid arthritis depending on their combination in genotypes.
Conclusions: When assessing the influence of HLA genes on the susceptibility to rheumatoid arthritis, not only should the HLA-DR or -DQ alleles or haplotypes be unravelled but also the genotype. The effect of HLA class II region genes is more complicated than any of the existing hypotheses can explain.
PMCID: PMC1754800  PMID: 15479890
7.  High-Density SNP Mapping of the HLA Region Identifies Multiple Independent Susceptibility Loci Associated with Selective IgA Deficiency 
PLoS Genetics  2012;8(1):e1002476.
Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10−57; OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10−17; OR = 4.28) and the DRB1*1501 (combined P = 2.24×10−35; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis.
Author Summary
The human leukocyte antigen (HLA) locus is robustly associated with many immune-mediated conditions. However, identification of the genetic variants contributing to the disease pathophysiology has been greatly hampered by the extensive chromosomal conservation within this genomic region. To better understand the association of the HLA locus in selective IgA deficiency (IgAD), we used an extensive genotyping database from a recent genome-wide association study (GWAS) to generate a high-density SNP map of this region in a combined sample of >2,700 individuals from 3 independent European populations. In addition, we took advantage of recent methodological advances to impute the more common HLA-B, -DRB1, and -DQB1 alleles in all subjects. We confirmed the strong disease-association of the HLA locus and identified several different signals located in specific conserved HLA haplotypes contributing independent risk or protection for IgAD. Further analysis of the chromosomal sequences associated with the associated HLA alleles allowed us to refine the mapping of the susceptibility variants. These findings represent the most comprehensive high-density SNP mapping of the HLA locus in IgAD to date and provide important new information as to the location of the genetic variants contributing to this common immune deficiency.
PMCID: PMC3266887  PMID: 22291608
8.  Human Leukocyte Antigen and Interleukin 2, 10 and 12p40 Cytokine Responses to Measles: Is There Evidence of the HLA Effect? 
Cytokine  2007;36(3-4):173-179.
HLA class I and class II associations were examined in relation to measles virus-specific cytokine responses in 339 healthy children who had received two doses of live attenuated measles vaccine. Multivariate linear regression modeling analysis revealed suggestions of associations between the expression of DPA1*0201 (p=0.03) and DPA1*0202 (p=0.09) alleles and interleukin-2 (IL-2) cytokine production (global p-value 0.06). Importantly, cytokine production and DQB1 allele associations (global p-value 0.04) revealed that the alleles with the strongest association with IL-10 secretion were DQB1*0302 (p=0.02), DQB1*0303 (p=0.07) and DQB1*0502 (p=0.06). Measles-specific IL-10 secretion associations approached significance with DRB1 and DQA1 loci (both global p-values 0.08). Specifically, suggestive associations were found between DRB1*0701 (p=0.07), DRB1*1103 (p=0.06), DRB1*1302 (p=0.08), DRB1*1303 (p=0.06), DQA1*0101 (p=0.08), and DQA1*0201 (p=0.04) alleles and measles-induced IL-10 secretion. Further, suggestive association was observed between specific DQA1*0505 (p=0.002) alleles and measles-specific IL-12p40 secretion (global p-value 0.09) indicating that cytokine responses to measles antigens are predominantly influenced by HLA class II genes. We found no associations between any of the alleles of HLA A, B, and Cw loci and cytokine secretion. These novel findings suggest that HLA class II genes may influence the level of cytokine production in the adaptive immune responses to measles vaccine.
PMCID: PMC1948883  PMID: 17234427
Measles Vaccine; HLA; Interleukin-2; Interleukin-10; Interleukin-12p40; ELISA
9.  Identification of Two Independent Risk Factors for Lupus within the MHC in United Kingdom Families 
PLoS Genetics  2007;3(11):e192.
The association of the major histocompatibility complex (MHC) with SLE is well established yet the causal variants arising from this region remain to be identified, largely due to inadequate study design and the strong linkage disequilibrium demonstrated by genes across this locus. The majority of studies thus far have identified strong association with classical class II alleles, in particular HLA-DRB1*0301 and HLA-DRB1*1501. Additional associations have been reported with class III alleles; specifically, complement C4 null alleles and a tumor necrosis factor promoter SNP (TNF-308G/A). However, the relative effects of these class II and class III variants have not been determined. We have thus used a family-based approach to map association signals across the MHC class II and class III regions in a cohort of 314 complete United Kingdom Caucasian SLE trios by typing tagging SNPs together with classical typing of the HLA-DRB1 locus. Using TDT and conditional regression analyses, we have demonstrated the presence of two distinct and independent association signals in SLE: HLA-DRB1*0301 (nominal p = 4.9 × 10−8, permuted p < 0.0001, OR = 2.3) and the T allele of SNP rs419788 (nominal p = 4.3 × 10−8, permuted p < 0.0001, OR = 2.0) in intron 6 of the class III region gene SKIV2L. Assessment of genotypic risk demonstrates a likely dominant model of inheritance for HLA-DRB1*0301, while rs419788-T confers susceptibility in an additive manner. Furthermore, by comparing transmitted and untransmitted parental chromosomes, we have delimited our class II signal to a 180 kb region encompassing the alleles HLA-DRB1*0301-HLA-DQA1*0501-HLA-DQB1*0201 alone. Our class III signal importantly excludes independent association at the TNF promoter polymorphism, TNF-308G/A, in our SLE cohort and provides a potentially novel locus for future genetic and functional studies.
Author Summary
Systemic lupus erythematosus (SLE/lupus) is a complex autoimmune disease in which the body's immune system attacks its own tissues, causing inflammation in a variety of different organs such as the skin, joints, and kidneys. The cause of lupus is not known, but genes play a significant role in the predisposition to disease. The major histocompatibility complex (MHC) on Chromosome 6 contains at least 100 different genes that affect the immune system, including the genes with the strongest effect on lupus susceptibility. Despite the importance of the MHC in SLE, the identity of the actual genes in the MHC region that cause SLE has remained elusive. In the present study, we used the latest set of genetic markers present at the MHC in lupus families to identify the actual genes that affect the disease. To our knowledge, we have shown for the first time that two separate groups of genes are involved in SLE. One group of genes alters how the immune system may inappropriately target its own tissues in the disease. How the second set of genes predisposes to SLE is the subject of ongoing study.
PMCID: PMC2065882  PMID: 17997607
10.  The Inheritance of Resistance Alleles in Multiple Sclerosis 
PLoS Genetics  2007;3(9):e150.
Multiple sclerosis (MS) is a complex trait in which alleles at or near the class II loci HLA-DRB1 and HLA-DQB1 contribute significantly to genetic risk. HLA-DRB1*15 and HLA-DRB1*17-bearing haplotypes and interactions at the HLA-DRB1 locus increase risk of MS but it has taken large samples to identify resistance HLA-DRB1 alleles. In this investigation of 7,093 individuals from 1,432 MS families, we have assessed the validity, mode of inheritance, associated genotypes, and the interactions of HLA-DRB1 resistance alleles. HLA-DRB1*14-, HLA-DRB1*11-, HLA-DRB1*01-, and HLA-DRB1*10-bearing haplotypes are protective overall but they appear to operate by different mechanisms. The first type of resistance allele is characterised by HLA-DRB1*14 and HLA-DRB1*11. Each shows a multiplicative mode of inheritance indicating a broadly acting suppression of risk, but a different degree of protection. In contrast, a second type is exemplified by HLA-DRB1*10 and HLA-DRB1*01. These alleles are significantly protective when they interact specifically in trans with HLA-DRB1*15-bearing haplotypes. HLA-DRB1*01 and HLA-DRB1*10 do not interact with HLA-DRB1*17, implying that several mechanisms may be operative in major histocompatibility complex–associated MS susceptibility, perhaps analogous to the resistance alleles. There are major practical implications for risk and for the exploration of mechanisms in animal models. Restriction of antigen presentation by HLA-DRB1*15 seems an improbably simple mechanism of major histocompatibility complex–associated susceptibility.
Author Summary
Multiple sclerosis (MS) is a complex neurological disease with a strong genetic component. With the possible exception of a weak association at Chromosome 5p, the major histocompatibility complex is the only locus consistently linked to MS. Because of this the major histocompatibility complex has recently undergone renewed attention. A region at or near the gene HLA-DRB1 influences the risk of MS. HLA-DRB1 comes in over 400 different forms (or alleles). A common form in Europe, named 1501, increases risk of MS by 3-fold. In this paper, to our knowledge the largest-ever analysis of this region in MS, we examine the inheritance of newly discovered HLA-DRB1 MS resistance alleles, namely HLA-DRB1*14, HLA-DRB1*11, *10, and HLA-DRB1*01. We show that HLA-DRB1*14 and HLA-DRB1*11 are dominantly protective; e.g., HLA-DRB1*14 significantly reduces the risk associated with HLA-DRB1*15 when they are inherited together. This may explain, in part, why MS is rare in Asia; there, the HLA-DRB1*14 allele is frequent. HLA-DRB1*01 and HLA-DRB1*10 are protective only in the presence of HLA-DRB1*15. HLA-DRB1*14 and HLA-DRB1*11 haplotypes and HLA-DRB1*01 and HLA-DRB1*10 haplotypes share common ancestral origins and this may be why the alleles can be grouped in terms of their protective nature. Discovery of the mechanism of protection against MS may lead to the discovery of new treatments to make a palpable difference in the lives of those who have been affected by this devastating disease.
PMCID: PMC1971120  PMID: 17845076
11.  Association of amino acid sequences in the HLA-DQB1 first domain with antitopoisomerase I autoantibody response in scleroderma (progressive systemic sclerosis). 
Journal of Clinical Investigation  1992;90(3):973-980.
Previous studies in Caucasians with progressive systemic sclerosis (PSS) have suggested associations of antitopoisomerase I (antitopo I) autoantibodies with either serologically defined HLA-DR2 or DR5. To better define class II HLA associations with the antitopo I response, 161 PSS patients (132 Caucasians and 29 American blacks) were studied for antitopo I autoantibodies by immunodiffusion and immunoblotting, and their HLA-DRB1, DRB3, DQA1, and DQB1 alleles were determined by restriction fragment length polymorphic analysis and DNA oligotyping. Among Caucasians with antitopo I, HLA-DR5(DRB1*1101-*1104), DRB3*0202 and DQw3 (DQw7,8,9) were significantly increased in frequency. In American blacks, however, only HLA-DQB1*0301(DQw7) was significantly increased. The presence of HLA-DQB1*0301(DQw7) and other HLA-DQB1 alleles bearing the uncharged polar amino acid residue tyrosine at position 30 of the outermost domain was found in all antitopo I-positive Caucasian PSS patients compared with 66% of antitopo I-negative PSS patients (pc = 0.007) and 70% of normal controls (pc = 0.008), as well as all antitopo I-positive black patients. The association with HLA-DQB1 was independent of HLA-DR5(DRB1*1101-*1104) or any other HLA-DRB1, DRB3, or DQA1 alleles. Alternative or additional candidate epitopes for this autoimmune response include alanine at position 38 and threonine at position 77 of these same DQB1 alleles. These data suggest that genetic predisposition to the antitopo I response in PSS is associated most closely with the HLA-DQB1 locus.
PMCID: PMC329953  PMID: 1326003
12.  HLA Class I and Genetic Susceptibility to Type 1 Diabetes 
Diabetes  2010;59(11):2972-2979.
We report here genotyping data and type 1 diabetes association analyses for HLA class I loci (A, B, and C) on 1,753 multiplex pedigrees from the Type 1 Diabetes Genetics Consortium (T1DGC), a large international collaborative study.
Complete eight-locus HLA genotyping data were generated. Expected patient class I (HLA-A, -B, and -C) allele frequencies were calculated, based on linkage disequilibrium (LD) patterns with observed HLA class II DRB1-DQA1-DQB1 haplotype frequencies. Expected frequencies were compared to observed allele frequencies in patients.
Significant type 1 diabetes associations were observed at all class I HLA loci. After accounting for LD with HLA class II, the most significantly type 1 diabetes–associated alleles were B*5701 (odds ratio 0.19; P = 4 × 10−11) and B*3906 (10.31; P = 4 × 10−10). Other significantly type 1 diabetes–associated alleles included A*2402, A*0201, B*1801, and C*0501 (predisposing) and A*1101, A*3201, A*6601, B*0702, B*4403, B*3502, C*1601, and C*0401 (protective). Some alleles, notably B*3906, appear to modulate the risk of all DRB1-DQA1-DQB1 haplotypes on which they reside, suggesting a class I effect that is independent of class II. Other class I type 1 diabetes associations appear to be specific to individual class II haplotypes. Some apparent associations (e.g., C*1601) could be attributed to strong LD to another class I susceptibility locus (B*4403).
These data indicate that HLA class I alleles, in addition to and independently from HLA class II alleles, are associated with type 1 diabetes.
PMCID: PMC2963558  PMID: 20798335
13.  HLA class II gene associations in African American Type 1 diabetes reveal a protective HLA-DRB1*03 haplotype 
Diabetic Medicine  2013;30(6):710-716.
Owing to strong linkage disequilibrium between markers, pinpointing disease associations within genetic regions is difficult in European ancestral populations, most notably the very strong association of the HLA-DRB1*03-DQA1*05:01-DQB1*02:01 haplotype with Type 1 diabetes risk, which is assumed to be because of a combination of HLA-DRB1 and HLA-DQB1. In contrast, populations of African ancestry have greater haplotype diversity, offering the possibility of narrowing down regions and strengthening support for a particular gene in a region being causal. We aimed to study the human leukocyte antigen (HLA) region in African American Type 1 diabetes.
Two hundred and twenty-seven African American patients with Type 1 diabetes and 471 African American control subjects were tested for association at the HLA class II genes, HLA-DRB1, HLA-DQA1, HLA-DQB1 and 5147 single nucleotide polymorphisms across the major histocompatibility complex region using logistic regression models. Population admixture was accounted for with principal components analysis.
Single nucleotide polymorphism marker associations were explained by the HLA associations, with the major peak over the class II loci. The HLA association overall was extremely strong, as expected for Type 1 diabetes, even in African Americans in whom diabetes diagnosis is heterogeneous. In addition, there were unique features: the HLA-DRB1*03 haplotype was split into HLA-DRB1*03:01, which confers greatest susceptibility in these samples (odds ratio 3.17, 95% CI 1.72–5.83) and HLA-DRB1*03:02, an allele rarely observed in Europeans, which confers the greatest protection in these African American samples (odds ratio 0.22, 95% CI 0.09–0.55).
The unique diversity of the African HLA region we have uncovered supports a specific and major role for HLA-DRB1 in HLA-DRB1*03 haplotype-associated Type 1 diabetes risk.
PMCID: PMC3709123  PMID: 23398374
14.  Next Generation Sequencing Reveals the Association of DRB3*02:02 With Type 1 Diabetes 
Diabetes  2013;62(7):2618-2622.
The primary associations of the HLA class II genes, HLA-DRB1 and HLA-DQB1, and the class I genes, HLA-A and HLA-B, with type 1 diabetes (T1D) are well established. However, the role of polymorphism at the HLA-DRB3, HLA-DRB4, and HLA-DRB5 loci remains unclear. In two separate studies, one of 500 subjects and 500 control subjects and one of 366 DRB1*03:01–positive samples from selected multiplex T1D families, we used Roche 454 sequencing with Conexio Genomics ASSIGN ATF 454 HLA genotyping software analysis to analyze sequence variation at these three HLA-DRB loci. Association analyses were performed on the two HLA-DRB loci haplotypes (DRB1-DRB3, -DRB4, or -DRB5). Three common HLA-DRB3 alleles (*01:01, *02:02, *03:01) were observed. DRB1*03:01 haplotypes carrying DRB3*02:02 conferred a higher T1D risk than did DRB1*03:01 haplotypes carrying DRB3*01:01 in DRB1*03:01/*03:01 homozygotes with two DRB3*01:01 alleles (odds ratio [OR] 3.4 [95% CI 1.46–8.09]), compared with those carrying one or two DRB3*02:02 alleles (OR 25.5 [3.43–189.2]) (P = 0.033). For DRB1*03:01/*04:01 heterozygotes, however, the HLA-DRB3 allele did not significantly modify the T1D risk of the DRB1*03:01 haplotype (OR 7.7 for *02:02; 6.8 for *01:01). These observations were confirmed by sequence analysis of HLA-DRB3 exon 2 in a targeted replication study of 281 informative T1D family members and 86 affected family-based association control (AFBAC) haplotypes. The frequency of DRB3*02:02 was 42.9% in the DRB1*03:01/*03:01 patients and 27.6% in the DRB1*03:01/*04 (P = 0.005) compared with 22.6% in AFBAC DRB1*03:01 chromosomes (P = 0.001). Analysis of T1D-associated alleles at other HLA loci (HLA-A, HLA-B, and HLA-DPB1) on DRB1*03:01 haplotypes suggests that DRB3*02:02 on the DRB1*03:01 haplotype can contribute to T1D risk.
PMCID: PMC3712046  PMID: 23462545
15.  Association of HLA-DRB1, DQA1 and DQB1 Alleles and Haplotypes with Common Variable Immunodeficiency in Iranian Patients 
Common Variable Immunodeficiency (CVID) is an antibody deficiency syndrome that often co-occurs in families with selective IgA deficiency (IgAD). This study was designed to investigate the frequency of DR and DQ loci of HLA class II region in common variable immunodeficiency (CVID) patients. Fifteen Iranian patients with CVID or IgAD (mean age 14.6±5.4, range 4-25 years; 9 male and 6 female) and 63 healthy controls were studied. Establishment of B-lymphoblastoid cell lines was performed using Epstein-Barr-virus (EBV) immortalization technique and HLA alleles were typed using polymerase chain reaction based on sequence specific primers (PCR-SSP). DRB1 alleles including DRB1 *04 (p=0.03) and DRB1 *11 (p=0.01) significantly showed higher frequency in the studied subjects. In contrast, DRB1 *301 (p=0.04) and DRB1 *07 (p=0.02) alleles were negatively associated with CVID. For DQB1 and DQA1 loci, DQB1 *0302 (p=0.047) and DQA1 *03011 (p=0.001) demonstrated high frequency in cases, while DQB1 *0201 (p=0.02) and DQA1 *0201 (p=0.01) were detected to be low when compared to controls. Haplotype analysis indicated that frequency of DRB1*04-DQB1*03011-DQA1 *03011 (p=0.02), DRB1 *11-DQB1 *03011-DQA1 *0505 (p=0.047), DRB1 *11-DQA1 *0505 (p=0.04) and DRB1*04-DQA1*03011 (p=0.02) haplotypes were significantly higher in patient group, while only the frequency of the DRB1 *07-DQA1 *0201 haplotype gene was statistically lower in control group (p=0.02). According to the results, it could be deduced that the HLA-DR and DQ loci may contribute to the pathogenesis of CVID or they might be considered as suitable markers for the possibility of the occurrence of this genetic defect.
PMCID: PMC3558207  PMID: 23408509
HLA antigens; Alleles; Haplotypes; Immunodeficiency
16.  MHC class II, tumour necrosis factor α, and lymphotoxin α gene haplotype associations with serological subsets of systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2005;65(4):488-494.
To conduct a case–control study to investigate whether there are independent tumour necrosis factor α (TNFα) or lymphotoxin α (LTα) haplotype associations with SLE or with any of the major serological subsets of SLE.
157 patients with SLE were genotyped for HLA‐DRB1, HLA‐DQB1, TNFα, and LTα alleles by polymerase chain reaction and compared with 245 normal white controls. For TNFα, six single nucleotide polymorphisms (SNPs) at positions −1031, −863, −857, −308, −238, and +488 and for LTα three SNPs at positions +720, +365, and +249 were studied to assign six TNFα haplotypes (TNF1‐6) and four LTα haplotypes (LTA1‐4). All SLE patients had full serological profiles on serial samples.
The most significant association with SLE overall was with HLA‐DR3 (p<0.001; odds ratio (OR) = 2.5 (95% confidence interval, 1.6 to 3.8)) and the extended haplotype HLA‐DQB1*0201;DRB1*0301;TNF2;LTA2 (p<0.001; OR = 2.3 (1.4 to 3.7)). Associations were strongest in the anti‐La positive group (13%) of SLE patients (HLA‐DR3, OR = 71 (9 to 539); HLA‐DQB1*0201, OR = 35 (5 to 267); TNF2, OR = 10 (2.8 to 36), and LTA2, OR = 4.9 (1.1 to 21)). There was an increase in the HLA‐DR2 associated extended haplotype (HLA‐DQB1*0602;DRB1*1501;TNF1;LTA1) in patients with anti‐Ro in the absence of anti‐La (p<0.005; OR = 3.9 (1.5 to 10)). The HLA‐DR7 extended haplotype (HLA‐DQB1*0303; DRB1*0701/2; TNF5;LTA3) was decreased in SLE overall (p<0.02; OR = 0.2 (0.05 to 0.8)).
The strongest association in this predominantly white population with SLE was between HLA‐DR3 and anti‐La, which seemed to account for any associations with TNFα alleles on an extended DR3 haplotype.
PMCID: PMC1798099  PMID: 16107511
lupus erythematosus; MHC class II; tumour necrosis factor; lymphotoxin; autoantibody
17.  Association of chronic fatigue syndrome with human leucocyte antigen class II alleles 
Journal of Clinical Pathology  2005;58(8):860-863.
Background: A genetic component to the development of chronic fatigue syndrome (CFS) has been proposed, and a possible association between human leucocyte antigen (HLA) class II antigens and chronic fatigue immune dysfunction has been shown in some, but not all, studies.
Aims: To investigate the role of HLA class II antigens in CFS.
Methods: Forty nine patients with CFS were genotyped for the HLA-DRB1, HLA-DQA1, and HLA-DQB1 alleles and the frequency of these alleles was compared with a control group comprising 102 normal individuals from the UK. All patients and controls were from the same region of England and, apart from two patients, were white.
Results: Analysis by 2 × 2 contingency tables revealed an increased frequency of HLA-DQA1*01 alleles in patients with CFS (51.0% v 35%; odds ratio (OR), 1.93; p  =  0.008). HLA-DQB1*06 was also increased in the patients with CFS (30.2% v 20.0%; OR, 1.73, p  =  0.052). Only the association between HLA-DQA1*01 and CFS was significant in logistic regression models containing HLA-DQA1*01 and HLA-DRQB1*06, and this was independent of HLA-DRB1 alleles. There was a decreased expression of HLA-DRB1*11 in CFS, although this association disappeared after correction for multiple comparisons.
Conclusions: CFS may be associated with HLA-DQA1*01, although a role for other genes in linkage disequilibrium cannot be ruled out.
PMCID: PMC1770867  PMID: 16049290
chronic fatigue syndrome; HLA; association
18.  Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A 
Diabetes, obesity & metabolism  2009;11(Suppl 1):31-45.
Until recently, human leucocyte antigen (HLA) class II-independent associations with type 1 diabetes (T1D) in the Major Histocompatibility Complex (MHC) region were not adequately characterized owing to insufficient map coverage, inadequate statistical approaches and strong linkage disequilibrium spanning the entire MHC. Here we test for HLA class II-independent associations in the MHC using fine mapping data generated by the Type 1 Diabetes Genetics Consortium (T1DGC).
We have applied recursive partitioning to the modelling of the class II loci and used stepwise conditional logistic regression to test ~1534 loci between 29 and 34 Mb on chromosome 6p21, typed in 2240 affected sibpair (ASP) families.
Preliminary analyses confirm that HLA-B (at 31.4 Mb), HLA-A (at 30.0 Mb) are associated with T1D independently of the class II genes HLA-DRB1 and HLA-DQB1 (P = 6.0 × 10−17 and 8.8 × 10−13, respectively). In addition, a second class II region of association containing the single-nucleotide polymorphism (SNP), rs439121, and the class II locus HLA-DPB1, was identified as a T1D susceptibility effect which is independent of HLA-DRB1, HLA-DQB1 and HLA-B (P = 9.2 × 10−8). A younger age-at-diagnosis of T1D was found for HLA-B*39 (P = 7.6 × 10−6), and HLA-B*38 was protective for T1D.
These analyses in the T1DGC families replicate our results obtained previously in ~2000 cases and controls and 850 families. Taking both studies together, there is evidence for four T1D-associated regions at 30.0 Mb (HLA-A), 31.4 Mb (HLA-B), 32.5 Mb (rs9268831/HLA-DRA) and 33.2 Mb (rs439121/HLA-DPB1) that are independent of HLA-DRB1/HLA-DQB1. Neither study found evidence of independent associations at HLA-C, HLA-DQA1 loci nor in the UBD/MAS1L or ITPR3 gene regions. These studies show that to find true class II-independent effects, large, well-powered sample collections are required and be genotyped with a dense map of markers. In addition, a robust statistical methodology that fully models the class II effects is necessary. Recursive partitioning is a useful tool for modelling these multiallelic systems.
PMCID: PMC2779837  PMID: 19143813
HLA-A; HLA-B; HLA-DPB1; type 1 diabetes
19.  Genetics of autoimmune thyroid disease in the Lebanese population 
Journal of Community Genetics  2012;3(4):259-264.
This study aims to investigate the association of human leukocyte antigen (HLA) class II genes and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) with autoimmune thyroid diseases in the Lebanese population. A total of 128 patients with autoimmune thyroid disease (55 with Graves’ disease (GD) and 73 with Hashimoto’s thyroiditis (HT)) were typed for HLA DQA1 (0301 and 0501) and DQB1 (0201, 0302, and 0303) and for 49A/G CTLA-4 using PCR-based sequence-specific priming methods. A total of 186 matched controls were typed for the same alleles and compared to the diseased population. Results showed no significant differences in HLA DQB1*0201 or DQB1*0301 allelic frequencies or CTLA-4 polymorphisms between patients and controls. For GD, there was a weak association with HLA DQB1*0302 [34.6% (19 of 55) vs. 21.5% (40 of 186), P = 0.048, odds ratio (OR) = 1.926, confidence interval (CI) = 0.999–3.715] and HLA DQB1*0302-DQA1*0501 haplotype [56.36% (31 of 55) vs. 40.8% (76 of 186), P = 0.042, OR = 1.870, CI = 1.018–3.433]. For HT, the frequencies of DQB1*0302-DQA1*0501 haplotype [28.8% (21of 73) vs. 14.5% (27 of 186), P = 0.008, OR = 2.378, CI = 1.241–4.558] and DQB1*0302-DQA1*0301 haplotype [60.2% (44 of 73) vs. 38.7% (72 of 186), P = 0.002, OR = 2.402, CI = 1.381–4.180] were significantly higher in patients. On the other hand, weak association was found between HT and DQA1*0301 allele [32.9% (24 of 73) vs. 20.9% (39 of 186), P = 0.044, OR = 1.846, CI = 1.011–3.373]. Findings show that DQB1*0302-DQA1*0501 and DQB1*0302-DQA1*0301 haplotypes may play a role in the pathogenesis of HT in the Lebanese population. For the 49A/G CTLA-4 polymorphism, no significant difference was found between patients and controls.
PMCID: PMC3461226  PMID: 22392440
Autoimmune thyroid disease; Graves’ disease; Hashimoto’s thyroiditis; Human leukocyte antigen; Cytotoxic T lymphocyte-associated antigen-4; Thyroid peroxidase antibody
20.  Type 1 Diabetes in the Spanish Population: additional factors to Class II HLA-DR3 and -DR4 
BMC Genomics  2005;6:56.
The Major Histocompatibility Complex is the main genetic contributor to susceptibility to type 1 diabetes (T1D); genome-wide scans have consistently mapped increased predisposition to this region. The highest disease risk has been associated with HLA-DR3 and HLA-DR4. In particular, the DR3-positive ancestral haplotype 18.2 was reported as highly diabetogenic. We aimed to corroborate whether this haplotype increases the susceptibility conferred by the DQ2-DR3 alleles in a Mediterranean population. We also searched for additional susceptibility factors to the classic DQ2-DR3 and DQ8-DR4.
Genetic MHC markers were analysed in a case-control study with 302 T1D patients and 529 ethnically matched controls. DR3-TNFa1b5 carrier rate was significantly higher in DR3-positive heterozygous T1D patients than in DR3-positive heterozygous controls (p = 0.0019; odds ratio OR [95% confidence interval CI] = 2.26 [1.3–3.93]). This data was confirmed analysing the allelic frequency, which includes the information corresponding to the DR3-homozygous individuals (p = 0.001; OR = 2.09) and by using the Arlequin software to check the DR3-positive haplotypes (p = 0.004;OR = 1.93). The present results provide strong evidence of a second susceptibility region in the ancestral haplotype 18.2 in the Spanish population.
Moreover, we searched for T1D susceptibility factors in addition to the MHC classical ones, within the DR2-DQ6/DR3-DQ2/DR4-DQ8 negative population. Several genetic markers in both MHC class II (DQA1*0101-DQB1*0501 [p = 0.007;OR = 2.81], DQA1*0201-DQB1*0202 [p = 0.03; OR = 2.35]) and III (TNFa2b1 [p = 0.01 OR = 2.74], BAT-2*2 [p = 0.004; OR = 3.19]) were found. These different alleles associated with T1D were not independent and we observed linkage disequilibrium among them leading us to describe two new risk haplotypes (DQA1*0101-DQB1*0501-TNFa2b1 and DQA1*0201-DQB1*0202- BAT-2*2). Finally, we studied a T1D susceptibility/protection marker located in extended class I, D6S2223; however, no association was observed in our population.
Our results suggest that other associated MHC haplotypes might present susceptibility factors in loci different from HLA-class II and that the class II molecules are not necessarily the universal etiologic factor in every MHC haplotype.
PMCID: PMC1097726  PMID: 15842729
21.  In adult onset myositis, the presence of interstitial lung disease and myositis specific/associated antibodies are governed by HLA class II haplotype, rather than by myositis subtype 
The aim of this study was to investigate HLA class II associations in polymyositis (PM) and dermatomyositis (DM), and to determine how these associations influence clinical and serological differences. DNA samples were obtained from 225 UK Caucasian idiopathic inflammatory myopathy patients (PM = 117, DM = 108) and compared with 537 randomly selected UK Caucasian controls. All cases had also been assessed for the presence of related malignancy and interstitial lung disease (ILD), and a number of myositis-specific/myositis-associated antibodies (MSAs/MAAs). Subjects were genotyped for HLA-DRB1, DQA1 and DQB1. HLA-DRB1*03, DQA1*05 and DQB1*02 were associated with an increased risk for both PM and DM. The HLA-DRB1*03-DQA1*05-DQB1*02 haplotype demonstrated strong association with ILD, irrespective of myositis subtype or presence of anti-aminoacyl-transfer RNA synthetase antibodies. The HLA-DRB1*07-DQA1*02-DQB1*02 haplotype was associated with risk for anti-Mi-2 antibodies, and discriminated PM from DM (odds ratio 0.3, 95% confidence interval 0.1–0.6), even in anti-Mi-2 negative patients. Other MSA/MAAs showed specific associations with other HLA class II haplotypes, irrespective of myositis subtype. There were no genotype, haplotype or serological associations with malignancy. The HLA-DRB1*03-DQA1*05-DQB1*02 haplotype associations appear to not only govern disease susceptibility in Caucasian PM/DM patients, but also phenotypic features common to PM/DM. Though strongly associated with anti-Mi-2 antibodies, the HLA-DRB1*07-DQA1*02-DQB1*02 haplotype shows differential associations with PM/DM disease susceptibility. In conclusion, these findings support the notion that myositis patients with differing myositis serology have different immunogenetic profiles, and that these profiles may define specific myositis subtypes.
PMCID: PMC1526560  PMID: 16507114
22.  Immunogenetic Risk and Protective Factors for Juvenile Dermatomyositis in Caucasians 
Arthritis and rheumatism  2006;54(12):3979-3987.
To define the relative importance of MHC Class II alleles and peptide binding motifs as risk and protective factors for juvenile dermatomyositis (DM) and to compare these to HLA associations in adult DM.
DRB1 and DQA1 typing was performed in 142 Caucasian patients with juvenile DM, and compared to HLA typing from 193 patients with adult DM and 797 race‐matched controls. Random Forests classification and multiple logistic regression assessed the relative importance of the HLA associations.
The HLA DRB1*0301 allele was a primary risk factor (Odds Ratio [OR] 3.9), while DQA1*0301 (OR 2.8), DQA1*0501 (OR 2.1), and homozygosity of DQA1*0501 (OR 3.2) were additional risk factors for juvenile DM. These risk factors were not present in adult DM without defined autoantibodies. DQA1 *0201 (OR 0.37), *0101 (OR 0.38), and *0102 (OR 0.51) were identified as novel protective factors for juvenile DM, the latter two being shared with adult DM. The peptide binding motif DRB1 9EYSTS13 was a risk factor and DQA1 motifs F25, S26 and 45(V/A) W (R/K)47 were protective. Random Forests classification analysis revealed DRB1*0301 (Relative Importance [RI] 100%) had higher relative importance than DQA1*0301 (RI 57%), DQA1*0501 (RI 42%), or the peptide binding motifs among risk factors for juvenile DM. In a logistic regression model, DRB1*0301 and DQA*0201 were the strongest risk and protective factors, respectively, for juvenile DM.
DRB1*0301 has higher relative importance than DQA1*0501 as a risk factor for juvenile DM. DQA1*0301 has been identified as a new HLA risk factor for juvenile DM. Three DQA1 alleles are newly identified protective factors for juvenile DM.
PMCID: PMC2063456  PMID: 17133612
23.  HLA-DPB1*04:01 Protects Genetically Susceptible Children from Celiac Disease Autoimmunity in the TEDDY Study 
Tissue transglutaminase autoantibodies (tTGAs) represent the first evidence of celiac disease (CD) development. Associations of HLA-DR3-DQA1*05:01-DQB1*02:01 (i.e., DR3-DQ2) and, to a lesser extent, DR4-DQA1*03:01-DQB1*03:02 (i.e., DR4-DQ8) with the risk of CD differ by country, consistent with additional genetic heterogeneity that further refines risk. Therefore, we examined human leukocyte antigen (HLA) factors other than DR3-DQ2 for their contribution to developing tTGAs.
The Environmental Determinants of Diabetes in the Young (TEDDY) study enrolled 8,676 infants at an increased HLA-DR-DQ risk for type 1 diabetes and CD into a 15-year prospective surveillance follow-up. Of those followed up, 21% ( n =1,813) carried DR3-DQ2/DR3-DQ2, 39% ( n =3,359) carried DR3-DQ2/DR4-DQ8, 20% ( n =1701) carried DR4-DQ8/DR4-DQ8, and 17% ( n =1,493) carried DR4-DQ8/DQ4. Within TEDDY, a nested case–control design of 248 children with CD autoimmunity (CDA) and 248 matched control children were genotyped for HLA-B, -DRB3, -DRB4, -DPA1, and -DPB1 genes, and the entire cohort was genotyped for single-nucleotide polymorphisms (SNPs) using the Illumina ImmunoChip. CDA was defined as a positive tTGA test at two consecutive clinic visits, whereas matching in those with no evidence of tTGAs was based on the presence of HLA-DQ2, country, and sex.
After adjustment for DR3-DQ2 and restriction to allele frequency (AF) ≥5%, HLA-DPB1*04:01 was inversely associated with CDA by conditional logistic regression (AF=44%, odds ratio=0.71, 95% confidence interval (CI)=0.53–0.96, P =0.025). This association of time to CDA and HLA-DPB1* 04:01 was replicated with statistical significance in the remainder of the cohort using imputation for specific HLA alleles based on SNP genotyping (hazard ratio=0.84, 95% CI= 0.73–0.96, P =0.013).
HLA-DPB1*04:01 may reduce the risk of tTGAs, an early marker of CD, among DR3-DQ2 children, confirming that additional variants in the HLA region influence the risk for CDA.
PMCID: PMC4487515  PMID: 26010309
24.  Analysis of Class II human leucocyte antigens in Italian and Spanish systemic sclerosis 
Rheumatology (Oxford, England)  2011;51(1):52-59.
Objective. To determine the role of Class II HLAs in SSc patients from Italy and Spain and in SSc patients of Caucasian ancestry.
Methods. Nine hundred and forty-four SSc patients (Italy 392 patients; Spain 452 patients) and 1320 ethnically matched healthy controls (Italy 398 patients; Spain 922 patients) were genotyped up to the fourth digit by PCR with sequence-specific oligonucleotides for HLA-DRB1, DQA1 and DQB1 loci. Patients included 390 ACA-positive and 254 anti-topo I-positive subjects. Associations between SSc or SSc-specific antibodies and HLA alleles or HLA haplotypes were sought via the chi-square test after 10 000-fold permutation testing. A meta-analysis including this study cohort and other Caucasoids samples was also conducted.
Results. In both the cohorts, the strongest association was observed between the HLA-DRB1*1104 allele and SSc or anti-topo I antibodies. The HLA-DRB1*1104 -DQA1*0501 -DQB1*0301 haplotype was overrepresented in Italian [odds ratio (OR) = 2.069, 95% asymptotic CIs (CI95) 1.486, 2.881; P < 0.001] and in Spanish patients (OR = 6.707, CI95 3.974, 11.319; P < 0.001) as well as in anti-topo-positive patients: Italy (OR = 2.642, CI95 1.78, 3.924; P < 0.001) and Spain (OR = 20.625, CI95 11.536, 36.876; P < 0.001). In both the populations we also identified an additional risk allele (HLA-DQB1*03) and a protective allele (HLA-DQB1*0501) in anti-topo-positive patients. The meta-analysis showed different statistically significant associations, the most interesting being the differential association between HLA-DRB1*01 alleles and ACAs (OR = 1.724, CI95 1.482, 2.005; P < 0.001) or topo I antibodies (OR = 0.5, CI95 0.384, 0.651; P < 0.001).
Conclusions. We describe multiple robust associations between SSc and HLA Class II antigens in Caucasoids that may help to understand the genetic architecture of SSc.
PMCID: PMC3276293  PMID: 22087014
systemic sclerosis; HLA; genetics; epidemiology
25.  HLA class II antigens associated with systemic lupus erythematosus in black South Africans. 
Annals of the Rheumatic Diseases  1995;54(8):678-680.
OBJECTIVE--To assess the associations of HLA class II antigens with systemic lupus erythematosus (SLE) in black South Africans. METHODS--HLA-DRB1 genotype frequencies assigned by polymerase chain reaction (PCR) amplification and sequence specific oligonucleotide probes were compared between 49 black SLE patients from Baragwanath Hospital and 87 ethnically matched controls. HLA-DQA1 and -DQB1 genotypes were also assigned in 45 of the SLE patients and 74 controls by PCR using sequence specific primers. RESULTS--HLA-DRB1*02 was increased in the patients compared with controls (odds ratio = 3.67; 95% confidence interval = 1.49 to 9.02; p < 0.005). HLA-DQB1*0201 was not associated with development of the disease itself, but was associated with the presence of Ro antibodies (p = 0.01). HLA-DRB1*03 was less strongly linked to DQB1*02 in this population than in white populations and was not associated with SLE. CONCLUSIONS--In black South Africans there is evidence for a locus on DR2 haplotypes contributing to SLE. Another gene, possibly HLA-DQB1*02, not linked to DR2 is involved in the subset of patients exhibiting Ro antibodies.
PMCID: PMC1009967  PMID: 7677446

Results 1-25 (839849)