PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1205685)

Clipboard (0)
None

Related Articles

1.  Clinical and genetic findings in Hungarian patients with X-linked juvenile retinoschisis 
Molecular Vision  2008;14:2321-2332.
Purpose
To determine clinical phenotypes, examine the age dependency of X-linked juvenile retinoschisis (XLRS), and identify mutations in the retinoschisis1 gene (RS1) in 13 Hungarian (Caucasian) families with this disease.
Methods
This study included 72 members in 13 families. Complete ophthalmological examinations, including optical coherence tomography (OCT) and full-field and multifocal electroretinography (ERG), were performed on 20 affected males, 13 female carriers, and 27 healthy controls. The patients were divided into two age groups (Group I <25 years and Group II >25 years), retrospectively, to assess the possible effects of age. Correlations among genotype, age, best corrected visual acuity (BCVA), OCT, and ERG results were analyzed. A modified classification scheme was done to identify the different phenotypes of the disease. In each of the 72 family members and 100 age-matched male controls, all exons and introns of RS1 were amplified by polymerase chain reaction (PCR) and directly sequenced.
Results
Foveal retinoschisis was detected in 25 eyes (62.5%) of patients by funduscopy, and in 29 eyes (72.5%) by OCT, while macular lamellar schisis was recognizable only by OCT in 30 eyes (75%) of patients. Foveal thickness (FT) and total macular volume were significantly increased in younger (Group I) patients only. For patients younger than 26 years, large inner nuclear central cysts were observable by OCT, while after 26 years, foveas were atrophic. White flecks and dots, which were like that seen in fundus albipunctatus, were detected in both eyes of one patient. In both patient groups, characteristically decreased b-waves of standard combined ERG were recorded without any significant difference between the patient groups. The BCVA and ERG parameters of all patients and the OCT of younger patients were significantly worse (p<0.05) than those of age-matched controls. A significant difference between the two age groups was found in case FT, total macular volume, and amplitudes of rod b-wave only. Moderate negative correlation (r=-0.54, p<0.001) was detected between age and FT, while only low negative correlation (r=-0.33, p<0.05) was detected between age and standard combined b-wave amplitudes of full-field ERG. BCVA LogMAR did not show any obvious correlation with age (r=-0.14, p=0.39) or with the type of mutation. Nine different mutations were identified in 25 male patients and 31 female carriers of 13 families: six known and one novel missense mutation (c.575C>T, p.Pro192Leu), one insertion mutation (c.579dupC, p.Ile194Hisfs29ext43), and one frameshift, causing splice site mutation (c.78+1G>C) were detected. These mutations were absent in the 100 age-matched male control samples.
Conclusions
Foveal cystic schisis was found more often by OCT than by funduscopy (+10%), while flat macular lamellar schisis was recognizable only by OCT. Advancing age inversely influenced the size of cavities (FT), and standard combined b-wave amplitudes of full-field ERG, while BCVA, response density, and implicit times of multifocal electroretinography did not show any obvious correlation with age. The atrophic stage of the disease was observable after 26 years of age. The lesions that appeared to be indicative of fundus albipunctatus were proven to be palisades between the splitted retinal layers. Our modified classification scheme was helpful in assessing the prevalence of disease types. In these Hungarian patients, one novel and eight known mutations were detected. The distribution of mutations in RS1 was different to that reported in the literature, because the greatest number of different mutations was in exon 6 instead of exon 4. Two mutation hot spots were found: between c.418–422 in exon 5 and between c.574–579 in exon 6. Genotype-phenotype correlation was not demonstrable.
PMCID: PMC2603250  PMID: 19093009
2.  Novel mutations in RPE65 identified in consanguineous Pakistani families with retinal dystrophy 
Molecular Vision  2013;19:1554-1564.
Purpose
To identify pathogenic mutations responsible for retinal dystrophy in three consanguineous Pakistani families.
Methods
A thorough ophthalmic examination including fundus examination and electroretinography was performed, and blood samples were collected from all participating members. Genomic DNA was extracted, and genome-wide linkage and/or exclusion analyses were completed with fluorescently labeled short tandem repeat microsatellite markers. Two-point Lod scores were calculated, and coding exons along with exon-intron boundaries of RPE65 gene were sequenced, bidirectionally.
Results
Ophthalmic examinations of the patients affected in all three families suggested retinal dystrophy with an early, most probably congenital, onset. Genome-wide linkage and/or exclusion analyses localized the critical interval in all three families to chromosome 1p31 harboring RPE65. Bidirectional sequencing of RPE65 identified a splice acceptor site variation in intron 2: c.95–1G>A, a single base substitution in exon 3: c.179T>C, and a single base deletion in exon 5: c.361delT in the three families, respectively. All three variations segregated with the disease phenotype in their respective families and were absent from ethnically matched control chromosomes.
Conclusions
These results strongly suggest that causal mutations in RPE65 are responsible for retinal dystrophy in the affected individuals of these consanguineous Pakistani families.
PMCID: PMC3716412  PMID: 23878505
3.  Association of Pathogenic Mutations in TULP1 With Retinitis Pigmentosa in Consanguineous Pakistani Families 
Archives of ophthalmology  2011;129(10):1351-1357.
Objective
To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa in 5 consanguineous Pakistani families.
Methods
Affected individuals in the families underwent a detailed ophthalmological examination that consisted of fundus photography and electroretinography. Blood samples were collected from all participating family members, and genomic DNA was extracted. A genome-wide linkage scan was performed, followed by exclusion analyses among our cohort of nuclear consanguineous families with microsatellite markers spanning the TULP1 locus on chromosome 6p. Two-point logarithm of odds scores were calculated, and all coding exons of TULP1 were sequenced bidirectionally.
Results
The results of ophthalmological examinations among affected individuals in these 5 families were suggestive of retinitis pigmentosa. The genome-wide linkage scan localized the disease interval to chromosome 6p, harboring TULP1 in 1 of 5 families, and sequential analyses identified a single base pair substitution in TULP1 that results in threonine to alanine substitution (p.T380A). Subsequently, we investigated our entire cohort of families with autosomal recessive retinitis pigmentosa and identified 4 additional families with linkage to chromosome 6p, all of them harboring a single base pair substitution in TULP1 that results in lysine to arginine substitution (p.K489R). Results of single-nucleotide polymorphism haplotype analyses were suggestive of a common founder in these 4 families.
Conclusion
Pathogenic mutations in TULP1 are responsible for the autosomal recessive retinitis pigmentosa phenotype in these consanguineous Pakistani families, with a single ancestral mutation in TULP1 causing the disease phenotype in 4 of 5 families.
Clinical Relevance
Clinical and molecular characterization of pathogenic mutations in TULP1 will increase our understanding of retinitis pigmentosa at a molecular level.
doi:10.1001/archophthalmol.2011.267
PMCID: PMC3463811  PMID: 21987678
4.  Novel mutations in RDH5 cause fundus albipunctatus in two consanguineous Pakistani families 
Molecular Vision  2012;18:1558-1571.
Purpose
To identify the underlying genetic causes of fundus albipunctatus (FA), a rare form of congenital stationary night blindness that is characterized by the presence of white dots in the midperiphery of the retina and delayed dark adaptation, in Pakistan.
Methods
Two families with FA were identified by fundus examination, and genome-wide single nucleotide polymorphism genotyping was performed for two individuals from family A and six individuals from family B. Genotyping data were subsequently used to identify the identical homozygous regions present in the affected individuals of both families using the online homozygosity mapping tool Homozygosity Mapper. Candidate genes selected from the homozygous regions were sequenced.
Results
Three identical homozygous regions were identified in affected persons of family A (on chromosomes 8, 10, and 12), whereas a single shared homozygous region on chromosome 12 was found in family B. In both families, the homozygous region on chromosome 12 harbored the retinol dehydrogenase 5 (RDH5) gene, in which mutations are known to be causative of FA. RDH5 sequence analysis revealed a novel five base pair deletion, c.913_917delGTGCT (p.Val305Hisfs*29), in family A, and a novel missense mutation, c.758T>G (p.Met253Arg), in family B.
Conclusions
We identified two novel disease-causing RDH5 mutations in Pakistani families with FA, which will improve diagnosis and genetic counseling, and may even lead to treatment of this disease in these families.
PMCID: PMC3380946  PMID: 22736946
5.  GNAT1 Associated with Autosomal Recessive Congenital Stationary Night Blindness 
Congenital stationary night blindness is characterized by impaired night vision, decreased visual acuity, nystagmus, myopia, and strabismus. A genome-wide linkage scan was completed that localized the critical interval to the short arm of chromosome 3 and sequencing identified a novel missense mutation in GNAT1.
Purpose.
Congenital stationary night blindness is a nonprogressive retinal disorder manifesting as impaired night vision and is generally associated with other ocular symptoms, such as nystagmus, myopia, and strabismus. This study was conducted to further investigate the genetic basis of CSNB in a consanguineous Pakistani family.
Methods.
A consanguineous family with multiple individuals manifesting cardinal symptoms of congenital stationary night blindness was ascertained. All family members underwent detailed ophthalmic examination, including fundus photographic examination and electroretinography. Blood samples were collected and genomic DNA was extracted. Exclusion and genome-wide linkage analyses were completed and two-point LOD scores were calculated. Bidirectional sequencing of GNAT1 was completed, and quantitative expression of Gnat1 transcript levels were investigated in ocular tissues at different postnatal intervals.
Results.
The results of ophthalmic examinations were suggestive of early-onset stationary night blindness with no extraocular anomalies. The genome-wide scan localized the critical interval to chromosome 3, region p22.1-p14.3, with maximum two-point LOD scores of 3.09 at θ = 0, flanked by markers D3S3522 and D3S1289. Subsequently, a missense mutation in GNAT1, p.D129G, was identified, which segregated within the family, consistent with an autosomal recessive mode of inheritance, and was not present in 192 ethnically matched control chromosomes. Expression analysis suggested that Gnat1 is expressed at approximately postnatal day (P)7 and is predominantly expressed in the retina.
Conclusions.
These data suggest that a homozygous missense mutation in GNAT1 is associated with autosomal recessive stationary night blindness.
doi:10.1167/iovs.11-8026
PMCID: PMC3339909  PMID: 22190596
6.  Nonsense mutation in MERTK causes autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family 
The British Journal of Ophthalmology  2010;94(8):1094-1099.
Background
Retinitis pigmentosa (RP) is one of the most common ophthalmic disorders affecting one in approximately 5000 people worldwide. A nuclear family was recruited from the Punjab province of Pakistan to study the genetic basis of autosomal recessive RP.
Methods
All affected individuals underwent a thorough ophthalmic examination and the disease was characterised based upon results for fundus photographs and electroretinogram recordings. Genomic DNA was extracted from peripheral leucocytes. Exclusion studies were performed with short tandem repeat (STR) markers flanking reported autosomal recessive RP loci. Haplotypes were constructed and results were statistically evaluated.
Results
The results of exclusion analyses suggested that family PKRP173 was linked to chromosome 2q harbouring mer tyrosine kinase protooncogene (MERTK), a gene previously associated with autosomal recessive RP. Additional STR markers refined the critical interval and placed it in a 13.4 cM (17 Mb) region flanked by D2S293 proximally and D2S347 distally. Significant logarithm of odds (LOD) scores of 3.2, 3.25 and 3.18 at θ=0 were obtained with markers D2S1896, D2S2269 and D2S160. Sequencing of the coding exons of MERTK identified a mutation, c.718G→T in exon 4, which results in a premature termination of p.E240X that segregates with the disease phenotype in the family.
Conclusion
Our results strongly suggest that the nonsense mutation in MERTK, leading to premature termination of the protein, is responsible for RP phenotype in the affected individuals of the Pakistani family.
doi:10.1136/bjo.2009.171892
PMCID: PMC3393880  PMID: 20538656
7.  Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations 
Molecular Vision  2013;19:2487-2500.
Purpose
Autosomal recessive retinitis pigmentosa (arRP) is a genetically heterogeneous disease resulting in progressive loss of photoreceptors that leads to blindness. To date, 36 genes are known to cause arRP, rendering the molecular diagnosis a challenge. The aim of this study was to use homozygosity mapping to identify the causative mutation in a series of inbred families with arRP.
Methods
arRP patients underwent standard ophthalmic examination, Goldman perimetry, fundus examination, retinal OCT, autofluorescence measurement, and full-field electroretinogram. Fifteen consanguineous families with arRP excluded for USH2A and EYS were genotyped on 250 K SNP arrays. Homozygous regions were listed, and known genes within these regions were PCR sequenced. Familial segregation and mutation analyzes were performed.
Results
We found ten mutations, seven of which were novel mutations in eight known genes, including RP1, IMPG2, NR2E3, PDE6A, PDE6B, RLBP1, CNGB1, and C2ORF71, in ten out of 15 families. The patients carrying RP1, C2ORF71, and IMPG2 mutations presented with severe RP, while those with PDE6A, PDE6B, and CNGB1 mutations were less severely affected. The five families without mutations in known genes could be a source of identification of novel genes.
Conclusions
Homozygosity mapping combined with systematic screening of known genes results in a positive molecular diagnosis in 66.7% of families.
PMCID: PMC3857159  PMID: 24339724
8.  A novel HSF4 gene mutation (p.R405X) causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan 
BMC Medical Genetics  2008;9:99.
Background
Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene HSF4 (Genbank accession number NM_001040667). Here, we describe a family from Pakistan with the first nonsense mutation in HSF4 thus expanding the mutational spectrum of this heat shock transcription factor gene.
Methods
A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing HSF4 (OMIM 602438) was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (HSF4) were sequenced. A mutation-specific restriction enzyme digest (HphI) was performed for all family members and unrelated controls.
Results
The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X).
Conclusion
We identified the first nonsense mutation (p.R405X) in exon 11 of HSF4 in a large consanguineous Pakistani family with autosomal recessive cataract.
doi:10.1186/1471-2350-9-99
PMCID: PMC2592245  PMID: 19014451
9.  Genetic Analysis of Indian Families with Autosomal Recessive Retinitis Pigmentosa by Homozygosity Screening 
Purpose
To identify the disease-causing genes in families with autosomal recessive RP (ARRP).
Methods
Families were screened for homozygosity at candidate gene loci followed by screening of the selected gene for pathogenic mutations if homozygosity was present at a given locus. A total of 34 families were included, of which 24 were consanguineous. Twenty-three genes were selected for screening. The presence of homozygosity was assessed by genotyping flanking microsatellite markers at each locus in affected individuals. Mutations were detected by sequencing of coding regions of genes. Sequence changes were tested for presence in 100 or more unrelated normal control subjects and for cosegregation in family members.
Results
Homozygosity was detected at one or more loci in affected individuals of 10 of 34 families. Homozygous disease cosegregating sequence changes (two frame-shift, two missense, and one nonsense; four novel) were found in the TULP1, RLBP1, ABCA4, RPE65, and RP1 genes in 5 of 10 families. These changes were absent in 100 normal control subjects. In addition, several polymorphisms and novel variants were found. All the putative pathogenic changes were associated with severe forms of RP with onset in childhood. Associated macular degeneration was found in three families with mutations in TULP1, ABCA4, and RP1 genes.
Conclusions
Novel mutations were found in different ARRP genes. Mutations were detected in approximately 15% (5/34) of ARRP families tested, suggesting involvement of other genes in the remaining families.
doi:10.1167/iovs.09-3479
PMCID: PMC2777646  PMID: 19339744
10.  Mutations in the β-subunit of rod phosphodiesterase identified in consanguineous Pakistani families with autosomal recessive retinitis pigmentosa 
Molecular Vision  2011;17:1373-1380.
Purpose
This study was designed to identify pathogenic mutations causing autosomal recessive retinitis pigmentosa (RP) in consanguineous Pakistani families.
Methods
Two consanguineous families affected with autosomal recessive RP were identified from the Punjab Province of Pakistan. All affected individuals underwent a thorough ophthalmologic examination. Blood samples were collected, and genomic DNAs were extracted. Exclusion analysis was completed, and two-point LOD scores were calculated. Bidirectional sequencing of the β subunit of phosphodiesterase 6 (PDE6β) was completed.
Results
During exclusion analyses both families localized to chromosome 4p, harboring PDE6β, a gene previously associated with autosomal recessive RP. Sequencing of PDE6β identified missense mutations: c.1655G>A (p.R552Q) and c.1160C>T (p.P387L) in families PKRP161 and PKRP183, respectively. Bioinformatic analyses suggested that both mutations are deleterious for the native three-dimensional structure of the PDE6β protein.
Conclusions
These results strongly suggest that mutations in PDE6β are responsible for the disease phenotype in the consanguineous Pakistani families.
PMCID: PMC3108895  PMID: 21655355
11.  Primary congenital glaucoma localizes to chromosome 14q24.2-24.3 in two consanguineous Pakistani families 
Molecular Vision  2008;14:1659-1665.
Purpose
Two consanguineous Pakistani families with autosomal recessive primary congenital glaucoma were recruited to identify the disease locus.
Methods
Ophthalmic examinations including slit lamp biomicroscopy and applanation tonometry were employed to classify the phenotype. Blood samples were collected and genomic DNA was extracted. A genome wide scan was performed on both families with 382 polymorphic microsatellite markers. Two point LOD scores were calculated, and haplotypes were constructed to define the disease interval.
Results
Clinical records and ophthalmic examinations suggest that affected individuals in families PKGL005 and PKGL025 have primary congenital glaucoma. Maximum two-point LOD scores of 5.88 with D14S61 at θ=0 and 6.19 with D14S43 at θ=0 were obtained for families PKGL005 and PKGL025, respectively. Haplotype analysis defined the disease locus as spanning a 6.56 cM (~4.2 Mb) genetic interval flanked by D14S289 proximally and D14S85 distally.
Conclusions
Linkage analysis localizes autosomal recessive primary congenital glaucoma to chromosome 14q24.2–24.3 in consanguineous Pakistani families.
PMCID: PMC2530517  PMID: 18776954
12.  Genetic Heterogeneity for Recessively Inherited Congenital Cataract Microcornea with Corneal Opacity 
The authors describe a new ocular phenotype, congenital cataract microcornea with corneal opacity, which is recessively inherited. This phenotype is genetically heterogeneous in the Pakistani population.
Purpose.
To investigate whether three consanguineous families from the Punjab province of Pakistan, with affected members with recessively inherited congenital cataract microcornea with corneal opacity, are genetically homogeneous.
Methods.
An ophthalmic examination was performed on each family member to establish the diagnosis. The two largest families were analyzed by homozygosity mapping using SNP arrays. Linkage was confirmed using polymorphic microsatellite markers, and logarithm of odds (LOD) scores were calculated. Candidate genes were prioritized using the ENDEAVOUR program.
Results.
Autosomal recessive congenital cataract-microcornea with corneal opacity mapped to chromosome 10cen for family MEP57 and to either chromosomes 2ptel or 20p for family MEP60. For MEP57, the refined interval was 36.8 Mb flanked by D10S1208 (35.3 Mb) and D10S676 (72.1 Mb). For MEP60, the interval containing the mutation was either 6.7 Mb from the telomere of chromosome 2 to marker D2S281 or 3.8 Mb flanked by D20S906 (1.5 Mb) and D20S835 (5.3 Mb). Maximum multipoint LOD scores of 3.09, 1.94, and 3.09 were calculated at D10S567, D2S281, and D20S473 for families MEP57 and MEP60. Linkage to these loci was excluded for family MEP68. SLC4A11 was excluded as a candidate gene for the observed phenotype in MEP60.
Conclusions.
The authors have identified two new loci, one on chromosome 10cen and the other on 2ptel or 20p, that are associated with recessively inherited congenital cataract-microcornea with corneal opacity. This phenotype is genetically heterogeneous in the Pakistani population. Further genetic studies of this kind, combined with a detailed phenotypic description, will contribute to more precise classification criteria for anterior segment disease.
doi:10.1167/iovs.10-6776
PMCID: PMC3175982  PMID: 21474777
13.  Novel CYP1B1 mutations in consanguineous Pakistani families with primary congenital glaucoma 
Molecular Vision  2008;14:2002-2009.
Purpose
To identify the disease-causing mutations in three consanguineous Pakistani families with multiple members affected by primary congenital glaucoma.
Methods
Blood samples were collected, and DNA was extracted. Linkage analysis for reported primary congenital glaucoma loci was performed using closely spaced polymorphic microsatellite markers on genomic DNA from affected and unaffected family members. All coding exons, the exon-intron boundaries, and the 5′ untranslated region of CYP1B1 were sequenced.
Results
The alleles of chromosome 2p markers segregate with the disease phenotype in all three families with positive LOD scores. The sequencing results identified three novel mutations (L177R, L487P, and D374E) and one previously reported mutation (E229K) in CYP1B1 that segregate with the disease phenotype in their respective families. None of these sequence variations were present in 96 ethnically matched control samples.
Conclusions
These results strongly suggest that missense mutations in CYP1B1 are most likely to be responsible for primary congenital glaucoma in these families.
PMCID: PMC2579935  PMID: 18989382
14.  Novel SIL1 mutations in consanguineous Pakistani families mapping to chromosomes 5q31 
Molecular Vision  2009;15:1050-1056.
Purpose
To investigate the genetic basis of Marinesco-Sjogren syndrome (MSS) in consanguineous Pakistani families.
Methods
Two consanguineous Pakistani families with congenital cataract and muscular dystrophy were enrolled for this study. Detailed ophthalmic and systemic examination including slit lamp microscopy, electromyogram and computed tomography scans were performed to characterize the syndrome. Blood samples were collected from affected and unaffected individuals and a genome wide scan consisting of 382 polymorphic microsatellite markers was performed. Coding exons, exon-intron boundaries, 5’ UTR, and 3’ UTR of the candidate gene SIL1 residing in the linkage interval was sequenced bi-directionally.
Results
Clinical examination of the affected members of families 60067 and 60078 revealed features of MSS. The linked interval at chromosome 5q31 harbors SIL1. Sequencing of SIL1 in family 60067 revealed a homozygous substitution; c1240C>T, leading to a premature substitution; p.Q414X. Similarly, sequencing of SIL1 in family 60078 identified a homozygous change; c.274C>T, leading to a non conservative substitution; p.R92W.
Conclusion
In conclusion, our data report two novel missense mutations in two consanguineous Pakistani families affected with MSS.
PMCID: PMC2685889  PMID: 19471582
15.  Autosomal recessive congenital cataract in consanguineous Pakistani families is associated with mutations in GALK1 
Molecular Vision  2010;16:682-688.
Purpose
To identify the pathogenic mutations responsible for autosomal recessive congenital cataracts in consanguineous Pakistani families.
Methods
All affected individuals underwent detailed ophthalmologic and medical examination. Blood samples were collected and genomic DNA was extracted. A genome-wide scan was performed with polymorphic microsatellite markers on genomic DNA from affected and unaffected family members and logarithm of odds (LOD) scores were calculated. All coding exons of galactokinase (GALK1) were sequenced to identify pathogenic lesions.
Results
Clinical records and ophthalmological examinations suggested that affected individuals have nuclear cataracts. Linkage analysis localized the critical interval to chromosome 17q with a maximum LOD score of 5.54 at θ=0, with D17S785 in family PKCC030. Sequencing of GALK1, a gene present in the critical interval, identified a single base pair deletion: c.410delG, which results in a frame shift leading to a premature termination of GALK1: p.G137fsX27. Additionally, we identified a missense mutation: c.416T>C, in family PKCC055 that results in substitution of a leucine residue at position 139 with a proline residue: p.L139P, and is predicted to be deleterious to the native GALK1 structure.
Conclusions
Here, we report pathogenic mutations in GALK1 that are responsible for autosomal recessive congenital cataracts in consanguineous Pakistani families.
PMCID: PMC2855732  PMID: 20405025
16.  AIPL1 implicated in the pathogenesis of two cases of autosomal recessive retinal degeneration 
Molecular Vision  2014;20:1-14.
Purpose
To localize and identify the gene and mutations causing autosomal recessive retinal dystrophy in two consanguineous Pakistani families.
Methods
Consanguineous families from Pakistan were ascertained to be affected with autosomal recessive retinal degeneration. All affected individuals underwent thorough ophthalmologic examinations. Blood samples were collected, and genomic DNA was extracted using a salting out procedure. Genotyping was performed using microsatellite markers spaced at approximately 10 cM intervals. Two-point linkage analysis was performed with the lod score method. Direct DNA sequencing of amplified genomic DNA was performed for mutation screening of candidate genes.
Results
Genome-wide linkage scans yielded a lod score of 3.05 at θ=0 for D17S1832 and 3.82 at θ=0 for D17S938, localizing the disease gene to a 12.22 cM (6.64 Mb) region flanked by D17S1828 and D17S1852 for family 61032 and family 61227, which contains aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), a gene previously implicated in recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. Sequencing of AIPL1 showed a homozygous c.773G>C (p.Arg258Pro) sequence change in all affected individuals of family 61032 and a homozygous c.465G>T (p.(H93_Q155del)) change in all affected members of family 61227.
Conclusions
The results strongly suggest that the c.773G>C (p.R258P) and c.465G>T (p.(H93_Q155del)) mutations in AIPL1 cause autosomal recessive retinal degeneration in these consanguineous Pakistani families.
PMCID: PMC3888496  PMID: 24426771
17.  A mutation in the FOXE3 gene causes congenital primary aphakia in an autosomal recessive consanguineous Pakistani family 
Molecular Vision  2010;16:549-555.
Purpose
Aphakia is the complete absence of any lens in the eye, either due to surgical removal of the lens as a result of a perforating wound or ulcer, or due to a congenital anomaly. The purpose of this study was to elucidate the molecular genetics for a large consanguineous Pakistani family with a clear aphakia phenotype.
Methods
The initial homozygosity screening of the family was extended to all the known autosomal recessive cataract loci in order to exclude the possibility of surgical cataract removal leading to aphakia. The screening was performed using polymorphic nucleotide repeat markers, followed by DNA sequencing of a possible candidate gene, the forkhead box protein E3 gene (FOXE3). The identified mutation was counter-checked by a diagnostic restriction enzyme digest of all the family members, and an analysis of the normal population.
Results
The initial homozygosity screening of 13 known autosomal recessive loci resulted in negative LOD (logarithm of odds) scores. The aphakia phenotype suggested a mutation in FOXE3 close to the AR-locus 1p34.3-p32.2, and sequence analyses revealed the nonsense mutation c.720C>A, changing cysteine 240 to a stop codon. Segregation in the family was shown by diagnostic restriction enzyme digest, and marker analysis of another aphakia family from Madagascar carrying the same mutation excluded the presence of a founder mutation. Clinical re-examination of the family was not possible due to the escalating security concerns and internal displacement of the population in this region of Pakistan which has prevailed for many months.
Conclusions
FOXE3 is responsible for the early developmental arrest of the lens placode, and the complete loss of a functional FOXE3 protein results in primary aphakia. It can also be deduced that this mutation is quite primitive in origin since the same mutation is responsible for the same phenotypic outcome in two families of geographically different descent.
PMCID: PMC2846847  PMID: 20361012
18.  A novel mutation in GRK1 causes Oguchi disease in a consanguineous Pakistani family 
Molecular Vision  2009;15:1788-1793.
Purpose
The purpose of this study was to identify the underlying molecular genetic defect in a large consanguineous Pakistani family with Oguchi disease who had been given a diagnosis of autosomal recessive retinitis pigmentosa.
Methods
The family was genotyped with the Affymetrix 10K single nucleotide polymorphism array. Fine-mapping of a common homozygous region on chromosome 13q was performed using fluorescent microsatellite markers. Mutation analysis was done by direct sequencing of the candidate gene GRK1 located in the region. The segregation of a novel mutation in the family and the frequency of the identified mutation in the Pakistani population were determined by StuI RFLP analysis.
Results
Genetic mapping supported the diagnosis of typical Oguchi disease in a Pakistani family and also resulted in the identification of a novel nonsense mutation (c.614C>A; p.S205X) in exon 1 of GRK1. This mutation is predicted to result in premature termination of the protein product, thereby affecting the phototransduction cascade. A clinical reappraisal of the family revealed that all patients homozygous for this variant had Oguchi disease.
Conclusions
This is the first report to describe a mutation causing typical Oguchi disease in a large consanguineous Pakistani family. This mutation segregated in eight affected members.
PMCID: PMC2742643  PMID: 19753316
19.  A new locus for autosomal recessive congenital cataract identified in a Pakistani family 
Molecular Vision  2010;16:240-245.
Purpose
To identify the disease locus for autosomal recessive congenital cataract in a consanguineous Pakistani family.
Methods
All affected individuals underwent detailed ophthalmologic and medical examination. Blood samples were collected and DNA was extracted. A genome-wide scan was performed with polymorphic microsatellite markers on genomic DNA from affected and unaffected family members, and logarithm of odds (LOD) scores were calculated.
Results
The clinical records and ophthalmological examinations suggested that all affected individuals have nuclear cataracts. Maximum LOD scores of 5.01, 4.38, and 4.17 at θ=0 were obtained with markers D7630, D7S657, and D7S515, respectively. Fine mapping refined the critical interval and suggested that markers in a 27.78 cM (27.96 Mb) interval are flanked by markers D7S660 and D7S799, which co-segregate with the disease phenotype in family PKCC108.
Conclusions
We have identified a new locus for autosomal recessive congenital cataract, localized to chromosome 7q21.11-q31.1 in a consanguineous Pakistani family.
PMCID: PMC2822550  PMID: 20161816
20.  Late-Onset Autosomal Dominant Macular Dystrophy with Choroidal Neovascularization and Nonexudative Maculopathy Associated with Mutation in the RDS Gene 
PURPOSE
To examine the molecular genetic basis and phenotypic characteristics of an unusual late-onset autosomal dominant macular dystrophy with features of age-related macular degeneration (AMD) in a large family (SUNY901), by using linkage and mutation analyses.
METHODS
Blood samples were collected from 17 affected members, 17 clinically unaffected members, and 5 unrelated spouses. Clinical analyses included a review of medical history and standard ophthalmic examination with fundus photography, fluorescein angiography, and electroretinography. Linkage and haplotype analyses were performed with microsatellite markers. Mutation analysis was performed by amplification of exons followed by sequencing.
RESULTS
A wide spectrum of clinical phenotypes including exudative and nonexudative maculopathy was observed, with onset in the late fifth decade. Linkage analysis excluded most of the previously known maculopathy loci. Markers D6S1604 (Zmax of 3.18 at θ = 0), and D6S282 (Zmax of 3.18 at θ = 0) gave significant positive LOD scores and haplotype analysis localized the disease gene to a 9-centimorgan (cM) interval between markers D6S1616 and D6S459. Mutation analysis excluded the GUCA1A and GUCA1B genes and revealed a missense mutation in the RDS/peripherin gene leading to a Tyr141Cys substitution. A phenotype and haplotype comparison between this and a separate family with the Tyr141Cys mutation suggested the presence of a common ancestral haplotype.
CONCLUSIONS
The RDS mutation in codon 141 is associated with an unusual AMD-like late-onset maculopathy. An apparent selective bias was noted favoring the transmission of the mutant allele. These observations broaden the spectrum of phenotypes associated with RDS gene mutations.
PMCID: PMC2581458  PMID: 12882809
21.  Fundus albipunctatus: novel mutations and phenotypic description of Israeli patients 
Molecular Vision  2012;18:1712-1718.
Purpose
To characterize the genetic defects associated with fundus albipunctatus (FAP) in patients in Israel.
Methods
Twenty patients with FAP from diverse ethnicities underwent ophthalmic and electroretinogram tests following the International Society for Clinical Electrophysiology of Vision protocol. Genomic DNA was extracted from peripheral blood. Mutation analysis of the 11-cis retinol dehydrogenase (RDH5) gene was performed with direct sequencing of PCR-amplified exons.
Results
Four novel RDH5 gene mutations were identified. Of them, the null mutations c.343C>T (p.R54X) and c.242delTGCC were most prevalent. Macular involvement was present in two patients who carry different mutation types.
Conclusions
Mutation analysis of the RDH5 gene in the present series revealed four novel mutations and a previously reported one. No significant genotype-phenotype correlation was found.
PMCID: PMC3399783  PMID: 22815624
22.  Targeted Next-Generation Sequencing Reveals Novel USH2A Mutations Associated with Diverse Disease Phenotypes: Implications for Clinical and Molecular Diagnosis 
PLoS ONE  2014;9(8):e105439.
USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also demonstrated that a targeted NGS approach is a valuable tool for the genetic diagnosis of USH2 and RP.
doi:10.1371/journal.pone.0105439
PMCID: PMC4136877  PMID: 25133613
23.  Missense mutations at homologous positions in the fourth and fifth laminin A G-like domains of eyes shut homolog cause autosomal recessive retinitis pigmentosa 
Molecular Vision  2010;16:2753-2759.
Purpose
To describe two novel mutations in the eyes shut homolog (EYS) gene in two families with autosomal recessive retinitis pigmentosa (arRP) from Pakistan and Indonesia.
Methods
Genome-wide linkage and homozygosity mapping were performed using single nucleotide polymorphism microarray analysis in affected members of the two arRP families. Sequence analysis was performed to identify genetic changes in protein coding exons of EYS.
Results
In the Indonesian and Pakistani families, homozygous regions encompassing the EYS gene at 6q12 were identified, with maximum LOD scores of 1.8 and 3.6, respectively. Novel missense variants in the EYS gene (p.D2767Y and p.D3028Y) were found in the Pakistani and Indonesian families, respectively, that co-segregate with the disease phenotype. Interestingly, the missense variants are located at the same homologous position within the fourth and fifth laminin A G-like domains of EYS.
Conclusions
To date, mostly protein-truncating mutations have been described in EYS, while only few patients have been described with pathogenic compound heterozygous missense mutations. The mutations p.D2767Y and p.D3028Y described in this study affect highly conserved residues at homologous positions in laminin A G-like domains and support the notion that missense mutations in EYS can cause arRP.
PMCID: PMC3003713  PMID: 21179430
24.  Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family 
Molecular Vision  2010;16:511-517.
Purpose
To investigate the genetic basis of autosomal recessive congenital cataracts in a consanguineous Pakistani family.
Methods
All affected individuals underwent a detailed ophthalmological and clinical examination. Blood samples were collected and genomic DNAs were extracted. A genome-wide scan was performed with polymorphic microsatellite markers. Logarithm of odds (LOD) scores were calculated, and Eph-receptor type-A2 (EPHA2), residing in the critical interval, was sequenced bidirectionally.
Results
The clinical and ophthalmological examinations suggested that all affected individuals have nuclear cataracts. Genome-wide linkage analyses localized the critical interval to a 20.78 cM (15.08 Mb) interval on chromosome 1p, with a maximum two-point LOD score of 5.21 at θ=0. Sequencing of EPHA2 residing in the critical interval identified a missense mutation: c.2353G>A, which results in an alanine to threonine substitution (p.A785T).
Conclusions
Here, we report for the first time a missense mutation in EPHA2 associated with autosomal recessive congenital cataracts.
PMCID: PMC2846848  PMID: 20361013
25.  Identification of a Novel Mutation in the CDHR1 Gene in a Family With Recessive Retinal Degeneration 
Archives of ophthalmology  2012;130(10):1301-1308.
Objectives
To describe the clinical phenotype and identify the molecular basis of disease in a consanguineous family of Palestinian origin with autosomal recessive retinal degeneration.
Methods
Eight family members were evaluated with visual acuity and perimetry tests, color fundus photographs, full-field electroretinography, and optical coherence tomography. Cone photoreceptors surrounding the fovea were imaged in 2 members, using adaptive optics scanning laser ophthalmoscopy. Exome was captured using probes and sequenced. Readings were mapped to reference hg19. Variant calls and annotations were performed, using published protocols. Confirmation of variants and segregation analysis was performed using dideoxy sequencing.
Results
Analysis detected 24 037 single-nucleotide variants in one affected family member, of which 3622 were rare and potentially damaging to encoded proteins. Further analysis revealed a novel homozygous nonsense change, c.1381 C>T, p.Gln461X in exon 13 of the CDHR1 gene, which segregated with retinal degeneration in this family. Affected members had night blindness beginning during adolescence with progressive visual acuity and field loss and unmeasurable electroretinographic responses, as well as macular outer retinal loss, although residual cones with increased cone spacing were observed in the youngest individual.
Conclusions
Exome analysis revealed a novel CDHR1 nonsense mutation segregating with progressive retinal degeneration causing severe central vision loss by the fourth decade of life. High-resolution retinal imaging revealed outer retinal changes suggesting that CDHR1 is important for normal photoreceptor structure and survival.
Clinical Relevance
Exome sequencing is a powerful technique that may identify causative genetic variants in families with autosomal recessive retinal degeneration.
doi:10.1001/archophthalmol.2012.1906
PMCID: PMC3799916  PMID: 23044944

Results 1-25 (1205685)