PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (929135)

Clipboard (0)
None

Related Articles

1.  A Tunable Strain Sensor Using Nanogranular Metals 
Sensors (Basel, Switzerland)  2010;10(11):9847-9856.
This paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID) employing the precursor trimethylmethylcyclopentadienyl platinum [MeCpPt(Me)3]. We use a cantilever-based deflection technique to determine the sensitivity (gauge factor) of the sensor element. We find that its sensitivity depends on the electrical conductivity and can be continuously tuned, either by the thickness of the deposit or by electron-beam irradiation leading to a distinct maximum in the sensitivity. This maximum finds a theoretical rationale in recent advances in the understanding of electronic charge transport in nano-granular metals.
doi:10.3390/s101109847
PMCID: PMC3231023  PMID: 22163443
cantilevers; electron beam induced deposition; granular metals; strain sensors
2.  Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM 
Summary
Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.
doi:10.3762/bjnano.4.9
PMCID: PMC3566795  PMID: 23399584
carbon nanotubes; FEBID; nanocluster; platinum; patterning; radiation-induced nanostructures; TEM
3.  In situ growth optimization in focused electron-beam induced deposition 
Summary
We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID). It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO)6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me)3. For W(CO)6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me)3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.
doi:10.3762/bjnano.4.103
PMCID: PMC3869208  PMID: 24367761
electron beam induced deposition; genetic algorithm; nanotechnology; tungsten
4.  Giant dielectric and magnetoelectric responses in insulating nanogranular films at room temperature 
Nature Communications  2014;5:4417.
The electric and magnetic properties of matter are of great interest for materials science and their use in electronic applications. Large dielectric and magnetoelectric responses of materials at room temperature are a great advantage for electromagnetic device applications. Here we present a study of FeCo-MgF nanogranular films exhibiting giant dielectric and magnetoelectric responses at room temperature; with dielectric constant ε′=490 and magnetoelectric response Δε′/ε′0=3%. In these films, Fe-Co alloy-based nanometer-sized magnetic granules are dispersed in a Mg-fluoride-based insulator matrix. Insulating nanogranular films are a new class of multifunctional materials. The giant responses are caused by spin-dependent charge oscillation between magnetic granules via quantum-mechanical tunnelling. A possible application of such insulating nanogranular materials with giant response is in the construction of a tunable device, in which impedance components such as capacitance and inductance are tunable at room temperature.
The electric and magnetic responses of matter are of interest for their use in electronic applications. Here, the authors find a large dielectric and magnetoelectric response in FeCo-MgF nanogranular films, caused by quantum mechanical tunnelling oscillation between magnetic granules.
doi:10.1038/ncomms5417
PMCID: PMC4109019  PMID: 25048805
5.  Effect of multilayer structure on high-frequency properties of FeCo/(FeCo)0.63(SiO2)0.37 nanogranular films on flexible substrates 
Nanoscale Research Letters  2013;8(1):212.
The high-frequency properties of the FeCo-SiO2 monolayer nanogranular films and FeCo/(FeCo)0.63(SiO2)0.37 multilayer nanogranular films which were elaborated on flexible substrates by magnetron sputtering system were studied. Compared to the monolayer films with the same FeCo content, the multilayer structures comprised of FeCo/(FeCo)0.63(SiO2)0.37 exhibit more excellent properties that the real and imaginary parts of permeability, more than the double value of the monolayer, increase to 250 and 350, respectively. The variation was considered owing to the reduction of the anisotropy field.
doi:10.1186/1556-276X-8-212
PMCID: PMC3655025  PMID: 23641952
Multilayer film; High-frequency property; Flexible substrate; Anisotropy field
6.  Nanogranular TiN-ZrO2 intermediate layer induced improvement of isolation and grain size of FePt thin films 
Scientific Reports  2014;4:5607.
The effects of TiN-ZrO2 intermediate layer on the microstructures and magnetic properties of FePt films were investigated. The TiN-ZrO2 intermediate layer was granular consisting of grains of solid solution of Ti(Zr)ON segregated by amorphous ZrO2. By doping ZrO2 into TiN intermediate layer, the FePt grains became better isolated from each other and the FePt grain size was reduced. For 20 vol. % ZrO2 doping into TiN, the grain size decreased dramatically from 11. 2 nm to 6. 4 nm, and good perpendicular anisotropy was achieved simultaneously. For the FePt 4nm-SiO2 35 vol. % -C 20 vol. % films grown on top of the TiN-ZrO2 20 vol. % intermediate layer, well isolated FePt (001) granular films with coercivity higher than 18. 1 kOe and an average size as small as 6. 4 nm were achieved.
doi:10.1038/srep05607
PMCID: PMC4085629  PMID: 25001593
7.  Simulation of electron transport during electron-beam-induced deposition of nanostructures 
Summary
We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments.
doi:10.3762/bjnano.4.89
PMCID: PMC3869256  PMID: 24367747
electron backscattering; electron transport; (F)EBID; Monte Carlo simulation; PENELOPE
8.  Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation 
Sensors (Basel, Switzerland)  2012;12(12):17433-17445.
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.
doi:10.3390/s121217433
PMCID: PMC3571846  PMID: 23242276
electron beam welding; electron beam oscillation; plasma charge current; beam focus control; keyhole
9.  A Monochromatic, Aberration-Corrected, Dual-Beam Low Energy Electron Microscope 
Ultramicroscopy  2013;130:13-28.
The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application.
doi:10.1016/j.ultramic.2013.02.018
PMCID: PMC3729636  PMID: 23582636
Low energy electron microscopy; Monochromator; Aberration correction; Dual beam illumination; DNA Sequencing; Contrast
10.  Electron beam-assisted healing of nanopores in magnesium alloys 
Scientific Reports  2013;3:1920.
Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning.
doi:10.1038/srep01920
PMCID: PMC3667491  PMID: 23719630
11.  Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM 
Nanoscale Research Letters  2011;6(1):592.
Nanolithography techniques in a scanning electron microscope/focused ion beam are very attractive tools for a number of synthetic processes, including the fabrication of ferromagnetic nano-objects, with potential applications in magnetic storage or magnetic sensing. One of the most versatile techniques is the focused electron beam induced deposition, an efficient method for the production of magnetic structures highly resolved at the nanometric scale. In this work, this method has been applied to the controlled growth of magnetic nanostructures using Co2(CO)8. The chemical and structural properties of these deposits have been studied by electron energy loss spectroscopy and high-resolution transmission electron microscopy at the nanometric scale. The obtained results allow us to correlate the chemical and structural properties with the functionality of these magnetic nanostructures.
doi:10.1186/1556-276X-6-592
PMCID: PMC3237113  PMID: 22085532
Co deposits; FEBID; EELS; HRTEM
12.  Research and development of an electron beam focusing system for a high-brightness X-ray generator 
Journal of Synchrotron Radiation  2010;18(Pt 1):53-57.
In order to minimize the size of the X-ray source for a U-shaped rotating anticathode X-ray generator, the electron beam is focused over a short distance by a combined-function bending magnet. Simulation predicts that the beam brightness will reach almost 500 kW mm−2 for a 120 keV/75 mA beam.
A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm−2 (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm−2 on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.
doi:10.1107/S0909049510029948
PMCID: PMC3004255  PMID: 21169692
X-ray generator; high-flux electron beam; DC electron gun; combined-function bending magnet
13.  Quantitative cw Overhauser Dynamic Nuclear Polarization for the Analysis of Local Water Dynamics 
Liquid state Overhauser Effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (~ 10 GHz), frequency and 1H nuclear magnetic resonance (NMR) at ~ 15 MHz. It requires only a standard continuous wave (cw) ESR spectrometer with an NMR probe inserted or built into an X-band cavity. Our focus lies on reviewing a new and powerful manifestation of ODNP as a high frequency NMR relaxometry tool that probes dipolar cross relaxation between the electron spins and the 1H nuclear spins at X-band frequencies. This technique selectively measures the translational mobility of water within a volume extending 0.5–1.5 nm outward from a nitroxide radical spin probe that is attached to a targeted site of a macromolecule. This method has been applied to study the dynamics of water that hydrates or permeates the surface or interior of proteins, polymers, and lipid membrane vesicles.
We begin by reviewing the recent advances that have helped develop ODNP into a tool for mapping the dynamic landscape of hydration water with sub-nanometer locality. In order to bind this work coherently together, and to place it in the context of the extensive body of research in the field of NMR relaxometry, we then rephrase the analytical model and extend the description of the ODNP-derived NMR signal enhancements. This extended model highlights several aspects of ODNP data analysis, including the importance of considering all possible effects of microwave sample heating, the need to consider the error associated with various relaxation rates, and the unique ability of ODNP to probe the electron–1H cross-relaxation process, which is uniquely sensitive to fast (tens of ps) dynamical processes. By implementing the relevant corrections in a stepwise fashion, this paper draws a consensus result from previous ODNP procedures, and then shows how such data can be further corrected to yield clear and reproducible saturation of the NMR hyperpolarization process. Finally, drawing on these results, we broadly survey the previous ODNP dynamics literature. We find that the vast number of published, empirical hydration dynamics data can be reproducibly classified into regimes of surface, interfacial, vs buried water dynamics.
doi:10.1016/j.pnmrs.2013.06.001
PMCID: PMC3798041  PMID: 24083461
14.  Straining Graphene Using Thin Film Shrinkage Methods 
Nano Letters  2014;14(3):1158-1163.
Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate.
doi:10.1021/nl403679f
PMCID: PMC3962252  PMID: 24490629
Graphene; planar process; shrinkage of thin films; tensile and compressive strain; Raman spectrum; strain engineering of two-dimensional crystals
15.  High-Throughput Top-Down Fabrication of Uniform Magnetic Particles 
PLoS ONE  2012;7(5):e37440.
Ion Beam Aperture Array Lithography was applied to top-down fabrication of large dense (108–109 particles/cm2) arrays of uniform micron-scale particles at rates hundreds of times faster than electron beam lithography. In this process, a large array of helium ion beamlets is formed when a stencil mask containing an array of circular openings is illuminated by a broad beam of energetic (5–8 keV) ions, and is used to write arrays of specific repetitive patterns. A commercial 5-micrometer metal mesh was used as a stencil mask; the mesh size was adjusted by shrinking the stencil openings using conformal sputter-deposition of copper. Thermal evaporation from multiple sources was utilized to form magnetic particles of varied size and thickness, including alternating layers of gold and permalloy. Evaporation of permalloy layers in the presence of a magnetic field allowed creation of particles with uniform magnetic properties and pre-determined magnetization direction. The magnetic properties of the resulting particles were characterized by Vibrating Sample Magnetometry. Since the orientation of the particles on the substrate before release into suspension is known, the orientation-dependent magnetic properties of the particles could be determined.
doi:10.1371/journal.pone.0037440
PMCID: PMC3365077  PMID: 22693574
16.  Electroded avalanche amorphous selenium (a-Se) photosensor 
Although avalanche amorphous selenium (a-Se) is a very promising photoconductor for a variety of imaging applications, it is currently restricted to applications with electron beam readout in vacuum pick-up tube called a High-gain Avalanche Rushing Photoconductor (HARP). The electron beam readout is compatible with high definition television (HDTV) applications, but for use in solid-state medical imaging devices it should be replaced by an electronic readout with a two-dimensional array of metal pixel electrodes. However, due to the high electric field required for avalanche multiplication, it is a technological challenge to avoid possible dielectric breakdown at the edges, where electric field experiences local enhancement. It has been shown recently that this problem can be overcome by the use of a Resistive Interface Layer (RIL) deposited between a-Se and the metal electrode, however, at that time, at a sacrifice in transport properties.
Here we show that optimization of RIL deposition technique allows for electroded avalanche a-Se with transport properties and time performance previously not achievable with any other a-Se structures. We have demonstrated this by detailed analysis of transport properties performed by Time-of-Flight (TOF) technique. Our results showed that a stable gain of 200 is reached at 104 V/μm for a 15-μm thick a-Se layer, which is the maximum theoretical gain for this thickness. We conclude that RIL is an enabling technology for practical implementation of solid-state avalanche a-Se image sensors.
doi:10.1016/j.cap.2011.12.023
PMCID: PMC3482457  PMID: 23115545
Amorphous selenium; Avalanche multiplication; Resistive interface layer; Photoconductivity
17.  On the alignment for precession electron diffraction 
Ultramicroscopy  2012;117:1-6.
Precession electron diffraction has seen a fast increase in its adoption as a technique for solving crystallographic structures as well as an alternative to conventional selected-area and converged-beam diffraction methods. One of the key issues of precession is the pivot point alignment, as a stationary apparent beam does not guarantee a fixed pivot point. A large precession tilt angle, along with pre-field and post-field misalignment, induces shift in the image plane. We point out here that the beam should be aligned to the pre-field optic axis to keep the electron illumination stationary during the rocking process. A practical alignment procedure is suggested with the focus placed on minimizing the beam wandering on the specimen, and is demonstrated for a (110)-oriented silicon single crystal and for a carbide phase (~20 nm in size) within a cast cobalt–chromium–molybdenum alloy.
doi:10.1016/j.ultramic.2012.03.021
PMCID: PMC3593050  PMID: 22634134
Precession electron diffraction; CoCrMo alloy; M23C6 carbide; Alignment
18.  Dynamic Nanoparticles Assemblies 
Accounts of chemical research  2012;45(11):1916-1926.
CONSPECTUS
Importance
Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies.
Classification
Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions in the field may include different size dimensionalities: discrete assemblies (artificial molecules), one-dimensional (spaced chains) and two-dimensional (sheets) and three-dimensional (superlattices, twisted structures) assemblies. Notably, these dimensional attributes must be regarded as primarily topological in nature because all of these superstructures can acquire complex three-dimensional shapes.
Preparation
We discuss three primary strategies used to prepare NP superstructures: (1) anisotropy-based assemblies utilizing either intrinsic force field anisotropy around NPs or external anisotropy associated with templates and/or applied fields; (2) assembly methods utilizing uniform NPs with isotropic interactions; and (3) methods based on mutual recognition of biomolecules, such as DNA and antigen-antibody interactions.
Applications
We consider optical, electronic, and magnetic properties of dynamic superstructures, focusing primarily on multiparticle effects in NP superstructures as represented by surface plasmon resonance, NP-NP charge transport, and multibody magnetization. Unique properties of NP superstructures are being applied to biosensing, drug delivery, and nanoelectronics. For both Class 1 and Class 2 dynamic assemblies, biosensing is the most dominant and well-developed area of dynamic nanostructures being successfully transitioned into practice. We can foresee the rapid development of dynamic NP assemblies toward applications in harvesting of dissipated energy, photonics, and electronics. The final part of the review is devoted to the fundamental questions facing dynamic assemblies of NPs in the future.
doi:10.1021/ar200305f
PMCID: PMC3479329  PMID: 22449243
19.  Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions☆ 
Spectrochimica Acta. Part B  2014;99(100):121-128.
The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control.
X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample.
Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function.
Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted elements with drastically increased confidence level.
Silicon wafers implanted with Arsenic at different implantation energies were measured by XRR and GIXRF using a combined, simultaneous measurement and data evaluation procedure. The data were processed using a self-developed software package (JGIXA), designed for simultaneous fitting of GIXRF and XRR data. The results were compared with depth profiles obtained by Secondary Ion Mass Spectrometry (SIMS).
Highlights
•The parameter optimization by curve fitting uses differential evolution (an evolutionary algorithm).•Implantation profiles are modeled by using the Pearson distribution system.•The implant distribution profile is discretized to allow calculation similar to a layered sample.•Total implanted dose, implantation depth and profile shape can be determined nondestructively.
doi:10.1016/j.sab.2014.06.019
PMCID: PMC4152003  PMID: 25202165
GIXRF; XRR; Ultra-shallow junctions; Ultra-shallow implants
20.  Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt 
Summary
The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.
doi:10.3762/bjnano.5.215
PMCID: PMC4273272  PMID: 25551034
current sensing AFM; ellipsometry; spintronics; TbPc2; transport properties
21.  Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields 
An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized non invasively through the direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows the precise estimation of the phase and amplitude aberrations and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2π). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from σ = 1.89 before correction to σ = 0.53 following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be −7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of −0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This technique could have important implications in the field of High Intensity Focused Ultrasound even in complex configurations such as transcranial, transcostal or deep seated organs.
doi:10.1109/TUFFc.2009.1327
PMCID: PMC3045085  PMID: 19942526
Artifacts; Computer-Aided Design; Equipment Design; Equipment Failure Analysis; Image Enhancement; instrumentation; methods; Reproducibility of Results; Sensitivity and Specificity; Ultrasonography; instrumentation; methods
22.  Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution 
Scientific Reports  2013;3:3514.
Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.
doi:10.1038/srep03514
PMCID: PMC3865489  PMID: 24343236
23.  Gate-tuned normal and superconducting transport at the surface of a topological insulator 
Nature Communications  2011;2:575-.
Three-dimensional topological insulators are characterized by the presence of a bandgap in their bulk and gapless Dirac fermions at their surfaces. New physical phenomena originating from the presence of the Dirac fermions are predicted to occur, and to be experimentally accessible via transport measurements in suitably designed electronic devices. Here we study transport through superconducting junctions fabricated on thin Bi2Se3 single crystals, equipped with a gate electrode. In the presence of perpendicular magnetic field B, sweeping the gate voltage enables us to observe the filling of the Dirac fermion Landau levels, whose character evolves continuously from electron- to hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned, and is minimum at the charge neutrality point determined from the Landau level filling. Our results demonstrate how gated nano-electronic devices give control over normal and superconducting transport of Dirac fermions at an individual surface of a three-dimensional topological insulators.
Topological insulators are a unique class of materials characterized by exotic metallic states at their surface, while remaining insulated in the bulk. Sacépé et al. show how to manipulate normal and superconducting electronic transport at the surface of the topological insulator Bi2Se3, by tuning a gate-voltage to vary the electronic density.
doi:10.1038/ncomms1586
PMCID: PMC3247814  PMID: 22146394
24.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles 
eLife  2013;2:e00461.
Although electron cryo-microscopy (cryo-EM) single-particle analysis has become an important tool for structural biology of large and flexible macro-molecular assemblies, the technique has not yet reached its full potential. Besides fundamental limits imposed by radiation damage, poor detectors and beam-induced sample movement have been shown to degrade attainable resolutions. A new generation of direct electron detectors may ameliorate both effects. Apart from exhibiting improved signal-to-noise performance, these cameras are also fast enough to follow particle movements during electron irradiation. Here, we assess the potentials of this technology for cryo-EM structure determination. Using a newly developed statistical movie processing approach to compensate for beam-induced movement, we show that ribosome reconstructions with unprecedented resolutions may be calculated from almost two orders of magnitude fewer particles than used previously. Therefore, this methodology may expand the scope of high-resolution cryo-EM to a broad range of biological specimens.
DOI: http://dx.doi.org/10.7554/eLife.00461.001
eLife digest
Determining the structure of proteins and other biomolecules at the atomic level is central to understanding many aspects of biology. X-ray crystallography is the best-known technique for structural biology but, as the name suggests, it works only with samples that can be crystallized. Electron cryo-microscopy (cryo-EM) could, potentially, be used to determine the atomic structures of biomolecules that cannot be crystallized, but at present the resolution that can be achieved with this approach is sufficient only for imaging certain types of viruses.
In cryo-EM, a solution of the biomolecule of interest is frozen in a thin layer of ice, and this layer is imaged in an electron microscope. By combining images of many identical biomolecules in many different orientations, it is possible to work backwards and determine their 3D structure. However, in order to determine this structure at high resolution, it is necessary to make repeated measurements to reduce high levels of noise in the images.
Cryo-EM images are usually recorded on a photographic film or a CCD (charge-coupled device) camera. However, photographic film is unsuitable for high-throughput methods because it has to be handled manually, while the efficiency of CCD cameras is limited because the electrons have to be converted into visible light to be detected. Digital cameras that can detect electrons directly have become available recently, and these are more efficient than both film and CCD cameras. They are also much faster, which means that it is possible to record videos of the sample during the time (typically ∼1 s) it is being exposed to the electron beam. Processing these videos could then—in theory—compensate for any movements of the biomolecules that are induced by the electron beam. Along with radiation damage caused by the electrons, these beam-induced movements have been a major limitation on the resolution that can be achieved with cryo-EM.
Bai et al. demonstrate the potential of direct-electron detectors in cryo-EM by determining the structures of two ribosomes. Using a novel statistical algorithm to accurately follow the movements of the ribosomes during the time they are exposed to the electron beam, they are able to compensate for these movements, and this makes it possible to determine the structures of the ribosomes with near-atomic precision. Moreover, the resolution they achieve with just ∼30,000 ribosomes is better than that previously achieved with more than a million ribosomes, allowing small details inside the ribosome – such as ß-strands and bulky amino-acid side chains – to be resolved with cryo-EM for the first time. The work of Bai et al. could, therefore, allow researchers to use cryo-EM to determine the structure of many more biomolecules with atomic precision.
DOI: http://dx.doi.org/10.7554/eLife.00461.002
doi:10.7554/eLife.00461
PMCID: PMC3576727  PMID: 23427024
Electron Microscopy; Direct electron detectors; Image processing; T. thermophilus; ribosome; Bayesian; S. cerevisiae
25.  Highly bright X-ray generator using heat of fusion with a specially designed rotating anticathode 
Journal of Synchrotron Radiation  2008;15(Pt 3):231-234.
A very compact X-ray generator, 4.3 times more brilliant than can be attained by a conventional rotating-anticathode X-ray generator, has been developed using a U-shaped rotating anticathode and a high-flux electron gun with focusing bending magnet.
A new type of rotating anticathode X-ray generator has been developed, in which the electron beam irradiates the inner surface of a U-shaped anticathode (Cu). A high-flux electron beam is focused on the inner surface by optimizing the shape of the bending magnet. The power of the electron beam can be increased to the point at which the irradiated part of the inner surface is melted, because a strong centrifugal force fixes the melted part on the inner surface. When the irradiated part is melted, a large amount of energy is stored as the heat of fusion, resulting in emission of X-rays 4.3 times more brilliant than can be attained by a conventional rotating anticathode. Oscillating translation of the irradiated position on the inner surface during use is expected to be very advantageous for extending the target life. A carbon film coating on the inner surface is considered to suppress evaporation of the target metal and will be an important technique in further realization of highly bright X-ray generation.
doi:10.1107/S0909049508003993
PMCID: PMC2394780  PMID: 18421146
bright X-ray generators; U-shape anticathodes; heat of fusion; target life extension; low emittance; DC/pulse guns; focusing bending magnets

Results 1-25 (929135)