Search tips
Search criteria

Results 1-25 (537278)

Clipboard (0)

Related Articles

1.  Double Rashba Quantum Dots Ring as a Spin Filter 
Nanoscale Research Letters  2008;3(9):343-347.
We theoretically propose a double quantum dots (QDs) ring to filter the electron spin that works due to the Rashba spin–orbit interaction (RSOI) existing inside the QDs, the spin-dependent inter-dot tunneling coupling and the magnetic flux penetrating through the ring. By varying the RSOI-induced phase factor, the magnetic flux and the strength of the spin-dependent inter-dot tunneling coupling, which arises from a constant magnetic field applied on the tunneling junction between the QDs, a 100% spin-polarized conductance can be obtained. We show that both the spin orientations and the magnitude of it can be controlled by adjusting the above-mentioned parameters. The spin filtering effect is robust even in the presence of strong intra-dot Coulomb interactions and arbitrary dot-lead coupling configurations.
PMCID: PMC3244887
Quantum dots; Spin filter; Rashba spin–orbit interaction; Spin-dependent inter-dot coupling
2.  Influence of Interconfigurational Electronic States on Fe, Co, Ni-Silicene Materials Selection for Spintronics 
Scientific Reports  2014;4:7594.
Growth through controlled adsorption of ferromagnetic elements such as Fe, Co and Ni on two-dimensional silicene provides an alternative route for silicon-based spintronics. Plane wave DFT calculations show that Fe, Co and Ni adatoms are strongly chemisorbed via strong sigma bonds, with adsorption energies (1.55 - 2.29 eV) that are two to six times greater compared to adsorption on graphene. All adatoms adsorb more strongly at the hole site than at the atom site, with Ni adsorbing strongest. Of the dimer configurations investigated, the hole – hole, b-atom – hole, vertically stacked at hole, vertically stacked at b-atom and bridge sites were found to be stable. The Co and Ni dimers are most stable when adsorbed in the hole-hole configuration while the Fe dimer is most stable when adsorbed in the atom-hole configuration. Metal-to-silicene and interconfigurational s-to-d electron transfer processes underpin the trends observed in adsorption energies and magnetic moments for both adatoms and dimers. Adsorption of these metals induces a small band gap at the Dirac Cone. In particular Co adatom adsorption at the hole site induces the largest spin-polarized band gaps of 0.70 eV (spin-up) and 0.28 eV (spin-down) making it a potential material candidate for spintronics applications.
PMCID: PMC4274514  PMID: 25534484
3.  Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction 
Nanoscale Research Letters  2012;7(1):670.
Using the nonequilibrium Green’s function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport.
PMCID: PMC3575254  PMID: 23228047
Aharonov-Bohm interferometer; Double quantum dot; Andreev reflection; Rashba spin-orbit interaction; Coherent indirect coupling; 73.63.Kv; 73.23.-b; 72.25.-b
4.  Spin transport properties of n-polyacene molecules (n = 1–15) connected to Ni surface electrodes: Theoretical analysis 
Scientific Reports  2014;4:7363.
Using non-equilibrium Green function formalism in conjunction with density functional theory, we explore the spin-polarized transport characteristics of several planar n-acene molecules suspended between two semi-infinite Ni electrodes via the thiol group. We examine the spin-dependence transport on Ni-n-acenes-Ni junctions, while the number of fused benzene rings varies between 1 and 15. Intriguingly, the induced magnetic moments of small acene molecules are higher than that of longer acene rings. The augmentation of fused benzene rings affects both the magnetic and transport features, such as the transmission function and conductance owing to their coupling to the Ni surface contacts via the anchoring group. The interplay between the spin-polarized transport properties, structural configuration and molecular electronic is a fortiori essential in these attractive molecular devices. Thus, this can conduct to the engineering of the electron spin transport in atomistic and molecular junctions. These prominent molecules convincingly infer that the molecular spin valves can conduct to thriving molecular devices.
PMCID: PMC4258687  PMID: 25482076
5.  Nearly Perfect Spin Filter, Spin Valve and Negative Differential Resistance Effects in a Fe4-based Single-molecule Junction 
Scientific Reports  2014;4:4838.
The spin-polarized transport in a single-molecule magnet Fe4 sandwiched between two gold electrodes is studied, using nonequilibrium Green's functions in combination with the density-functional theory. We predict that the device possesses spin filter effect (SFE), spin valve effect (SVE), and negative differential resistance (NDR) behavior. Moreover, we also find that the appropriate chemical ligand, coupling the single molecule to leads, is a key factor for manipulating spin-dependent transport. The device containing the methyl ligand behaves as a nearly perfect spin filter with efficiency approaching 100%, and the transport is dominated by transmission through the Fe4 metal center. However, in the case of phenyl ligand, the spin filter effect seems to be reduced, but the spin valve effect is significantly enhanced with a large magnetoresistance ratio, reaching 1800%. This may be attributed to the blocking effect of the phenyl ligands in mediating transport. Our findings suggest that such a multifunctional molecular device, possessing SVE, NDR and high SFE simultaneously, would be an excellent candidate for spintronics of molecular devices.
PMCID: PMC4007075  PMID: 24787446
6.  Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces 
Background: Magnetic nanostructures and nanoparticles often show novel magnetic phenomena not known from the respective bulk materials. In the past, several methods to prepare such structures have been developed – ranging from wet chemistry-based to physical-based methods such as self-organization or cluster growth. The preparation method has a significant influence on the resulting properties of the generated nanostructures. Taking chemical approaches, this influence may arise from the chemical environment, reaction kinetics and the preparation route. Taking physical approaches, the thermodynamics and the kinetics of the growth mode or – when depositing preformed clusters/nanoparticles on a surface – the landing kinetics and subsequent relaxation processes have a strong impact and thus need to be considered when attempting to control magnetic and structural properties of supported clusters or nanoparticles.
Results: In this contribution we focus on mass-filtered Fe nanoparticles in a size range from 4 nm to 10 nm that are generated in a cluster source and subsequently deposited onto two single crystalline substrates: fcc Ni(111)/W(110) and bcc W(110). We use a combined approach of X-ray magnetic circular dichroism (XMCD), reflection high energy electron diffraction (RHEED) and scanning tunneling microscopy (STM) to shed light on the complex and size-dependent relation between magnetic properties, crystallographic structure, orientation and morphology. In particular XMCD reveals that Fe particles on Ni(111)/W(110) have a significantly lower (higher) magnetic spin (orbital) moment compared to bulk iron. The reduced spin moments are attributed to the random particle orientation being confirmed by RHEED together with a competition of magnetic exchange energy at the interface and magnetic anisotropy energy in the particles. The RHEED data also show that the Fe particles on W(110) – despite of the large lattice mismatch between iron and tungsten – are not strained. Thus, strain is most likely not the origin of the enhanced orbital moments as supposed before. Moreover, RHEED uncovers the existence of a spontaneous process for epitaxial alignment of particles below a critical size of about 4 nm. STM basically confirms the shape conservation of the larger particles but shows first indications for an unexpected reshaping occurring at the onset of self-alignment.
Conclusion: The magnetic and structural properties of nanoparticles are strongly affected by the deposition kinetics even when soft landing conditions are provided. The orientation of the deposited particles and thus their interface with the substrate strongly depend on the particle size with consequences regarding particularly the magnetic behavior. Spontaneous and epitaxial self-alignment can occur below a certain critical size. This may enable the obtainment of samples with controlled, uniform interfaces and crystallographic orientations even in a random deposition process. However, such a reorientation process might be accompanied by a complex reshaping of the particles.
PMCID: PMC3045938  PMID: 21977415
epitaxy; iron; magnetic nanoparticles; Ni(111); RHEED; spontaneous self-alignment; STM; W(110); XMCD
7.  First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments 
IUCrJ  2014;1(Pt 3):194-199.
A method to map spin-resolved electron distribution from combined polarized neutron and X-ray diffraction is described and applied for the first time to a molecular magnet and it is shown that spin up density is 5% more contracted than spin down density.
Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.
PMCID: PMC4086435  PMID: 25075338
multipole refinement; charge and spin densities; joint refinement; molecular magnetic materials; magnetization density; polarized neutron diffraction
8.  Ferromagnetic Nanoscale Electron Correlation Promoted by Organic Spin-Dependent Delocalization 
Journal of the American Chemical Society  2009;131(51):18304-18313.
We describe the electronic structure and the origin of ferromagnetic exchange coupling in two new metal complexes, NN-SQ-CoIII(py)2Cat-NN (1) and NN-Ph-SQ-CoIII(py)2Cat-Ph-NN (2) (NN = nitronylnitroxide radical, Ph = 1,4-phenylene, SQ = S = 1/2 semiquinone radical, Cat = S = 0 catecholate, and py = pyridine). Near-IR electronic absorption spectroscopy for 1 and 2 reveals a low energy optical band that has been assigned as a Ψu → Ψg transition involving bonding and antibonding linear combinations of delocalized dioxolene (SQ/Cat) valence frontier molecular orbitals. The ferromagnetic exchange interaction in 1 is so strong that only the high-spin quartet state (ST = 3/2) is thermally populated at temperatures up to 300 K. The temperature-dependent magnetic susceptibility data for 2 reveals that an excited state spin doublet (ST = 1/2) is populated at higher temperatures, indicating that the phenylene spacer modulates the magnitude of the magnetic exchange. The valence delocalization within the dioxolene dyad of 2 results in ferromagnetic alignment of two localized NN radicals separated by over 22 Å. The ferromagnetic exchange in 1 and 2 results from a spin-dependent delocalization (double exchange type) process and the origin of this strong electron correlation has been understood in terms of a valence bond configuration interaction (VBCI) model. We show that ferromagnetic coupling promoted by organic mixed-valency provides keen insight into the ability of single molecules to communicate spin information over nanoscale distances. Furthermore, the strong interaction between the itinerant dioxolene electron and localized NN electron spins impacts our ability to understand the exchange interaction between delocalized electrons and pinned magnetic impurities in technologically important dilute magnetic semiconductor materials. The long correlation length (22 Å) of the itinerant electron that mediates this coupling indicates that high-spin π-delocalized organic molecules could find applications as nanoscale spin-polarized electron injectors and molecular wires.
PMCID: PMC3505726  PMID: 19928960
9.  Voltage-driven spintronic logic gates in graphene nanoribbons 
Scientific Reports  2014;4:6320.
Electronic devices lose efficacy due to quantum effect when the line-width of gate decreases to sub-10 nm. Spintronics overcome this bottleneck and logic gates are building blocks of integrated circuits. Thus, it is essential to control electronic transport of opposite spins for designing a spintronic logic gate, and spin-selective semiconductors are natural candidates such as zigzag graphene nanoribbons (ZGNR) whose edges are ferromagnetically ordered and antiferromagnetically coupled with each other. Moreover, it is necessary to sandwich ZGNR between two ferromagnetic electrodes for making a spintronic logic gate and also necessary to apply magnetic field to change the spin orientation for modulating the spin transport. By first principle calculations, we propose a method to manipulate the spin transport in graphene nanoribbons with electric field only, instead of magnetic field. We find that metal gates with specific bias nearby edges of ZGNR build up an in-plane inhomogeneous electric field which modulates the spin transport by localizing the spin density in device. The specific manipulation of spin transport we have proposed doesn't need spin-charge conversion for output and suggests a possible base for designing spintronic integrated circuit in atomic scale.
PMCID: PMC4159627  PMID: 25204808
10.  Magic-Angle-Spinning NMR Techniques for Measuring Long-Range Distances in Biological Macromolecules 
Accounts of chemical research  2013;46(9):2154-2163.
The determination of molecular structures using solid-state NMR spectroscopy requires distance measurement through nuclear-spin dipole-dipole couplings. However, most dipole-coupling techniques compete with the transverse (T2) relaxation of the nuclear spins, whose time constants are at most several tens of milliseconds, which limits the ability to measure weak dipolar couplings or long distances.
In the last ten years, we have developed a number of magic-angle-spinning (MAS) solidstate NMR techniques to measure distances of 15-20 Å. These methods take advantage of the high gyromagnetic ratios of 1H and 19F spins, multi-spin effects that speed up dipolar dephasing, and 1H and 19F spin diffusion that probes distances in the nanometer range. Third-spin heteronuclear detection provides a method for determining 1H dipolar couplings to heteronuclear spins. We have used this technique to measure hydrogen-bond lengths, torsion angles, the distribution of protein conformations, and the oligomeric assembly of proteins. We developed a new pulse sequence, HARDSHIP, to determine weak long-range 1H-heteronuclear dipolar couplings in the presence of strong short-range couplings. This experiment allows us to determine crystallite thicknesses in biological nanocomposites such as bone. The rotational-echo double-resonance (REDOR) technique allows us to detect multi-spin 13C-31P and 13C-2H dipolar couplings. Quantitative analysis of these couplings provides information about the structure of peptides bound to phospholipid bilayers and the geometry of ligand-binding sites in proteins.
Finally, we also use relayed magnetization transfer, or spin diffusion, to measure long distances. Z-magnetization can diffuse over several nanometers because its long T1 relaxation times allow it to survive for hundreds of milliseconds. We developed 1H spin diffusion to probe the depths of protein insertion into the lipid bilayer and protein-water interactions. On the other hand, 19F spin diffusion of site-specifically fluorinated molecules allowed us to elucidate the oligomeric structures of membrane peptides.
PMCID: PMC3714308  PMID: 23387532
11.  Spin–orbit induced electronic spin separation in semiconductor nanostructures 
Nature Communications  2012;3:1082-.
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current.
Achieving spin separation of charged particles in non-uniform magnetic fields is hindered by the Lorentz force. Kohda et al. demonstrate spin separation in a semiconductor nanostructure by exploiting the effective magnetic field arising from the spin–orbit interaction and achieve highly polarized spin currents.
PMCID: PMC3658013  PMID: 23011136
12.  Room-temperature Magnetic Ordering in Functionalized Graphene 
Scientific Reports  2012;2:624.
Despite theoretical predictions, the question of room-temperature magnetic order in graphene must be conclusively resolved before graphene can fully achieve its potential as a spintronic medium. Through scanning tunneling microscopy (STM) and point I-V measurements, the current study reveals that unlike pristine samples, graphene nanostructures, when functionalized with aryl radicals, can sustain magnetic order. STM images show 1-D and 2-D periodic super-lattices originating from the functionalization of a single sub-lattice of the bipartite graphene structure. Field-dependent super-lattices in 3-nm wide “zigzag” nanoribbons indicate local moments with parallel and anti-parallel ordering along and across the edges, respectively. Anti-parallel ordering is observed in 2-D segments with sizes of over 20 nm. The field dependence of STM images and point I-V curves indicates a spin polarized local density of states (LDOS), an out-of-plane anisotropy field of less than 10 Oe, and an exchange coupling field of 100 Oe at room temperature.
PMCID: PMC3432455  PMID: 22953045
13.  Mössbauer, EPR, and magnetic susceptibility studies on members of a new family of cyano-bridged 3d-4f complexes. Demonstration of anisotropic exchange in a Fe-Gd complex 
Inorganic chemistry  2010;49(7):3387-3401.
The synthesis and crystallographic characterization of a new family of M(μ-CN)Ln complexes are reported. Two structural series have been prepared by reacting in water rare earth nitrates (LnIII = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho) with K3[M(CN)6] (MIII = Fe, Co) in the presence of hexamethylenetetramine (hmt). The first series consists of six isomorphous heterobinuclear complexes, [(CN)5M-CNLn(H2O)8]·2hmt ([FeLa] 1, [FePr] 2, [FeNd] 3, [FeSm] 4, [FeEu] 5, [FeGd] 6), while the second series consists of four isostructural ionic complexes, [Ln(H2O)8][M(CN)6]·hmt ([FeDy] 7, [FeHo] 8, [CoEu] 9, [CoGd] 10). The hexamethylenetetramine molecules contribute to the stabilization of the crystals by participating in an extended network of hydrogen bond interactions. In both series the aqua ligands are hydrogen bonded to the nitrogen atoms from both the terminal CN groups and the hmt molecules. The [FeGd] complex has been analyzed with 57Fe Mössbauer spectroscopy, EPR, and magnetic susceptibility measurements. We have also analyzed the [FeLa] complex, in which the paramagnetic GdIII is replaced by diamagnetic LaIII, to obtain information about the low-spin FeIII site that is not accessible in the presence of a paramagnetic ion at the complementary site. For the same reason, the [CoGd] complex, containing diamagnetic CoIII, was studied with EPR and magnetic susceptibility measurements, which confirmed the S = 7/2 spin of GdIII. Prior knowledge about the paramagnetic sites in [FeGd] allows a detailed analysis of the exchange interactions between them. In particular, the question of whether the exchange interaction in [FeGd] is isotropic or anisotropic has been addressed. Standard variable-temperature magnetic susceptibility measurements provide only the value for a linear combination of Jx, Jy, and Jz but contain no information about the values of the individual exchange parameters Jx, Jy, and Jz. In contrast, the spin-Hamiltonian analysis of the variable-field, variable-temperature Mössbauer spectra reveals an exquisite sensitivity on the anisotropic exchange parameters. Analysis of these dependencies in conjunction with adopting the g-values obtained for [FeLa], yielded the values Jx = Ŝ1 · J · Ŝ2 +0.11 cm−1, Jy = +0.33 cm−1, and Jz = +1.20 cm−1 (convention). The consistency of these results with magnetic susceptibility data is analyzed. The exchange anisotropy is rooted in the spatial anisotropy of the low-spin FeIII ion. The condition for anisotropic exchange is the presence of low-lying orbital excited states at the ferric site that (i) effectively interact through spin-orbit coupling with the orbital ground state and (ii) have an exchange parameter with the Gd site with a value different from that for the ground state. DFT calculations, without spin-orbit coupling, reveal that the unpaired electron of the t2g5 ground configuration of the FeIII ion occupies the xy orbital, i.e. the orbital along the plane perpendicular to the Fe⋯Gd vector. The exchange-coupling constants for this orbital, jxy, and the other t2g orbitals, jyz and jxz, have been determined using a theoretical model that relates them to the anisotropic exchange parameters and the g-values of FeIII. The resulting values, jyz = −5.7 cm−1, jxz = −4.9 cm−1, and jxy = +0.3 cm−1 are quite different. The origin of the difference is briefly discussed.
PMCID: PMC2856468  PMID: 20225831
3d-4f interaction; Mössbauer; EPR; magnetic susceptibility; anisotropic exchange coupling
14.  Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics 
Scientific Reports  2014;4:6900.
Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.
PMCID: PMC4219157  PMID: 25365945
15.  Temperature and magnetic field dependence of a Kondo system in the weak coupling regime 
Nature Communications  2013;4:2110.
The Kondo effect arises due to the interaction between a localized spin and the electrons of a surrounding host. Studies of individual magnetic impurities by scanning tunneling spectroscopy have renewed interest in Kondo physics; however, a quantitative comparison with theoretical predictions remained challenging. Here we show that the zero-bias anomaly detected on an organic radical weakly coupled to a Au (111) surface can be described with astonishing agreement by perturbation theory as originally developed by Kondo 60 years ago. Our results demonstrate that Kondo physics can only be fully conceived by studying both temperature and magnetic field dependence of the resonance. The identification of a spin 1/2 Kondo system is of relevance not only as a benchmark for predictions for Kondo physics but also for correlated electron materials in general.
A lot of theoretical work on the Kondo effect has focused on spin 1/2 systems, but the characterization of a single-spin 1/2 atom or molecule in the weak coupling regime has been missing. Here, the authors close this gap with a scanning tunneling spectroscopy study of an organic radical on a gold surface.
PMCID: PMC3730050  PMID: 23817525
16.  Defect Induced Electronic Structure of Uranofullerene 
Scientific Reports  2013;3:1341.
The interaction between the inner atoms/cluster and the outer fullerene cage is the source of various novel properties of endohedral metallofullerenes. Herein, we introduce an adatom-type spin polarization defect on the surface of a typical endohedral stable U2@C60 to predict the associated structure and electronic properties of U2@C61 based on the density functional theory method. We found that defect induces obvious changes in the electronic structure of this metallofullerene. More interestingly, the ground state of U2@C61 is nonet spin in contrast to the septet of U2@C60. Electronic structure analysis shows that the inner U atoms and the C ad-atom on the surface of the cage contribute together to this spin state, which is brought about by a ferromagnetic coupling between the spin of the unpaired electrons of the U atoms and the C ad-atom. This discovery may provide a possible approach to adapt the electronic structure properties of endohedral metallofullerenes.
PMCID: PMC3581830  PMID: 23439318
17.  Faraday rotation echo spectroscopy and detection of quantum fluctuations 
Scientific Reports  2014;4:4695.
Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.
PMCID: PMC3986868  PMID: 24733086
18.  Magnetic structure and Magnetic transport Properties of Graphene Nanoribbons With Sawtooth Zigzag Edges 
Scientific Reports  2014;4:7587.
The magnetic structure and magnetic transport properties of hydrogen-passivated sawtooth zigzag-edge graphene nanoribbons (STGNRs) are investigated theoretically. It is found that all-sized ground-state STGNRs are ferromagnetic and always feature magnetic semiconductor properties, whose spin splitting energy gap Eg changes periodically with the width of STGNRs. More importantly, for the STGNR based device, the dual spin-filtering effect with the perfect (100%) spin polarization and high-performance dual spin diode effect with a rectification ratio about 1010 can be predicted. Particularly, a highly effective spin-valve device is likely to be realized, which displays a giant magnetoresistace (MR) approaching 1010%, which is three orders magnitude higher than the value predicted based on the zigzag graphene nanoribbons and six orders magnitude higher than previously reported experimental values for the MgO tunnel junction. Our findings suggest that STGNRs might hold a significant promise for developing spintronic devices.
PMCID: PMC4274539  PMID: 25533701
19.  Electron spin manipulation and readout through an optical fiber 
Scientific Reports  2014;4:5362.
The electron spin of nitrogen--vacancy (NV) centers in diamond offers a solid-state quantum bit and enables high-precision magnetic-field sensing on the nanoscale. Implementation of these approaches in a fiber format would offer unique opportunities for a broad range of technologies ranging from quantum information to neuroscience and bioimaging. Here, we demonstrate an ultracompact fiber-optic probe where a diamond microcrystal with a well-defined orientation of spin quantization NV axes is attached to the fiber tip, allowing the electron spins of NV centers to be manipulated, polarized, and read out through a fiber-optic waveguide integrated with a two-wire microwave transmission line. The microwave field transmitted through this line is used to manipulate the orientation of electron spins in NV centers through the electron-spin resonance tuned by an external magnetic field. The electron spin is then optically initialized and read out, with the initializing laser radiation and the photoluminescence spin-readout return from NV centers delivered by the same optical fiber.
PMCID: PMC4100017  PMID: 25028257
20.  High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots 
Applied Magnetic Resonance  2010;39(1-2):151-183.
It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the 67Zn nuclear spins and by the hyperfine interaction of the 7Li, 23Na and 27Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)2 capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the 67Zn nuclear spins in the core of ZnO QDs and of the 1H nuclear spins in the Zn(OH)2 capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques.
PMCID: PMC2941054  PMID: 20936163
21.  Magnetization States of All-Oxide Spin Valves Controlled by Charge-orbital Ordering of Coupled Ferromagnets 
Scientific Reports  2013;3:1830.
Charge-orbital ordering is commonly present in complex transition metal oxides and offers interesting opportunities for novel electronic devices. In this work, we demonstrate for the first time that the magnetization states of the spin valve can be directly manipulated by charge-orbital ordering. We investigate the interlayer exchange coupling (IEC) between two epitaxial magnetite layers separated by a nonmagnetic epitaxial MgO dielectric. We find that the state of the charge-orbital ordering in magnetite defines the strength, and even the sign of the IEC. First-principles calculations further show that the charge-orbital ordering modifies the spin polarized electronic states at the Fe3O4/MgO interfaces and results in a sufficiently large phase shift of wave function which are responsible for the observed IEC sign change across Verwey temperature. Our findings may open new interesting avenues for the electric field control of the magnetization states of spin valves via charge-orbital ordering driven IEC sign change.
PMCID: PMC3652083  PMID: 23665858
22.  High-Field Phenomena of Qubits 
Applied Magnetic Resonance  2009;36(2-4):259-268.
Electron and nuclear spins are very promising candidates to serve as quantum bits (qubits) for proposed quantum computers, as the spin degrees of freedom are relatively isolated from their surroundings and can be coherently manipulated, e.g., through pulsed electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR). For solid-state spin systems, impurities in crystals based on carbon and silicon in various forms have been suggested as qubits, and very long relaxation rates have been observed in such systems. We have investigated a variety of these systems at high magnetic fields in our multifrequency pulsed EPR/ENDOR (electron nuclear double resonance) spectrometer. A high magnetic field leads to large electron spin polarizations at helium temperatures, giving rise to various phenomena that are of interest with respect to quantum computing. For example, it allows the initialization of both the electron spin as well as hyperfine-coupled nuclear spins in a well-defined state by combining millimeter and radio-frequency radiation. It can increase the T2 relaxation times by eliminating decoherence due to dipolar interaction and lead to new mechanisms for the coherent electrical readout of electron spins. We will show some examples of these and other effects in Si:P, SiC:N and nitrogen-related centers in diamond.
PMCID: PMC2779422  PMID: 19946596
23.  Gate control of the electron spin-diffusion length in semiconductor quantum wells 
Nature Communications  2013;4:2372.
The spin diffusion length is a key parameter to describe the transport properties of spin polarized electrons in solids. Electrical spin injection in semiconductor structures, a major issue in spintronics, critically depends on this spin diffusion length. Gate control of the spin diffusion length could be of great importance for the operation of devices based on the electric field manipulation and transport of electron spin. Here we demonstrate that the spin diffusion length in a GaAs quantum well can be electrically controlled. Through the measurement of the spin diffusion coefficient by spin grating spectroscopy and of the spin relaxation time by time-resolved optical orientation experiments, we show that the diffusion length can be increased by more than 200% with an applied gate voltage of 5 V. These experiments allow at the same time the direct simultaneous measurements of both the Rashba and Dresselhaus spin-orbit splittings.
An important parameter in spintronics is the spin-diffusion length: the length over which the travelling electron spin keeps its orientation. Here, the authors show control over this length in quantum wells using a gate voltage, which also allows for an elegant measurement of the spin-orbit terms.
PMCID: PMC3791469  PMID: 24052071
24.  Spin Hall voltages from a.c. and d.c. spin currents 
Nature Communications  2014;5:3768.
In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents—that is, without net charge transfer—is essential. When the magnetization vector in a ferromagnet–normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range.
A spin current is injected from a ferromagnet into a nonmagnetic metal at magnetic resonance. Here, the authors show that this current has both a direct-current and a much larger alternating-current component, indicating that these structures could be useful for high-frequency spintronics.
PMCID: PMC4015325  PMID: 24780927
25.  Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot 
Scientific Reports  2011;1:110.
Double quantum dots are convenient solid-state platforms to encode quantum information. Two-electron spin states can be detected and manipulated using quantum selection rules based on the Pauli exclusion principle, leading to Pauli spin blockade of electron transport for triplet states. Coherent spin states would be optimally preserved in an environment free of nuclear spins, which is achievable in silicon by isotopic purification. Here we report on a deliberately engineered, gate-defined silicon metal-oxide-semiconductor double quantum dot system. The electron occupancy of each dot and the inter-dot tunnel coupling are independently tunable by electrostatic gates. At weak inter-dot coupling we clearly observe Pauli spin blockade and measure a large intra-dot singlet-triplet splitting > 1 meV. The leakage current in spin blockade has a peculiar magnetic field dependence, unrelated to electron-nuclear effects and consistent with the effect of spin-flip cotunneling processes. The results obtained here provide excellent prospects for realising singlet-triplet qubits.
PMCID: PMC3216592  PMID: 22355627

Results 1-25 (537278)