PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (140315)

Clipboard (0)
None

Related Articles

1.  Atomic scale investigation of silicon nanowires and nanoclusters 
Nanoscale Research Letters  2011;6(1):271.
In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT) provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers.
doi:10.1186/1556-276X-6-271
PMCID: PMC3211335  PMID: 21711788
2.  Facile Pyrolytic Synthesis of Silicon Nanowires 
Solid-state electronics  2010;54(10):1185-1191.
One-dimensional nanostructures such as silicon nanowires (SiNW) are attractive candidates for low power density electronic and optoelectronic devices including sensors. A new simple method for SiNW bulk synthesis[1, 2] is demonstrated in this work, which is inexpensive and uses low toxicity materials, thereby offering a safe, energy efficient and green approach. The method uses low flammability liquid phenylsilanes, offering a safer avenue for SiNW growth compared with using silane gas. A novel, duo-chamber glass vessel is used to create a low-pressure environment where SiNWs are grown through vapor-liquid-solid mechanism using gold nanoparticles as a catalyst. The catalyst decomposes silicon precursor vapors of diphenylsilane and triphenylsilane and precipitates single crystal SiNWs, which appear to grow parallel to the substrate surface. This opens up possibilities for synthesizing nano-junctions amongst wires which is important for the grid architecture of nanoelectronics proposed by Likharev[3]. Even bulk synthesis of SiNW is feasible using sacrificial substrates such as CaCO3 that can be dissolved post-synthesis. Furthermore, by dissolving appropriate dopants in liquid diphenylsilane, a controlled doping of the nanowires is realized without the use of toxic gases and expensive mass flow controllers. Upon boron doping, we observe a characteristic red shift in photoluminescence spectra. In summary, an inexpensive and versatile method for SiNW is presented that makes these exotic materials available to any lab at low cost.
doi:10.1016/j.sse.2010.05.011
PMCID: PMC2919782  PMID: 20711489
Silicon nanowires; dopants; photoluminescence; gold nanoparticles; HR-TEM
3.  Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires 
Nanoscale Research Letters  2011;6(1):176.
Au-Si nano-particle-decorated silicon nanowire arrays have been fabricated by Au film deposition on silicon nanowire array substrates and then post-thermal annealing under hydrogen atmosphere. Field emission measurements illustrated that the turn-on fields of the non-annealed Au-coated SiNWs were 6.02 to 7.51 V/μm, higher than that of the as-grown silicon nanowires, which is about 5.01 V/μm. Meanwhile, after being annealed above 650°C, Au-Si nano-particles were synthesized on the top surface of the silicon nanowire arrays and the one-dimensional Au-Si nano-particle-decorated SiNWs had a much lower turn-on field, 1.95 V/μm. The results demonstrated that annealed composite silicon nanowire array-based electron field emitters may have great advantages over many other emitters.
doi:10.1186/1556-276X-6-176
PMCID: PMC3211229  PMID: 21711684
4.  Atomistics of vapour–liquid–solid nanowire growth 
Nature Communications  2013;4:1956.
Vapour–liquid–solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet–nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays.
The vapour–liquid–solid method is used to produce semiconducting nanowires but the fundamental processes involved are poorly understood. Wang et al. use atomic-scale simulations to elucidate the mechanisms involved in the growth and stability of gold-catalysed silicon nanowires.
doi:10.1038/ncomms2956
PMCID: PMC3709494  PMID: 23752586
5.  Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation 
Scientific Reports  2013;3:1469.
Metallic nanoparticles (NPs) have received recently considerable interest of photonic and photovoltaic communities. In this work, we report the optoelectronic properties of gold NPs (Au-NPs) obtained by depositing very thin gold layers on glass substrates through thermal evaporation electron-beam assisted process. The effect of mass thickness of the layer was evaluated. The polycrystalline Au-NPs, with grain sizes of 14 and 19 nm tend to be elongated in one direction as the mass thickness increase. A 2 nm layer deposited at 250°C led to the formation of Au-NPs with 10-20 nm average size, obtained by SEM images, while for a 5 nm layer the wide size elongates from 25 to 150 nm with a mean at 75 nm. In the near infrared region was observed an absorption enhancement of amorphous silicon films deposited onto the Au-NPs layers with a corresponding increase in the PL peak for the same wavelength region.
doi:10.1038/srep01469
PMCID: PMC3615571  PMID: 23552055
6.  Structure-dependent growth control in nanowire synthesis via on-film formation of nanowires 
Nanoscale Research Letters  2011;6(1):196.
On-film formation of nanowires, termed OFF-ON, is a novel synthetic approach that produces high-quality, single-crystalline nanowires of interest. This versatile method utilizes stress-induced atomic mass flow along grain boundaries in the polycrystalline film to form nanowires. Consequently, controlling the magnitude of the stress induced in the films and the microstructure of the films is important in OFF-ON. In this study, we investigated various experimental growth parameters such as deposition rate, deposition area, and substrate structure which modulate the microstructure and the magnitude of stress in the films, and thus significantly affect the nanowire density. We found that Bi nanowire growth is favored in thermodynamically unstable films that facilitate atomic mass flow during annealing. A large film area and a large thermal expansion coefficient mismatch between the film and the substrate were found to be critical for inducing large compressive stress in a film, which promotes Bi nanowire growth. The OFF-ON method can be routinely used to grow nanowires from a variety of materials by tuning the material-dependent growth parameters.
doi:10.1186/1556-276X-6-196
PMCID: PMC3211252  PMID: 21711724
7.  Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching 
Nanoscale Research Letters  2011;6(1):349.
Films of nanocrystalline silicon (nc-Si) were prepared from hydrogenated amorphous silicon (a-Si:H) by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics.
doi:10.1186/1556-276X-6-349
PMCID: PMC3211438  PMID: 21711891
8.  Co nanoparticle hybridization with single-crystalline Bi nanowires 
Nanoscale Research Letters  2011;6(1):598.
Crystalline Co nanoparticles were hybridized with single-crystalline Bi nanowires simply by annealing Co-coated Bi nanowires at elevated temperatures. An initially near-amorphous Co film of 2-7 nm in thickness began to disrupt its morphology and to be locally transformed into crystallites in the early stage of annealing. The Co film became discontinuous after prolonged annealing, finally leading to isolated, crystalline Co nanoparticles of 8-27 nm in size. This process spontaneously proceeds to reduce the high surface tension and total energy of Co film. The annealing time required for Co nanoparticle formation decreased as annealing temperature increased, reflecting that this transformation occurs by the diffusional flow of Co atoms. The Co nanoparticle formation process was explained by a hole agglomeration and growth mechanism, which is similar to the model suggested by Brandon and Bradshaw, followed by the nanoparticle refinement.
doi:10.1186/1556-276X-6-598
PMCID: PMC3256329  PMID: 22099689
9.  An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks 
Nanoscale Research Letters  2011;6(1):495.
Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman.
doi:10.1186/1556-276X-6-495
PMCID: PMC3212010  PMID: 21849077
Si NWs; AAO; masks; CVD
10.  Effects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures 
Nanoscale Research Letters  2011;6(1):566.
The effects of thermal substrate pretreatment on the growth of Au-catalyzed ZnO nanostructures by pulsed laser deposition are investigated. C-plane sapphire substrates are annealed prior to deposition of a thin Au layer. Subsequent ZnO growths on substrates annealed above 1,200°C resulted in a high density of nanosheets and nanowires, whereas lower temperatures led to low nanostructure densities. Separate Au film annealing experiments at 700°C showed little variation in the size and density of the Au catalyst droplets with substrate annealing temperature. The observed variation in the density of nanostructures is attributed to the number of surface nucleation sites on the substrate, leading to a competition between nucleation promoted by the Au catalyst and surface nucleation sites on the rougher surfaces annealed below 1,200°C.
doi:10.1186/1556-276X-6-566
PMCID: PMC3215691  PMID: 22029730
zinc oxide; laser ablation; atomic force microscopy; thermal annealing; vapourliquid-solid growth; nanostructures; surface roughness; surface defects
11.  Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements 
Biomedical Optics Express  2012;3(5):899-910.
A cost-effective, stable and ultrasensitive localized surface plasmon resonance (LSPR) sensor based on gold nanoparticles (AuNPs) partially embedded in transparent substrate is presented. Partially embedded AuNPs were prepared by thermal annealing of gold thin films deposited on glass at a temperature close to the glass transition temperature of the substrate. Annealed samples were optically characterized by using spectroscopic ellipsometry and compare with theoretical modeling to understand the optical responses from the samples. By combining the partially-embedded AuNPs substrate with a microfluidic flow cell and dove prism in an ellipsometry setup, an ultrasensitive change in the LSPR signal can be detected. The refractive index sensitivity obtained from the phase measurement is up to 1938 degrees/RIU which is several times higher than that of synthesized colloidal gold nanoparticles. The sample is further used to investigate the interactions between primary and secondary antibodies. The bio-molecular detection limit of the LSPR signal is down to 20 pM. Our proposed sensor is label free, non-destructive, with high sensitivity, low cost, and easy to fabricate. These features make it feasible for commercialization in biomedical applications.
doi:10.1364/BOE.3.000899
PMCID: PMC3342195  PMID: 22567583
(120.2130) Ellipsometry and polarimetry; (240.6680) Surface plasmons; (280.1415) Biological sensing and sensors; (280.4788) Optical sensing and sensors
12.  Conductive-probe atomic force microscopy characterization of silicon nanowire 
Nanoscale Research Letters  2011;6(1):110.
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.
doi:10.1186/1556-276X-6-110
PMCID: PMC3211155  PMID: 21711623
13.  Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich SiNx:H films 
Nanoscale Research Letters  2011;6(1):178.
In this study, a wide range of a-SiNx:H films with an excess of silicon (20 to 50%) were prepared with an electron-cyclotron resonance plasma-enhanced chemical vapor deposition system under the flows of NH3 and SiH4. The silicon-rich a-SiNx:H films (SRSN) were sandwiched between a bottom thermal SiO2 and a top Si3N4 layer, and subsequently annealed within the temperature range of 500-1100°C in N2 to study the effect of annealing temperature on light-emitting and charge storage properties. A strong visible photoluminescence (PL) at room temperature has been observed for the as-deposited SRSN films as well as for films annealed up to 1100°C. The possible origins of the PL are briefly discussed. The authors have succeeded in the formation of amorphous Si quantum dots with an average size of about 3 to 3.6 nm by varying excess amount of Si and annealing temperature. Electrical properties have been investigated on Al/Si3N4/SRSN/SiO2/Si structures by capacitance-voltage and conductance-voltage analysis techniques. A significant memory window of 4.45 V was obtained at a low operating voltage of ± 8 V for the sample containing 25% excess silicon and annealed at 1000°C, indicating its utility in low-power memory devices.
doi:10.1186/1556-276X-6-178
PMCID: PMC3211231  PMID: 21711712
14.  Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays 
Nanoscale Research Letters  2012;7(1):450.
A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H2O2. The quality of the pattern transfer depended on the chosen preparation conditions for the gold nanoparticle etching mask. The influence of the Si surface properties was investigated by using either hydrophilic or hydrophobic Si substrates resulting from piranha solution or HF treatment, respectively. The polymer-coated gold nanoparticles had to be thermally treated in order to provide a direct contact at the metal/Si interface which is required for the following metal-assisted etching. Plasma treatment as well as flame annealing was successfully applied. The best results were obtained for Si substrates which were flame annealed in order to remove the polymer matrix - independent of the substrate surface properties prior to spin-coating (hydrophilic or hydrophobic). The presented method opens up new resources for the fabrication of porous silicon by metal-assisted etching. Here, a vast variety of metal nanoparticles accessible by well-established wet-chemical synthesis can be employed for the fabrication of the etching masks.
doi:10.1186/1556-276X-7-450
PMCID: PMC3463426  PMID: 22876790
Porous silicon; Nanolithography; Gold nanoparticles; Self-assembly; Metal-assisted etching; 81.05.Rm; 81.16.Nd; 81.65.Cf
15.  Study of the formation processes of gold droplet arrays on Si substrates by high temperature anneals 
Nanoscale Research Letters  2011;6(1):151.
In this study, the peculiarities of the transformations of gold films deposited on the Si wafer surfaces as a result of high temperature anneals are investigated experimentally depending on the conditions of wafer surface preparation and the annealing regimes. The morphology and the distribution functions of the crystallites of gold films as well as the gold droplets formed as a result of anneals are studied as functions of annealing temperature, type of annealing (rapid thermal or rapid furnace annealing), and the state of the surface of Si wafers. The results obtained can be used for the controlled preparation of the arrays of catalytic gold droplets for subsequent growth of Si wire-like crystals.
doi:10.1186/1556-276X-6-151
PMCID: PMC3211202  PMID: 21711668
16.  Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins 
Journal of Applied Crystallography  2009;42(Pt 2):242-252.
Anomalous extra spots visible in electron diffraction patterns of silicon nanowires and silicon thin films are explained by the presence of micro- and nanotwins.
Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grown via the vapour–liquid–solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure with c/a = 12(2/3)1/2, but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data, i.e. EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work.
doi:10.1107/S0021889808042131
PMCID: PMC3246813  PMID: 22477767
silicon nanowires; silicon thin films; artifacts; twinning
17.  Selective formation of tungsten nanowires 
Nanoscale Research Letters  2011;6(1):543.
We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions.
doi:10.1186/1556-276X-6-543
PMCID: PMC3212081  PMID: 21970543
tungsten; nanowires; nanostructures; self-aligned; chemical vapor deposition; selective deposition
18.  Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films 
Summary
The thermally activated formation of nanoscale CoPt alloys was investigated, after deposition of self-assembled Co nanoparticles on textured Pt(111) and epitaxial Pt(100) films on MgO(100) and SrTiO3(100) substrates, respectively. For this purpose, metallic Co nanoparticles (diameter 7 nm) were prepared with a spacing of 100 nm by deposition of precursor-loaded reverse micelles, subsequent plasma etching and reduction on flat Pt surfaces. The samples were then annealed at successively higher temperatures under a H2 atmosphere, and the resulting variations of their structure, morphology and magnetic properties were characterized. We observed pronounced differences in the diffusion and alloying of Co nanoparticles on Pt films with different orientations and microstructures. On textured Pt(111) films exhibiting grain sizes (20–30 nm) smaller than the particle spacing (100 nm), the formation of local nanoalloys at the surface is strongly suppressed and Co incorporation into the film via grain boundaries is favoured. In contrast, due to the absence of grain boundaries on high quality epitaxial Pt(100) films with micron-sized grains, local alloying at the film surface was established. Signatures of alloy formation were evident from magnetic investigations. Upon annealing to temperatures up to 380 °C, we found an increase both of the coercive field and of the Co orbital magnetic moment, indicating the formation of a CoPt phase with strongly increased magnetic anisotropy compared to pure Co. At higher temperatures, however, the Co atoms diffuse into a nearby surface region where Pt-rich compounds are formed, as shown by element-specific microscopy.
doi:10.3762/bjnano.2.51
PMCID: PMC3190617  PMID: 22003453
alloy; Co; CoPt; epitaxy; HRTEM; magnetometry; nanoparticles; Pt; XMCD
19.  InAs-mediated growth of vertical InSb nanowires on Si substrates 
Nanoscale Research Letters  2013;8(1):333.
In this work, InSb nanowires are grown vertically on Si (111) with metal organic chemical vapor deposition using InAs as seed layer, instead of external metal catalyst. Two groups of InSb nanowires are fabricated and characterized: one group presents Indium droplets at the nanowire's free end, while the other, in contrast, ends without Indium droplet but with pyramid-shaped InSb. The indium-droplet-ended nanowires are longer than the other group of nanowires. For both groups of InSb nanowires, InAs layers play an important role in their formation by serving as a template for growing InSb nanowires. The results presented in this work suggest a useful approach to grow catalyst-free InSb nanowires on Si substrates, which is significant for their device applications.
doi:10.1186/1556-276X-8-333
PMCID: PMC3726463  PMID: 23883403
Catalyst-free; MOCVD; InSb; Nanowire; Electron microscopy
20.  Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon 
Nanoscale Research Letters  2012;7(1):464.
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.
doi:10.1186/1556-276X-7-464
PMCID: PMC3497612  PMID: 22901341
21.  Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses 
Nanoscale Research Letters  2012;7(1):589.
In this letter, we quantitatively investigated epitaxial GaAs nanowires catalyzed by thin Au films of different thicknesses on GaAs (111)B substrates in a metal-organic chemical vapor deposition reactor. Prior to nanowire growth, the de-wetting of Au thin films to form Au nanoparticles on GaAs (111)B in AsH3 ambient at different temperatures is investigated. It is found that with increasing film thickness, the size of the Au nanoparticles increases while the density of the nanoparticles reduces. Furthermore, higher annealing temperature produces larger Au nanoparticles for a fixed film thickness. As expected, the diameters and densities of the as-grown GaAs nanowires catalyzed by these thin Au films reflect these trends.
doi:10.1186/1556-276X-7-589
PMCID: PMC3552812  PMID: 23095345
III-V semiconductor; Electron microscopy; Epitaxial growth; GaAs nanowires; MOCVD
22.  Ordered arrays of nanoporous gold nanoparticles 
Summary
A combination of a “top-down” approach (substrate-conformal imprint lithography) and two “bottom-up” approaches (dewetting and dealloying) enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size) by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.
doi:10.3762/bjnano.3.74
PMCID: PMC3458611  PMID: 23019561
dealloying; dewetting; nanoimprint lithography; nanoparticles; nanoporous gold; ordered arrays
23.  Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties 
Nanoscale Research Letters  2009;5(2):286-290.
We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs.
doi:10.1007/s11671-009-9477-5
PMCID: PMC2894122  PMID: 20672113
Si nanowires; Erbium; Luminescence; Platinum catalyst
24.  Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties 
Nanoscale Research Letters  2009;5(2):286-290.
We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs.
doi:10.1007/s11671-009-9477-5
PMCID: PMC2894122  PMID: 20672113
Si nanowires; Erbium; Luminescence; Platinum catalyst
25.  Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film 
The Scientific World Journal  2013;2013:539457.
The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite.
doi:10.1155/2013/539457
PMCID: PMC3835911  PMID: 24302862

Results 1-25 (140315)