Search tips
Search criteria

Results 1-25 (269542)

Clipboard (0)

Related Articles

1.  Atomic scale investigation of silicon nanowires and nanoclusters 
Nanoscale Research Letters  2011;6(1):271.
In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT) provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers.
PMCID: PMC3211335  PMID: 21711788
2.  Facile Pyrolytic Synthesis of Silicon Nanowires 
Solid-state electronics  2010;54(10):1185-1191.
One-dimensional nanostructures such as silicon nanowires (SiNW) are attractive candidates for low power density electronic and optoelectronic devices including sensors. A new simple method for SiNW bulk synthesis[1, 2] is demonstrated in this work, which is inexpensive and uses low toxicity materials, thereby offering a safe, energy efficient and green approach. The method uses low flammability liquid phenylsilanes, offering a safer avenue for SiNW growth compared with using silane gas. A novel, duo-chamber glass vessel is used to create a low-pressure environment where SiNWs are grown through vapor-liquid-solid mechanism using gold nanoparticles as a catalyst. The catalyst decomposes silicon precursor vapors of diphenylsilane and triphenylsilane and precipitates single crystal SiNWs, which appear to grow parallel to the substrate surface. This opens up possibilities for synthesizing nano-junctions amongst wires which is important for the grid architecture of nanoelectronics proposed by Likharev[3]. Even bulk synthesis of SiNW is feasible using sacrificial substrates such as CaCO3 that can be dissolved post-synthesis. Furthermore, by dissolving appropriate dopants in liquid diphenylsilane, a controlled doping of the nanowires is realized without the use of toxic gases and expensive mass flow controllers. Upon boron doping, we observe a characteristic red shift in photoluminescence spectra. In summary, an inexpensive and versatile method for SiNW is presented that makes these exotic materials available to any lab at low cost.
PMCID: PMC2919782  PMID: 20711489
Silicon nanowires; dopants; photoluminescence; gold nanoparticles; HR-TEM
3.  Atomistics of vapour–liquid–solid nanowire growth 
Nature Communications  2013;4:1956.
Vapour–liquid–solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet–nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays.
The vapour–liquid–solid method is used to produce semiconducting nanowires but the fundamental processes involved are poorly understood. Wang et al. use atomic-scale simulations to elucidate the mechanisms involved in the growth and stability of gold-catalysed silicon nanowires.
PMCID: PMC3709494  PMID: 23752586
4.  Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates 
Nanoscale Research Letters  2014;9(1):181.
We propose the use of bimetallic non-alloyed nanoparticles (BNNPs) to improve the broadband optical absorption of thin amorphous silicon substrates. Isolated bimetallic NPs with uniform size distribution on glass and silicon are obtained by depositing a 10-nm Au film and annealing it at 600°C; this is followed by an 8-nm Ag film annealed at 400°C. We experimentally demonstrate that the deposition of gold (Au)-silver (Ag) bimetallic non-alloyed NPs (BNNPs) on a thin amorphous silicon (a-Si) film increases the film's average absorption and forward scattering over a broad spectrum, thus significantly reducing its total reflection performance. Experimental results show that Au-Ag BNNPs fabricated on a glass substrate exhibit resonant peaks at 437 and 540 nm and a 14-fold increase in average forward scattering over the wavelength range of 300 to 1,100 nm in comparison with bare glass. When deposited on a 100-nm-thin a-Si film, Au-Ag BNNPs increase the average absorption and forward scattering by 19.6% and 95.9% compared to those values for Au NPs on thin a-Si and plain a-Si without MNPs, respectively, over the 300- to 1,100-nm range.
PMCID: PMC3990030  PMID: 24725390
Optics at surface; Surface plasmon resonance; Antireflection; Scattering light
5.  Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires 
Nanoscale Research Letters  2011;6(1):176.
Au-Si nano-particle-decorated silicon nanowire arrays have been fabricated by Au film deposition on silicon nanowire array substrates and then post-thermal annealing under hydrogen atmosphere. Field emission measurements illustrated that the turn-on fields of the non-annealed Au-coated SiNWs were 6.02 to 7.51 V/μm, higher than that of the as-grown silicon nanowires, which is about 5.01 V/μm. Meanwhile, after being annealed above 650°C, Au-Si nano-particles were synthesized on the top surface of the silicon nanowire arrays and the one-dimensional Au-Si nano-particle-decorated SiNWs had a much lower turn-on field, 1.95 V/μm. The results demonstrated that annealed composite silicon nanowire array-based electron field emitters may have great advantages over many other emitters.
PMCID: PMC3211229  PMID: 21711684
6.  Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays 
Nanoscale Research Letters  2012;7(1):450.
A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H2O2. The quality of the pattern transfer depended on the chosen preparation conditions for the gold nanoparticle etching mask. The influence of the Si surface properties was investigated by using either hydrophilic or hydrophobic Si substrates resulting from piranha solution or HF treatment, respectively. The polymer-coated gold nanoparticles had to be thermally treated in order to provide a direct contact at the metal/Si interface which is required for the following metal-assisted etching. Plasma treatment as well as flame annealing was successfully applied. The best results were obtained for Si substrates which were flame annealed in order to remove the polymer matrix - independent of the substrate surface properties prior to spin-coating (hydrophilic or hydrophobic). The presented method opens up new resources for the fabrication of porous silicon by metal-assisted etching. Here, a vast variety of metal nanoparticles accessible by well-established wet-chemical synthesis can be employed for the fabrication of the etching masks.
PMCID: PMC3463426  PMID: 22876790
Porous silicon; Nanolithography; Gold nanoparticles; Self-assembly; Metal-assisted etching; 81.05.Rm; 81.16.Nd; 81.65.Cf
7.  Morphological control of heterostructured nanowires synthesized by sol-flame method 
Nanoscale Research Letters  2013;8(1):347.
Heterostructured nanowires, such as core/shell nanowires and nanoparticle-decorated nanowires, are versatile building blocks for a wide range of applications because they integrate dissimilar materials at the nanometer scale to achieve unique functionalities. The sol-flame method is a new, rapid, low-cost, versatile, and scalable method for the synthesis of heterostructured nanowires, in which arrays of nanowires are decorated with other materials in the form of shells or chains of nanoparticles. In a typical sol-flame synthesis, nanowires are dip-coated with a solution containing precursors of the materials to be decorated, then dried in air, and subsequently heated in the post-flame region of a flame at high temperature (over 900°C) for only a few seconds. Here, we report the effects of the precursor solution on the final morphology of the heterostructured nanowire using Co3O4 decorated CuO nanowires as a model system. When a volatile cobalt salt precursor is used with sufficient residual solvent, both solvent and cobalt precursor evaporate during the flame annealing step, leading to the formation of Co3O4 nanoparticle chains by a gas-solid transition. The length of the nanoparticle chains is mainly controlled by the temperature of combustion of the solvent. On the other hand, when a non-volatile cobalt salt precursor is used, only the solvent evaporates and the cobalt salt is converted to nanoparticles by a liquid–solid transition, forming a conformal Co3O4 shell. This study facilitates the use of the sol-flame method for synthesizing heterostructured nanowires with controlled morphologies to satisfy the needs of diverse applications.
PMCID: PMC3750428  PMID: 23924299
Heterostructured nanowires; Metal oxide nanowires; Sol-flame; Flame synthesis; CuO nanowires; Co3O4 nanoparticles
8.  Structure-dependent growth control in nanowire synthesis via on-film formation of nanowires 
Nanoscale Research Letters  2011;6(1):196.
On-film formation of nanowires, termed OFF-ON, is a novel synthetic approach that produces high-quality, single-crystalline nanowires of interest. This versatile method utilizes stress-induced atomic mass flow along grain boundaries in the polycrystalline film to form nanowires. Consequently, controlling the magnitude of the stress induced in the films and the microstructure of the films is important in OFF-ON. In this study, we investigated various experimental growth parameters such as deposition rate, deposition area, and substrate structure which modulate the microstructure and the magnitude of stress in the films, and thus significantly affect the nanowire density. We found that Bi nanowire growth is favored in thermodynamically unstable films that facilitate atomic mass flow during annealing. A large film area and a large thermal expansion coefficient mismatch between the film and the substrate were found to be critical for inducing large compressive stress in a film, which promotes Bi nanowire growth. The OFF-ON method can be routinely used to grow nanowires from a variety of materials by tuning the material-dependent growth parameters.
PMCID: PMC3211252  PMID: 21711724
9.  Pulsed laser deposition of single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 core/shell nanowires 
Nanoscale Research Letters  2014;9(1):650.
Single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 (CI/CIGS) core/shell nanowires are fabricated by pulsed laser deposition with Ni nanoparticles as catalyst. The CI/CIGS core/shell nanowires are made up of single-crystalline CI cores surrounded by single-crystalline CIGS shells. The CI/CIGS nanowires are grown at a considerably low temperature (350°C ~ 450°C) by vapor-liquid-solid mode combined with vapor-solid mode. The distribution density of the nanowires increases with the increasing of the deposition duration, and the substrate temperature determines the lengths of the nanowires. The U-V absorption spectra of the CIGS thin films with and without the CI/CIGS core/shell nanowires demonstrate that the CI/CIGS nanowires can remarkably enhance the absorption of CIGS thin films in the spectrum range of 300 to 900 nm.
61.46. + w; 61.41.e; 81.15.Fg; 81.07.b
PMCID: PMC4266518  PMID: 25520597
Pulsed laser deposition; Nickel catalyst; CuIn0.8Ga0.2Se2; core/shell nanowires; Light absorption
10.  Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich SiNx:H films 
Nanoscale Research Letters  2011;6(1):178.
In this study, a wide range of a-SiNx:H films with an excess of silicon (20 to 50%) were prepared with an electron-cyclotron resonance plasma-enhanced chemical vapor deposition system under the flows of NH3 and SiH4. The silicon-rich a-SiNx:H films (SRSN) were sandwiched between a bottom thermal SiO2 and a top Si3N4 layer, and subsequently annealed within the temperature range of 500-1100°C in N2 to study the effect of annealing temperature on light-emitting and charge storage properties. A strong visible photoluminescence (PL) at room temperature has been observed for the as-deposited SRSN films as well as for films annealed up to 1100°C. The possible origins of the PL are briefly discussed. The authors have succeeded in the formation of amorphous Si quantum dots with an average size of about 3 to 3.6 nm by varying excess amount of Si and annealing temperature. Electrical properties have been investigated on Al/Si3N4/SRSN/SiO2/Si structures by capacitance-voltage and conductance-voltage analysis techniques. A significant memory window of 4.45 V was obtained at a low operating voltage of ± 8 V for the sample containing 25% excess silicon and annealed at 1000°C, indicating its utility in low-power memory devices.
PMCID: PMC3211231  PMID: 21711712
11.  Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings 
The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue.
We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells.
Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt.
We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of osteogenic extracellular matrix. The coated nanosprings enhance normal human osteoblasts cellular behaviors needed for improving osseointegration of orthopedic materials. Thus, metal-coated nanosprings represent a novel biomaterial that could be exploited for improving success rates of orthopedic implant procedures.
PMCID: PMC3276422  PMID: 22284364
nanosprings; nanomaterials; osteoblasts; osseointegration; calcification; bone regeneration
12.  Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching 
Nanoscale Research Letters  2011;6(1):349.
Films of nanocrystalline silicon (nc-Si) were prepared from hydrogenated amorphous silicon (a-Si:H) by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics.
PMCID: PMC3211438  PMID: 21711891
13.  Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation 
Scientific Reports  2013;3:1469.
Metallic nanoparticles (NPs) have received recently considerable interest of photonic and photovoltaic communities. In this work, we report the optoelectronic properties of gold NPs (Au-NPs) obtained by depositing very thin gold layers on glass substrates through thermal evaporation electron-beam assisted process. The effect of mass thickness of the layer was evaluated. The polycrystalline Au-NPs, with grain sizes of 14 and 19 nm tend to be elongated in one direction as the mass thickness increase. A 2 nm layer deposited at 250°C led to the formation of Au-NPs with 10-20 nm average size, obtained by SEM images, while for a 5 nm layer the wide size elongates from 25 to 150 nm with a mean at 75 nm. In the near infrared region was observed an absorption enhancement of amorphous silicon films deposited onto the Au-NPs layers with a corresponding increase in the PL peak for the same wavelength region.
PMCID: PMC3615571  PMID: 23552055
14.  Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films 
The thermally activated formation of nanoscale CoPt alloys was investigated, after deposition of self-assembled Co nanoparticles on textured Pt(111) and epitaxial Pt(100) films on MgO(100) and SrTiO3(100) substrates, respectively. For this purpose, metallic Co nanoparticles (diameter 7 nm) were prepared with a spacing of 100 nm by deposition of precursor-loaded reverse micelles, subsequent plasma etching and reduction on flat Pt surfaces. The samples were then annealed at successively higher temperatures under a H2 atmosphere, and the resulting variations of their structure, morphology and magnetic properties were characterized. We observed pronounced differences in the diffusion and alloying of Co nanoparticles on Pt films with different orientations and microstructures. On textured Pt(111) films exhibiting grain sizes (20–30 nm) smaller than the particle spacing (100 nm), the formation of local nanoalloys at the surface is strongly suppressed and Co incorporation into the film via grain boundaries is favoured. In contrast, due to the absence of grain boundaries on high quality epitaxial Pt(100) films with micron-sized grains, local alloying at the film surface was established. Signatures of alloy formation were evident from magnetic investigations. Upon annealing to temperatures up to 380 °C, we found an increase both of the coercive field and of the Co orbital magnetic moment, indicating the formation of a CoPt phase with strongly increased magnetic anisotropy compared to pure Co. At higher temperatures, however, the Co atoms diffuse into a nearby surface region where Pt-rich compounds are formed, as shown by element-specific microscopy.
PMCID: PMC3190617  PMID: 22003453
alloy; Co; CoPt; epitaxy; HRTEM; magnetometry; nanoparticles; Pt; XMCD
15.  Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties 
Nanoscale Research Letters  2009;5(2):286-290.
We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs.
PMCID: PMC2894122  PMID: 20672113
Si nanowires; Erbium; Luminescence; Platinum catalyst
16.  Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties 
Nanoscale Research Letters  2009;5(2):286-290.
We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs.
PMCID: PMC2894122  PMID: 20672113
Si nanowires; Erbium; Luminescence; Platinum catalyst
17.  Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins 
Journal of Applied Crystallography  2009;42(Pt 2):242-252.
Anomalous extra spots visible in electron diffraction patterns of silicon nanowires and silicon thin films are explained by the presence of micro- and nanotwins.
Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grown via the vapour–liquid–solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure with c/a = 12(2/3)1/2, but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data, i.e. EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work.
PMCID: PMC3246813  PMID: 22477767
silicon nanowires; silicon thin films; artifacts; twinning
18.  Spontaneous Formation of Water Droplets at Oil-Solid Interfaces 
We report observations of spontaneous formation of micrometer-sized water droplets within micrometer-thick films of a range of different oils (isotropic and nematic 4-cyano-4’-pentylbiphenyl (5CB), and silicone, olive and corn oil) that are supported on glass substrates treated with octadecyltrichlorosilane (OTS) and immersed under water. Confocal imaging was used to determine that the water droplets nucleate and grow at the interface between the oils and OTS-treated glass with a contact angle of ~130°. A simple thermodynamic model based on macroscopic interfacial energetic arguments consistent with the contact angle of 130°, however, fails to account for the spontaneous formation of the water droplets. ζ-potential measurements performed with OTS-treated glass (− 59.0 ± 16.4 mV) and hydrophobic monolayers formed on gold films (2.0 ± 0.7 mV), when combined with the observed absence of droplet formation under films of oil supported on the latter surfaces, suggest that the charge of the oil-solid interface promotes partitioning of water to the interfacial region. The hydrophobic nature of the OTS-treated glass promotes dewetting of water accumulated in the interfacial region into droplets (a thin film of water is seen to form on bare glass). The inhibitory effect on droplet formation of both salt (NaCl) and sucrose (0.1mM to 500mM) added to the aqueous phase was similar, indicating that both solutes lower the chemical potential of the bulk water (osmotic effect) sufficiently to prevent partitioning of the water to the interface between the oil and supporting substrates. These results suggest that charged, hydrophobic surfaces can provide routes to spontaneous formation of surface-supported, water-in-oil emulsions.
PMCID: PMC2951552  PMID: 20712383
emulsions; interfaces; spontaneous emulsification; water droplets; interfacial droplets; octadecyltrichlorosilane (OTS); monolayers; liquid crystal; isotropic oil
19.  Co nanoparticle hybridization with single-crystalline Bi nanowires 
Nanoscale Research Letters  2011;6(1):598.
Crystalline Co nanoparticles were hybridized with single-crystalline Bi nanowires simply by annealing Co-coated Bi nanowires at elevated temperatures. An initially near-amorphous Co film of 2-7 nm in thickness began to disrupt its morphology and to be locally transformed into crystallites in the early stage of annealing. The Co film became discontinuous after prolonged annealing, finally leading to isolated, crystalline Co nanoparticles of 8-27 nm in size. This process spontaneously proceeds to reduce the high surface tension and total energy of Co film. The annealing time required for Co nanoparticle formation decreased as annealing temperature increased, reflecting that this transformation occurs by the diffusional flow of Co atoms. The Co nanoparticle formation process was explained by a hole agglomeration and growth mechanism, which is similar to the model suggested by Brandon and Bradshaw, followed by the nanoparticle refinement.
PMCID: PMC3256329  PMID: 22099689
20.  Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD 
Nanoscale Research Letters  2011;6(1):568.
We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion.
PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.
PMCID: PMC3227690  PMID: 22040295
zinc oxide; transparent nanocrystalline film; thermal plasma chemical vapor deposition; annealing; nanorods
21.  Effects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures 
Nanoscale Research Letters  2011;6(1):566.
The effects of thermal substrate pretreatment on the growth of Au-catalyzed ZnO nanostructures by pulsed laser deposition are investigated. C-plane sapphire substrates are annealed prior to deposition of a thin Au layer. Subsequent ZnO growths on substrates annealed above 1,200°C resulted in a high density of nanosheets and nanowires, whereas lower temperatures led to low nanostructure densities. Separate Au film annealing experiments at 700°C showed little variation in the size and density of the Au catalyst droplets with substrate annealing temperature. The observed variation in the density of nanostructures is attributed to the number of surface nucleation sites on the substrate, leading to a competition between nucleation promoted by the Au catalyst and surface nucleation sites on the rougher surfaces annealed below 1,200°C.
PMCID: PMC3215691  PMID: 22029730
zinc oxide; laser ablation; atomic force microscopy; thermal annealing; vapourliquid-solid growth; nanostructures; surface roughness; surface defects
22.  An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks 
Nanoscale Research Letters  2011;6(1):495.
Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman.
PMCID: PMC3212010  PMID: 21849077
Si NWs; AAO; masks; CVD
23.  Characterization of localized surface plasmon resonance transducers produced from Au25 nanoparticle multilayers 
This article reports the preparation of gold plasmonic transducers using a nanoparticle self-assembly/heating method and the characterization of the films using scattering-type scanning near-field optical microscopy (s-SNOM). Nanoparticle-polymer multilayer films were prepared by the layer-by-layer assembly on glass slides by alternating exposures to monodisperse Au25 nanoparticles and ionic polymer linkers. Thermal evaporation of organic matters from the nanoparticle-polymer multilayer films at 600 °C allowed the nanoparticles to coalescence and form nanostructured films. Characterization of the nanostructured films generated from Au25 nanoparticles using atomic force microscopy (AFM) showed that the films have rounded, small, island-like morphologies (d: 30-50 nm) with a pit in the center of many islands. However, further characterizations with s-SNOM revealed that the produced nanoislands contain a single gold cluster in a pit surrounded by donut-shaped dielectric species. Formation of such a structure is thought to be resulted from the embedding of gold clusters under the reorganized polysiloxane binder coatings and glass surfaces during heat treatment of the Au25 nanoparticle multilayer films. The nanostructured films displayed strong surface plasmon resonance bands in UV-vis spectra with a peak absorbance occurring at ~545-550 nm. The optical sensing capability of the films was examined using D-glucose-functionalized gold island films with the interaction of Concanavalin A (ConA). The result showed that the adsorption of ConA on island films causes a large change in the LSPR band intensity.
PMCID: PMC3398733  PMID: 22822292
Nanoislands; Nanoparticle; Self-Assembly; Plasmonics; Sensor; Gold
24.  Synthesis and characteristics of NH2-functionalized polymer films to align and immobilize DNA molecules 
We developed a method to use NH2-functionalized polymer films to align and immobilize DNA molecules on a Si substrate. The plasma-polymerized cyclohexane film was deposited on the Si substrate according to the radio frequency plasma-enhanced chemical vapor deposition method using a single molecular precursor, and it was then treated by the dielectric barrier discharge method in a nitrogen environment under atmospheric pressure. Changes in the chemistry of the surface functional groups were studied using X-ray photoelectron spectroscopy and Fourier transformed infrared spectroscopy. The wettability of the surfaces was examined using dynamic contact angle measurements, and the surface morphology was evaluated using atomic force microscopy.
We utilized a tilting method to align λ-DNA molecules that were immobilized by the electrostatic interaction between the amine groups in NH2-functionalized polymer films and the phosphate groups in the DNA. The DNA was treated with positively charged gold nanoparticles to make a conductive nanowire that uses the DNA as a template. We observed that the NH2-functionalized polymer film was useful for aligning and immobilizing the DNA, and thus the DNA-templated nanowires.
PMCID: PMC3275532  PMID: 22221314
DNA molecules; NH2-functionalized polymer thin films; aniline-capped gold nanoparticles; gold nanowires.
25.  Conductive-probe atomic force microscopy characterization of silicon nanowire 
Nanoscale Research Letters  2011;6(1):110.
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.
PMCID: PMC3211155  PMID: 21711623

Results 1-25 (269542)