Search tips
Search criteria

Results 1-25 (808444)

Clipboard (0)

Related Articles

1.  Thermal Annealing Effect on Poly(3-hexylthiophene): Fullerene:Copper-Phthalocyanine Ternary Photoactive Layer 
The Scientific World Journal  2013;2013:914981.
We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the I-V characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc0.5:C600.5/BCP/Al and ITO/PEDOT:PSS/P3HT0.3:CuPc0.3:C600.4/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation.
PMCID: PMC3673347  PMID: 23766722
2.  Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers 
In this study, three types of hybrid nanotubes (NTs), ie, oxidized multiwalled carbon NTs (COOH MWCNTs), heparin (Hep)-conjugated MWCNTs (Hep MWCNTs), and diblock copolymer polyglycolic acid (PGA)-co-heparin conjugated to MWCNTs (PGA MWCNTs), were synthesized with improved biocompatibility and drug-loading capacity. Hydrophilic Hep substituents on MWCNTs improved biocompatibility and acted as nucleus-sensitive segments on the CNT carrier, whereas the addition of PGA enhanced drug-loading capacity. In the PGA MWCNT system, the amphiphilic copolymer (PGA-Hep) formed micelles on the side walls of CNTs, as confirmed by electron microscopy. The PGA system encapsulated the hydrophobic drug with high efficiency compared to the COOH MWCNT and Hep MWCNT systems. This is because the drug was loaded onto the PGA MWCNTs through hydrophobic forces and onto the CNTs by π–π stacking interactions. Additionally, most of the current drug-carrier designs that target cancer cells release the drug in the lysosome or cytoplasm. However, nuclear-targeted drug release is expected to kill cancer cells more directly and efficiently. In our study, PGA MWCNT carriers effectively delivered the active anticancer drug doxorubicin into targeted nuclei. This study may provide an effective strategy for the development of carbon-based drug carriers for nuclear-targeted drug delivery.
PMCID: PMC3838018  PMID: 24277987
carbon nanotube; amphiphilic copolymer; drug loading; nucleus targeting; cancer therapy
3.  Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers 
We reported the enhancement of the structural and optical properties of electrochemically synthesized zinc oxide [ZnO] nanorod arrays [NRAs] using the multi-walled carbon nanotube [MWCNT]-composed seed layers, which were formed by spin-coating the aqueous seed solution containing MWCNTs on the indium tin oxide-coated glass substrate. The MWCNT-composed seed layer served as the efficient nucleation surface as well as the film with better electrical conductivity, thus leading to a more uniform high-density ZnO NRAs with an improved crystal quality during the electrochemical deposition process. For ZnO NRAs grown on the seed layer containing MWCNTs (2 wt.%), the photoluminescence peak intensity of the near-band-edge emission at a wavelength of approximately 375 nm was enhanced by 2.8 times compared with that of the ZnO nanorods grown without the seed layer due to the high crystallinity of ZnO NRAs and the surface plasmon-meditated emission enhancement by MWCNTs. The effect of the MWCNT-composed seed layer on the surface wettability was also investigated.
PACS: 81.07.-b; 81.16.-c; 81.07.Pr; 61.48.De.
PMCID: PMC3284395  PMID: 22221386
ZnO nanorod arrays; multi-walled carbon nanotubes; electrochemical growth; crystallinity; photoluminescence
4.  In situ-prepared composite materials of PEDOT: PSS buffer layer-metal nanoparticles and their application to organic solar cells 
Nanoscale Research Letters  2012;7(1):641.
We report an enhancement in the efficiency of organic solar cells via the incorporation of gold (Au) or silver (Ag) nanoparticles (NPs) in the hole-transporting buffer layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), which was formed on an indium tin oxide (ITO) surface by the spin-coating of PEDOT:PSS-Au or Ag NPs composite solution. The composite solution was synthesized by a simple in situ preparation method which involved the reduction of chloroauric acid (HAuCl4) or silver nitrate (AgNO3) with sodium borohydride (NaBH4) solution in the presence of aqueous PEDOT:PSS media. The NPs were well dispersed in the PEDOT:PSS media and showed a characteristic absorption peak due to the surface plasmon resonance effect. Organic solar cells with the structure of ITO/PEDOT:PSS-Au, Ag NPs/poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/LiF/Al exhibited an 8% improvement in their power conversion efficiency mainly due to the enlarged surface roughness of the PEDOT:PSS, which lead to an improvement in the charge collection and ultimately improvements in the short-circuit current density and fill factor.
PMCID: PMC3552830  PMID: 23173992
In situ preparation; PEDOT:PSS-metal NPs; Enhanced light absorption; Organic solar cells
5.  Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors 
Biosensors  2012;2(1):70-82.
The focus of this paper is the development and investigation of properties of new nanostructured architecture for biosensors applications. Highly porous nanocomposite fibers were developed for use as active materials in biosensors. The nanocomposites comprised poly(lactic acid)(PLA)/multi-walled carbon nanotube (MWCNT) fibers obtained via solution-blow spinning onto indium tin oxide (ITO) electrodes. The electrocatalytic properties of nanocomposite-modified ITO electrodes were investigated toward hydrogen peroxide (H2O2) detection. We investigated the effect of carbon nanotube concentration and the time deposition of fibers on the sensors properties, viz., sensitivity and limit of detection. Cyclic voltammetry experiments revealed that the nanocomposite-modified electrodes displayed enhanced activity in the electrochemical reduction of H2O2, which offers a number of attractive features to be explored in development of an amperometric biosensor. Glucose oxidase (GOD) was further immobilized by drop coating on an optimized ITO electrode covered by poly(lactic acid)/carbon nanotube nanofibrous mats. The optimum biosensor response was linear up to 800 mM of glucose with a sensitivity of 358 nA·mM−1 and a Michaelis-Menten constant (KM) of 4.3 mM. These results demonstrate that the solution blow spun nanocomposite fibers have great potential for application as amperometric biosensors due to their high surface to volume ratio, high porosity and permeability of the substrate. The latter features may significantly enhance the field of glucose biosensors.
PMCID: PMC4263541  PMID: 25585633
nanofibers; glucose biosensor; carbon nanotube; poly(lactic acid)
6.  Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode 
Nanoscale Research Letters  2014;9(1):579.
We report a new semitransparent inverted polymer solar cell (PSC) with a structure of glass/FTO/nc-TiO2/P3HT:PCBM/MoO3/Ag/MoO3. Because high-temperature annealing which decreased the conductivity of indium tin oxide (ITO) must be handled in the process of preparation of nanocrystalline titanium oxide (nc-TiO2), we replace glass/ITO with a glass/fluorine-doped tin oxide (FTO) substrate to improve the device performance. The experimental results show that the replacing FTO substrate enhances light transmittance between 400 and 600 nm and does not change sheet resistance after annealing treatment. The dependence of device performances on resistivity, light transmittance, and thickness of the MoO3/Ag/MoO3 film was investigated. High power conversion efficiency (PCE) was achieved for FTO substrate inverted PSCs, which showed about 75% increase compared to our previously reported ITO substrate device at different thicknesses of the MoO3/Ag/MoO3 transparent electrode films illuminated from the FTO side (bottom side) and about 150% increase illuminated from the MoO3/Ag/MoO3 side (top side).
PMCID: PMC4202695  PMID: 25332693
Polymer solar cell; Indium tin oxide; Nanocrystalline titanium oxide; Power conversion efficiency
7.  Multi-Walled Carbon Nanotubes Impair Kv4.2/4.3 Channel Activities, Delay Membrane Repolarization and Induce Bradyarrhythmias in the Rat 
PLoS ONE  2014;9(7):e101545.
The potential hazardous effects of multi-walled carbon nanotubes (MWCNTs) on cardiac electrophysiology are seldom evaluated. This study aimed to investigate the impacts of MWCNTs on the Kv4/Ito channel, action potential and heart rhythm and the underlying mechanisms.
HEK293 cells were engineered to express Kv4.2 or Kv4.3 with or without KChIP2 expression. A series of approaches were introduced to analyze the effects of MWCNTs on Kv4/Ito channel kinetics, current densities, expression and trafficking. Transmission electron microscopy was performed to observe the internalization of MWCNTs in HEK293 cells and rat cardiomyocytes. Current clamp was employed to record the action potentials of isolated rat cardiomyocytes. Surface ECG and epicardial monophasic action potentials were recorded to monitor heart rhythm in rats in vivo. Vagal nerve discharge monitoring and H&E staining were also performed.
Induction of MWCNTs into the cytosole through pipette solution soon accelerated the decay of IKv4 in HEK293 cells expressing Kv4.2/4.3 and KChIP2, and promoted the recovery from inactivation when Kv4.2 or Kv4.3 was expressed alone. Longer exposure (6 h) to MWCNTs decreased the IKv4.2 density, Kv4.2/Kv4.3 (but not KChIP2) expression and trafficking towards the plasma membrane in HEK293 cells. In acutely isolated rat ventricular myocytes, pipette MWCNTs also quickly accelerated the decay of IKv4 and prolonged the action potential duration (APD). Intravenous infusion of MWCNTs (2 mg/rat) induced atrioventricular (AV) block and even cardiac asystole. No tachyarrhythmia was observed after MWCNTs administration. MWCNTs did not cause coronary clot but induced myocardial inflammation and increased vagus discharge.
MWCNTs suppress Kv4/Ito channel activities likely at the intracellular side of plasma membrane, delay membrane repolarization and induce bradyarrhythmia. The delayed repolarization, increased vagus output and focal myocardial inflammation may partially underlie the occurrence of bradyarrhythmias induced by MWCNTs. The study warns that MWCNTs are hazardous to cardiac electrophysiology.
PMCID: PMC4081717  PMID: 24992664
8.  Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models 
Inhalation toxicology  2013;25(4):199-210.
This study examined the consequences of surface carboxylation of multiwalled carbon nanotubes (MWCNT) on bioactivity. Since commercial raw MWCNT contain impurities that may affect their bioactivity, HCl refluxing was exploited to purify raw “as-received” MWCNT by removing the amorphous carbon layer on the MWCNT surface and reducing the metal impurities (e.g. Ni). The removal of amorphous carbon layer was confirmed by Raman spectroscopy and thermogravimetric analysis. Furthermore, the HCl-purified MWCNT provided more available reaction sites, leading to enhanced sidewall functionalization. The sidewall of HCl-purified MWCNT was further functionalized with the −COOH moiety by HNO3 oxidation. This process resulted in four distinct MWCNT: raw, purified, −COOH-terminated raw MWCNT, and −COOH-terminated purified MWCNT. Freshly isolated alveolar macrophages from C57Bl/6 mice were exposed to these nanomaterials to determine the effects of the surface chemistry on the bioactivity in terms of cell viability and inflammasome activation. Inflammasome activation was confirmed using inhibitors of cathepsin B and Caspase-1. Purification reduced the cell toxicity and inflammasome activation slightly compared to raw MWCNT. In contrast, functionalization of MWCNT with the −COOH group dramatically reduced the cytotoxicity and inflammasome activation. Similar results were seen using THP-1 cells supporting their potential use for high-throughput screening. This study demonstrated that the toxicity and bioactivity of MWCNT were diminished by removal of the Ni contamination and/or addition of −COOH groups to the sidewalls.
PMCID: PMC4127292  PMID: 23480196
Carboxylated; functionalized; inflammasome; MWCNT; toxicity
9.  Modulation of Apoptotic Pathways of Macrophages by Surface-Functionalized Multi-Walled Carbon Nanotubes 
PLoS ONE  2013;8(6):e65756.
Biomedical applications of carbon nanotubes (CNTs) often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs) via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol) linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS) involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47phox and p67phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity.
PMCID: PMC3675050  PMID: 23755279
10.  Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability 
Scientific Reports  2013;3:3392.
We have designed a novel hybrid nanostructure by coating Fe2O3 nanoparticles with multi-walled carbon nanotubes to enhance the lithium storage capability of Fe2O3. The strategy to prepare Fe2O3@MWCNTs involves the synthesis of Fe nanoparticles wrapped in MWCNTs, followed by the oxidation of Fe nanoparticles under carbon dioxide. When used as the anode in a Li-ion battery, this hybrid material (70.32 wt% carbon nanotubes, 29.68 wt% Fe2O3) showed a reversible discharge capacity of 515 mAhg−1 after 50 cycles at a density of 100 mAg−1 and the capacity based on Fe2O3 nanoparticles was calculated as 1147 mAhg−1, Three factors are responsibile for the superior performance: (1) The hollow interiors of MWCNTs provide enough spaces for the accommodation of large volume expansion of inner Fe2O3 nanoparticles, which can improving the stability of electrode; (2) The MWCNTs increase the overall conductivity of the anode; (3) A stable solid electrolyte interface film formed on the surface of MWCNTs may reduce capacity fading.
PMCID: PMC3844968  PMID: 24292097
11.  Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP Kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages 
Carbon nanotubes (CNTs) are engineered graphene cylinders with numerous applications in engineering, electronics and medicine. However, CNTs cause inflammation and fibrosis in the rodent lung, suggesting a potential human health risk. We hypothesized that multi-walled CNTs (MWCNTs) induce two key inflammatory enzymes in macrophages, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), through activation of extracellular signal-regulated kinases (ERK1,2).
RAW264.7 macrophages were exposed to MWCNTs or carbon black nanoparticles (CBNPs) over a range of doses and time course. Uptake and subcellular localization of MWCNTs was visualized by transmission electron microscopy (TEM). Protein levels of COX-2, iNOS, and ERK1,2 (total ERK and phosphorylated ERK) were measured by Western blot analysis. Prostaglandin-E2 (PGE2) and nitric oxide (NO) levels in cell supernatants were measured by ELISA and Greiss assay, respectively.
MWCNTs, but not CBNPs, induced COX-2 and iNOS in a time- and dose-dependent manner. COX-2 and iNOS induction by MWCNTs correlated with increased PGE2 and NO production, respectively. MWCNTs caused ERK1,2 activation and inhibition of ERK1,2 (U0126) blocked MWCNT induction of COX-2 and PGE2 production, but did not reduce the induction of iNOS. Inhibition of iNOS (L-NAME) did not affect ERK1,2 activation, nor did L-NAME significantly decrease COX-2 induction by MWCNT. Nickel nanoparticles (NiNPs), which are present in MWCNTs as a residual catalyst, also induced COX-2 via ERK-1,2. However, a comparison of COX-2 induction by MWCNTs containing 4.5 and 1.8% Ni did not show a significant difference in ability to induce COX-2, indicating that characteristics of MWCNTs in addition to Ni content contribute to COX-2 induction.
This study identifies COX-2 and subsequent PGE2 production, along with iNOS induction and NO production, as inflammatory mediators involved in the macrophage response to MWCNTs. Furthermore, our work demonstrates that COX-2 induction by MWCNTs in RAW264.7 macrophages is ERK1,2-dependent, while iNOS induction by MWCNTs is ERK1,2-independent. Our data also suggest contributory physicochemical factors other than residual Ni catalyst play a role in COX-2 induction to MWCNT.
PMCID: PMC3485091  PMID: 22571318
Carbon nanotubes; Nanoparticles; Lung inflammation; Macrophages; Prostaglandins; Nitric oxide
12.  Improved field emission performance of carbon nanotube by introducing copper metallic particles 
Nanoscale Research Letters  2011;6(1):537.
To improve the field emission performance of carbon nanotubes (CNTs), a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO) electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.
PMCID: PMC3212075  PMID: 21968066
13.  Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells 
Nanoscale Research Letters  2010;5(12):1908-1912.
The photovoltaic (PV) performance of flexible inverted organic solar cells (IOSCs) with an active layer consisting of a blend of poly(3-hexylthiophene) and [6, 6]-phenyl C61-butlyric acid methyl ester was investigated by varying the thicknesses of ZnO seed layers and introducing ZnO nanorods (NRs). A ZnO seed layer or ZnO NRs grown on the seed layer were used as an electron transport layer and pathway to optimize PV performance. ZnO seed layers were deposited using spin coating at 3,000 rpm for 30 s onto indium tin oxide (ITO)-coated polyethersulphone (PES) substrates. The ZnO NRs were grown using an aqueous solution method at a low temperature (90°C). The optimized device with ZnO NRs exhibited a threefold increase in PV performance compared with that of a device consisting of a ZnO seed layer without ZnO NRs. Flexible IOSCs fabricated using ZnO NRs with improved PV performance may pave the way for the development of PV devices with larger interface areas for effective exciton dissociation and continuous carrier transport paths.
PMCID: PMC2991231  PMID: 21170411
Inverted organic solar cells; ZnO nanorods; Electron transport layer; Photovoltaic; Short circuit current density
14.  Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells 
Nanoscale Research Letters  2010;5(12):1908-1912.
The photovoltaic (PV) performance of flexible inverted organic solar cells (IOSCs) with an active layer consisting of a blend of poly(3-hexylthiophene) and [6, 6]-phenyl C61-butlyric acid methyl ester was investigated by varying the thicknesses of ZnO seed layers and introducing ZnO nanorods (NRs). A ZnO seed layer or ZnO NRs grown on the seed layer were used as an electron transport layer and pathway to optimize PV performance. ZnO seed layers were deposited using spin coating at 3,000 rpm for 30 s onto indium tin oxide (ITO)-coated polyethersulphone (PES) substrates. The ZnO NRs were grown using an aqueous solution method at a low temperature (90°C). The optimized device with ZnO NRs exhibited a threefold increase in PV performance compared with that of a device consisting of a ZnO seed layer without ZnO NRs. Flexible IOSCs fabricated using ZnO NRs with improved PV performance may pave the way for the development of PV devices with larger interface areas for effective exciton dissociation and continuous carrier transport paths.
PMCID: PMC2991231  PMID: 21170411
Inverted organic solar cells; ZnO nanorods; Electron transport layer; Photovoltaic; Short circuit current density
15.  Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions 
Nanoscale Research Letters  2014;9(1):457.
In this work, the solution-processed CH3NH3PbI3 perovskite/copper indium disulfide (CuInS2) planar heterojunction solar cells with Al2O3 as a scaffold were fabricated at a temperature as low as 250°C for the first time, in which the indium tin oxide (ITO)-coated glass instead of the fluorine-doped tin oxide (FTO)-coated glass was used as the light-incidence electrode and the solution-processed CuInS2 layer was prepared to replace the commonly used TiO2 layer in previously reported perovskite-based solar cells. The influence of the thickness of the as-prepared CuInS2 film on the performance of the ITO/CuInS2(n)/Al2O3/(CH3NH3)PbI3/Ag cells was investigated. The ITO/CuInS2(2)/Al2O3/(CH3NH3)PbI3/Ag cell showed the best performance and achieved power conversion efficiency up to 5.30%.
PMCID: PMC4181615  PMID: 25278818
Solution-processed; Solar cells; (CH3NH3)PbI3; Perovskite; CuInS2
16.  Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multi-walled Carbon Nanotubes in Mammalian Tissue Culture Cells 
ACS nano  2010;4(12):7241-7252.
In vivo studies have demonstrated that the state of dispersion of carbon nanotubes (CNT) plays an important role in generating adverse pulmonary effects. However, little has been done to develop reproducible and quantifiable dispersion techniques to conduct mechanistic studies in vitro. This study was to evaluate the dispersion of multi-walled carbon nanotubes (MWCNT) in tissue culture media, with particular emphasis on understanding the forces that govern agglomeration and how to modify these forces. Quantitative techniques such as hydrophobicity index, suspension stability index, attachment efficiency and dynamic light scattering were used to assess the effects of agglomeration and dispersion of as-prepared (AP), purified (PD) or carboxylated (COOH) MWCNT on bronchial epithelial and fibroblast cell lines. We found that hydrophobicity is the major factor determining AP- and PD-MWCNT agglomeration in tissue culture media but that the ionic strength is the main factor determining COOH-MWCNT suspendability. Bovine serum albumin (BSA) was an effective dispersant for MWCNT, providing steric and electrosteric hindrance that are capable of overcoming hydrophobic attachment and the electrostatic screening of double layer formation in ionic media. Thus, BSA was capable of stabilizing all tube versions. Dipalmitoylphosphatidylcholine (DPPC) provided additional stability for AP-MWCNT in epithelial growth medium (BEGM). While dispersion state did not affect cytotoxicity, improved dispersion of AP- and PD-MWCNT increased TGF-β1 production in epithelial cells and fibroblast proliferation. In summary, we demonstrate how quantitative techniques can be used to assess the agglomeration state of MWCNT when conducting mechanistic studies on the effects of dispersion on tissue culture cells.
PMCID: PMC3899393  PMID: 21067152
multi-walled carbon nanotubes (MWCNT); dispersion; hydrophobicity; ionic strength; bovine serum albumin; steric hindrance; cell culture medium
17.  Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo 
PLoS ONE  2014;9(9):e106870.
Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process used to enhance functional properties of MWCNTs, yet the consequence of ALD-modified MWCNTs on macrophage biology and fibrosis is unknown.
The purpose of this study was to determine whether ALD coating with aluminum oxide (Al2O3) would alter the fibrogenic response to MWCNTs and whether cytokine expression in human macrophage/monocytes exposed to MWCNTs in vitro would predict the severity of lung fibrosis in mice. Uncoated (U)-MWCNTs or ALD-coated (A)-MWCNTs were incubated with THP-1 macrophages or human peripheral blood mononuclear cells (PBMC) and cell supernatants assayed for cytokines by ELISA. C57BL6 mice were exposed to a single dose of A- or U-MWCNTs by oropharyngeal aspiration (4 mg/kg) followed by evaluation of histopathology, lung inflammatory cell counts, and cytokine levels at day 1 and 28 post-exposure.
ALD coating of MWCNTs with Al2O3 enhanced IL-1β secretion by THP-1 and PBMC in vitro, yet reduced protein levels of IL-6, TNF-α, and OPN production by THP-1 cells. Moreover, Al2O3 nanoparticles, but not carbon black NPs, increased IL-1β but decreased OPN and IL-6 in THP-1 and PBMC. Mice exposed to U-MWCNT had increased levels of all four cytokines assayed and developed pulmonary fibrosis by 28 days, whereas ALD-coating significantly reduced fibrosis and cytokine levels at the mRNA or protein level.
These findings indicate that ALD thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo.
PMCID: PMC4162563  PMID: 25216247
18.  Transparent Conductors from Carbon Nanotubes LBL-Assembled with Polymer Dopant with π-π Electron Transfer 
Single-walled carbon nanotube (SWNT) and other carbon-based coatings are being considered as replacements for indium tin oxide (ITO). The problems of transparent conductors (TCs) coatings from SWNT and similar materials include poor mechanical properties, high roughness, low temperature resilience, and fast loss of conductivity. The simultaneous realization of these desirable characteristics can be achieved using high structural control of layer-by-layer (LBL) deposition, which is demonstrated by the assembly of hydroethyl cellulose (HOCS) and sulfonated polyetheretherketone (SPEEK)-SWNTs. A new type of SWNT doping based on electron transfer from valence bands of nanotubes to unoccupied levels of SPEEK through π-π interactions was identified for this system. It leads to a conductivity of 1.1×105 S/m at 66wt% loadings of SWNT. This is better than other polymer/SWNT composites and translates into surface conductivity of 920 ohms/sq and transmittance of 86.7% at 550nm. The prepared LBL films also revealed unusually high temperature resilience up to 500°C, and low roughness of 3.5 nm (ITO glass - 2.4 nm). Tensile modulus, ultimate strength, and toughness of such coatings are 13±2 GPa, 366±35 MPa and 8±3 kJ/m3, respectively, and exceed corresponding parameters of all similar TCs. The cumulative figure of merit, ΠTC, which included the critical failure strain relevant for flexible electronics, was ΠTC = 0.022 and should be compared to ΠTC = 0.006 for commercial ITO. Further optimization is possible using stratified nanoscale coatings and improved doping from the macromolecular LBL components.
PMCID: PMC3136082  PMID: 21524068
carbon nanotube; sulfonated polyetherether ketone; hydroxyethyl cellulose; transparent conductors; layer-by-layer; nanocomposites; conductivity; mechanical strength; helical wrapping; doping
19.  Investigation of extended-gate field-effect transistor pH sensors based on different-temperature-annealed bi-layer MWCNTs-In2O3 films 
Nanoscale Research Letters  2014;9(1):502.
In this paper, indium (In) films were deposited on glass substrates using DC sputtering method. Multiwalled carbon nanotubes (MWCNTs) and dispersant were dissolved in alcohol, and the mixed solution was deposited on the In films using the spray method. The bi-layer MWCNTs-In2O3 films were annealed at different temperatures (from room temperature to 500°C) in O2 atmosphere. The influences of annealing temperature on the characteristics of the bi-layer MWCNTs-In2O3 films were investigated by scanning electron microscopy, X-ray diffraction pattern, Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. A separative extended-gate field-effect transistor (EGFET) device combined with a bi-layer MWCNTs-In2O3 film was constructed as a pH sensor. The influences of different annealing temperatures on the performances of the EGFET-based pH sensors were investigated. We would show that the pH sensitivity was dependent on the thermal oxygenation temperature of the bi-layer MWCNTs-In2O3 films.
PMCID: PMC4184471  PMID: 25288911
Multiwalled carbon nanotubes; pH sensor; Bi-layer; MWCNTs-In2O3 films
20.  A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells 
Nanoscale Research Letters  2014;9(1):240.
We report that the efficiency of ITO/nc-TiO2/P3HT:PCBM/MoO3/Ag inverted polymer solar cells (PSCs) can be improved by dispersing CdS quantum dot (QD)-sensitized TiO2 nanotube arrays (TNTs) in poly (3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) layer. The CdS QDs are deposited on the TNTs by a chemical bath deposition method. The experimental results show that the CdS QD-sensitized TNTs (CdS/TNTs) do not only increase the light absorption of the P3HT:PCBM layer but also reduce the charge recombination in the P3HT:PCBM layer. The dependence of device performances on cycles of CdS deposition on the TNTs was investigated. A high power conversion efficiency (PCE) of 3.52% was achieved for the inverted PSCs with 20 cyclic depositions of CdS on TNTs, which showed a 34% increase compared to the ITO/nc-TiO2/P3HT:PCBM/MoO3/Ag device without the CdS/TNTs. The improved efficiency is attributed to the improved light absorbance and the reduced charge recombination in the active layer.
PMCID: PMC4046037  PMID: 24936158
Inverted; Polymer solar cells; Nanotube; Quantum dot
21.  Study of Sodium Ion Selective Electrodes and Differential Structures with Anodized Indium Tin Oxide 
Sensors (Basel, Switzerland)  2010;10(3):1798-1809.
The objective of this work is the study and characterization of anodized indium tin oxide (anodized-ITO) as a sodium ion selective electrode and differential structures including a sodium-selective-membrane/anodized-ITO as sensor 1, an anodized-ITO membrane as the contrast sensor 2, and an ITO as the reference electrode. Anodized-ITO was fabricated by anodic oxidation at room temperature, a low cost and simple manufacture process that makes it easy to control the variation in film resistance. The anodized-ITO based on EGFET structure has good linear pH sensitivity, approximately 54.44 mV/pH from pH 2 to pH 12. The proposed sodium electrodes prepared by PVC-COOH, DOS embedding colloid, and complex Na-TFBD and ionophore B12C4, show good sensitivity at 52.48 mV/decade for 10−4 M to 1 M, and 29.96 mV/decade for 10−7 M to 10−4 M. The sodium sensitivity of the differential sodium-sensing device is 58.65 mV/decade between 10−4 M and 1 M, with a corresponding linearity of 0.998; and 19.17 mV/decade between 10−5 M and 10−4 M.
PMCID: PMC3264452  PMID: 22294900
anodized indium tin oxide; anodic oxidation; sodium ion; EGFET
22.  Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer 
Organic Electronics  2014;15(5):997-1001.
•Inverted bulk heterojunction solar cell.•Work function modification of ITO.•Improved stability under ambient conditions compared to conventional devices.
We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process.
PMCID: PMC4010259  PMID: 24817837
Organic solar cell; Device design; Electrical contact; Stability
23.  Combining Portable Raman Probes with Nanotubes for Theranostic Applications 
Theranostics  2011;1:310-321.
Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple handheld Raman instrument. This approach could potentially be used to treat various diseases, including cancer.
PMCID: PMC3137983  PMID: 21769298
Irradiation; Raman; photothermal; multi-walled carbon nanotube (MWCNT); single-walled carbon nanotube (SWCNT); 3D cell culture.
24.  Carbon nanotube counter electrode for high-efficient fibrous dye-sensitized solar cells 
Nanoscale Research Letters  2012;7(1):222.
High-efficient fibrous dye-sensitized solar cell with carbon nanotube (CNT) thin films as counter electrodes has been reported. The CNT films were fabricated by coating CNT paste or spraying CNT suspension solution on Ti wires. A fluorine tin oxide-coated CNT underlayer was used to improve the adherence of the CNT layer on Ti substrate for sprayed samples. The charge transfer catalytic behavior of fibrous CNT/Ti counter electrodes to the iodide/triiodide redox pair was carefully studied by electrochemical impedance and current-voltage measurement. The catalytic activity can be enhanced by increasing the amount of CNT loading on substrate. Both the efficiencies of fibrous dye-sensitized solar cells using paste coated and sprayed CNT films as counter electrodes are comparative to that using Pt wires, indicating the feasibility of CNT/Ti wires as fibrous counter electrode for superseding Pt wires.
PMCID: PMC3441495  PMID: 22507398
Fibrous dye sensitized solar cells; Counter electrode; Carbon nanotubes; TiO2 nanotube arrays
25.  Novel Anode Catalyst for Direct Methanol Fuel Cells 
The Scientific World Journal  2014;2014:547604.
PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.
PMCID: PMC4032773  PMID: 24883406

Results 1-25 (808444)