Search tips
Search criteria

Results 1-25 (658637)

Clipboard (0)

Related Articles

1.  A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation 
Scientific Reports  2013;3:3383.
Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg−1, the discharge capacity remains 116 mAhg−1 after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity.
PMCID: PMC3843166  PMID: 24287676
2.  Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries 
Scientific Reports  2013;3:1506.
High-performance and cost-effective rechargeable batteries are key to the success of electric vehicles and large-scale energy storage systems. Extensive research has focused on the development of (i) new high-energy electrodes that can store more lithium or (ii) high-power nano-structured electrodes hybridized with carbonaceous materials. However, the current status of lithium batteries based on redox reactions of heavy transition metals still remains far below the demands required for the proposed applications. Herein, we present a novel approach using tunable functional groups on graphene nano-platelets as redox centers. The electrode can deliver high capacity of ~250 mAh g−1, power of ~20 kW kg−1 in an acceptable cathode voltage range, and provide excellent cyclability up to thousands of repeated charge/discharge cycles. The simple, mass-scalable synthetic route for the functionalized graphene nano-platelets proposed in this work suggests that the graphene cathode can be a promising new class of electrode.
PMCID: PMC3604708  PMID: 23514953
3.  Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability 
Scientific Reports  2013;3:3392.
We have designed a novel hybrid nanostructure by coating Fe2O3 nanoparticles with multi-walled carbon nanotubes to enhance the lithium storage capability of Fe2O3. The strategy to prepare Fe2O3@MWCNTs involves the synthesis of Fe nanoparticles wrapped in MWCNTs, followed by the oxidation of Fe nanoparticles under carbon dioxide. When used as the anode in a Li-ion battery, this hybrid material (70.32 wt% carbon nanotubes, 29.68 wt% Fe2O3) showed a reversible discharge capacity of 515 mAhg−1 after 50 cycles at a density of 100 mAg−1 and the capacity based on Fe2O3 nanoparticles was calculated as 1147 mAhg−1, Three factors are responsibile for the superior performance: (1) The hollow interiors of MWCNTs provide enough spaces for the accommodation of large volume expansion of inner Fe2O3 nanoparticles, which can improving the stability of electrode; (2) The MWCNTs increase the overall conductivity of the anode; (3) A stable solid electrolyte interface film formed on the surface of MWCNTs may reduce capacity fading.
PMCID: PMC3844968  PMID: 24292097
4.  In-situ One-step Hydrothermal Synthesis of a Lead Germanate-Graphene Composite as a Novel Anode Material for Lithium-Ion Batteries 
Scientific Reports  2014;4:7030.
Lead germanate-graphene nanosheets (PbGeO3-GNS) composites have been prepared by an efficient one-step, in-situ hydrothermal method and were used as anode materials for Li-ion batteries (LIBs). The PbGeO3 nanowires, around 100–200 nm in diameter, are highly encapsulated in a graphene matrix. The lithiation and de-lithiation reaction mechanisms of the PbGeO3 anode during the charge-discharge processes have been investigated by X-ray diffraction and electrochemical characterization. Compared with pure PbGeO3 anode, dramatic improvements in the electrochemical performance of the composite anodes have been obtained. In the voltage window of 0.01–1.50 V, the composite anode with 20 wt.% GNS delivers a discharge capacity of 607 mAh g−1 at 100 mA g−1 after 50 cycles. Even at a high current density of 1600 mA g−1, a capacity of 406 mAh g−1 can be achieved. Therefore, the PbGeO3-GNS composite can be considered as a potential anode material for lithium ion batteries.
PMCID: PMC4229670  PMID: 25391220
5.  Fabrication of Nb2O5 Nanosheets for High-rate Lithium Ion Storage Applications 
Scientific Reports  2015;5:8326.
Nb2O5 nanosheets are successfully synthesized through a facile hydrothermal reaction and followed heating treatment in air. The structural characterization reveals that the thickness of these sheets is around 50 nm and the length of sheets is 500 ~ 800 nm. Such a unique two dimensional structure enables the nanosheet electrode with superior performance during the charge-discharge process, such as high specific capacity (~184 mAh·g−1) and rate capability. Even at a current density of 1 A·g−1, the nanosheet electrode still exhibits a specific capacity of ~90 mAh·g−1. These results suggest the Nb2O5 nanosheet is a promising candidate for high-rate lithium ion storage applications.
PMCID: PMC4321166  PMID: 25659574
6.  Dynamics of Electrochemical Lithiation/Delithiation of Graphene-Encapsulated Silicon Nanoparticles Studied by In-situ TEM 
Scientific Reports  2014;4:3863.
The incorporation of nanostructured carbon has been recently reported as an effective approach to improve the cycling stability when Si is used as high-capacity anodes for the next generation Li-ion battery. However, the mechanism of such notable improvement remains unclear. Herein, we report in-situ transmission electron microscopy (TEM) studies to directly observe the dynamic electrochemical lithiation/delithiation processes of crumpled graphene-encapsulated Si nanoparticles to understand their physical and chemical transformations. Unexpectedly, in the first lithiation process, crystalline Si nanoparticles undergo an isotropic to anisotropic transition, which is not observed in pure crystalline and amorphous Si nanoparticles. Such a surprising phenomenon arises from the uniformly distributed localized voltage around the Si nanoparticles due to the highly conductive graphene sheets. It is observed that the intimate contact between graphene and Si is maintained during volume expansion/contraction. Electrochemical sintering process where small Si nanoparticles react and merge together to form large agglomerates following spikes in localized electric current is another problem for batteries. In-situ TEM shows that graphene sheets help maintain the capacity even in the course of electrochemical sintering. Such in-situ TEM observations provide valuable phenomenological insights into electrochemical phenomena, which may help optimize the configuration for further improved performance.
PMCID: PMC3900994  PMID: 24457519
7.  Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries 
Scientific Reports  2014;4:5786.
In this study, we synthesized a powder consisting of core-shell-structured Ni/NiO nanocluster-decorated graphene (Ni/NiO-graphene) by a simple process for use as an anodic material for lithium-ion batteries. First, a crumpled graphene powder consisting of uniformly distributed Ni nanoclusters was prepared by one-pot spray pyrolysis. This powder was subsequently transformed into the Ni/NiO-graphene composite by annealing at 300°C in air. The Ni/NiO-graphene composite powder exhibited better electrochemical properties than those of the hollow-structured NiO-Ni composite and pure NiO powders. The initial discharge and charge capacities of the Ni/NiO-graphene composite powder were 1156 and 845 mA h g−1, respectively, and the corresponding initial coulombic efficiency was 73%. The discharge capacities of the Ni/NiO-graphene, NiO-Ni, and pure NiO powders after 300 cycles were 863, 647, and 439 mA h g−1, respectively. The high stability of the Ni/NiO-graphene composite powder, attributable to the unique structure of its particles, resulted in it exhibiting long-term cycling stability even at a current density of 1500 mA g−1, as well as good rate performance. The structural stability of the Ni/NiO-graphene composite powder particles during cycling lowered the charge transfer resistance and improved the Li-ion diffusion rate.
PMCID: PMC4148662  PMID: 25167932
8.  Excellent Temperature Performance of Spherical LiFePO4/C Composites Modified with Composite Carbon and Metal Oxides 
The Scientific World Journal  2014;2014:364327.
Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g−1 at a 0.1 C rate, 152.4 mAh·g−1 at a 1 C rate and 131.7 mAh·g−1 at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, −10°C, and −20°C by comparison withthat of room temperature (25°C) at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.
PMCID: PMC3913080  PMID: 24526888
9.  High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements 
Scientific Reports  2014;4:5622.
Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh·g−1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide–triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.
PMCID: PMC4092329  PMID: 25011939
10.  Lithium ion storage between graphenes 
Nanoscale Research Letters  2011;6(1):203.
In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.
PMCID: PMC3211259  PMID: 21711713
11.  Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries 
Nanoscale Research Letters  2014;9(1):368.
The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible specific capacity of the hollow graphene spheres was as high as 903 mAh g-1 at a current density of 50 mAh g-1. Even at a high current density of 500 mAh g-1, the reversible specific capacity remained at 502 mAh g-1. After 60 cycles, the reversible capacity was still kept at 652 mAh g-1 at the current density of 50 mAh g-1. These results indicate that the prepared hollow graphene spheres possess excellent electrochemical performances for lithium storage. The high rate performance of hollow graphene spheres thanks to the hollow structure, thin and porous shells consisting of graphene sheets.
81.05.ue; 61.48.Gh; 72.80.Vp
PMCID: PMC4119061  PMID: 25114657
Lithium-ion batteries; Hollow graphene spheres; Electrochemical performance; Cycle performance
12.  Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites 
Scientific Reports  2013;3:3502.
Fe2O3 nanosheets and nanoparticles are grown on graphene by simply varying reaction solvents in a facile solvothermal/hydrothermal preparation. Fe2O3 nanosheets are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet nanostructure. Due to the structure affinity between two types of two dimensional nanostructures, graphene nanosheets are separated better by Fe2O3 nanosheets compared to nanoparticles and their agglomeration is largely prevented. A large surface area of 173.9 m2 g−1 is observed for Fe2O3-graphene sheet-on-sheet composite, which is more than two times as large as that of Fe2O3-graphene particle-on-sheet composite (81.5 m2 g−1). The sheet-on-sheet composite is found to be better suitable as an anode for Li-ion battery. A high reversible capacity of 662.4 mAh g−1 can be observed after 100 cycles at 1000 mA g−1. The substantially improved cycling performance is ascribed to the unique structure affinity between Fe2O3 nanosheets and graphene nanosheets, thus offering complementary property improvement.
PMCID: PMC3863982  PMID: 24336301
13.  In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures 
Scientific Reports  2014;4:4673.
Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with S pecies, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene “painting” on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis.
PMCID: PMC3985074  PMID: 24728289
14.  Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries 
Nanoscale Research Letters  2014;9(1):360.
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization.
PMCID: PMC4112838  PMID: 25114651
Nanostructured carbon; Carbon-silicon nanocomposite; Anode materials; Lithium ion batteries; Electrochemical energy storage; Ball milling technique
15.  Hollow Porous SiO2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries 
Scientific Reports  2013;3:1568.
The high theoretical capacity and low discharge potential of silicon have attracted much attention on Si-based anodes. Herein, hollow porous SiO2 nanocubes have been prepared via a two-step hard-template process and evaluated as electrode materials for lithium-ion batteries. The hollow porous SiO2 nanocubes exhibited a reversible capacity of 919 mAhg−1 over 30 cycles. The reasonable property could be attributed to the unique hollow nanostructure with large volume interior and numerous crevices in the shell, which could accommodate the volume change and alleviate the structural strain during Li ions' insertion and extraction, as well as allow rapid access of Li ions during charge/discharge cycling. It is found that the formation of irreversible or reversible lithium silicates in the anodes determines the capacity of a deep-cycle battery, fast transportation of Li ions in hollow porous SiO2 nanocubes is beneficial to the formation of Li2O and Si, contributing to the high reversible capacity.
PMCID: PMC3610094  PMID: 23535780
16.  High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes 
Scientific Reports  2014;4:7274.
The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg.
PMCID: PMC4250917  PMID: 25449978
17.  Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries 
Scientific Reports  2014;4:4605.
Herein, SiO2 nanotubes have been fabricated via a facile two step hard-template growth method and evaluated as an anode for Li-ion batteries. SiO2 nanotubes exhibit a highly stable reversible capacity of 1266 mAhg−1 after 100 cycles with negligible capacity fading. SiO2 NT anodes experience a capacity increase throughout the first 80 cycles through Si phase growth via SiO2 reduction. The hollow morphology of the SiO2 nanotubes accommodates the large volume expansion experienced by Si-based anodes during lithiation and promotes preservation of the solid electrolyte interphase layer. The thin walls of the SiO2 nanotubes allow for effective reduction in Li-ion diffusion path distance and, thus, afford a favorable rate cyclability. The high aspect ratio character of these nanotubes allow for a relatively scalable fabrication method of nanoscale SiO2-based anodes.
PMCID: PMC3986728  PMID: 24732245
18.  Three-Dimensional Fe2O3 Nanocubes/Nitrogen-doped Graphene Aerogels: Nucleation Mechanism and Lithium Storage Properties 
Scientific Reports  2014;4:7171.
We developed a solvothermal-induced self-assembly approach to construct three dimensional (3D) macroscopic Fe2O3 nanocubes/nitrogen-doped graphene (Fe2O3-NC/GN) aerogel as anode materials for lithium-ion batteries (LIBs). The Fe2O3 nanocubes with length of ~50 nm are homogeneously anchored on 3D GN frameworks and as spacers to separate the neighboring GN sheets. Based on intensively investigations on the early stages of formation process, it is discovered that a non-classical nanoparticle-mediated crystallization process and a subsequent classical ion-mediated growth dominate the nanocube formation. This is totally different from the commonly recognized classical atom-mediated crystallization and ripening mechanism. Benefitting from the unique structures and characteristics, the optimized Fe2O3-NC/GN aerogel exhibits excellent rate capability, outstanding long-term cyclic stability at high current densities, which are outperforming most of Fe2O3/GS hybrid electrodes. These results suggest us to in-depth understand the detailed crystallization process, and rational design and precisely control the morphologies of nanocrystals on graphene for high performance energy applications.
PMCID: PMC4243062  PMID: 25421070
19.  Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries 
Nanoscale Research Letters  2012;7(1):215.
SnO2 nanoparticles were dispersed on graphene nanosheets through a solvothermal approach using ethylene glycol as the solvent. The uniform distribution of SnO2 nanoparticles on graphene nanosheets has been confirmed by scanning electron microscopy and transmission electron microscopy. The particle size of SnO2 was determined to be around 5 nm. The as-synthesized SnO2/graphene nanocomposite exhibited an enhanced electrochemical performance in lithium-ion batteries, compared with bare graphene nanosheets and bare SnO2 nanoparticles. The SnO2/graphene nanocomposite electrode delivered a reversible lithium storage capacity of 830 mAh g−1 and a stable cyclability up to 100 cycles. The excellent electrochemical properties of this graphene-supported nanocomposite could be attributed to the insertion of nanoparticles between graphene nanolayers and the optimized nanoparticles distribution on graphene nanosheets.
PMCID: PMC3442962  PMID: 22500947
SnO2; Graphene nanosheets; Nanocomposite; Lithium-ion batteries
20.  Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage 
Scientific Reports  2014;4:4647.
Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.
PMCID: PMC3986698  PMID: 24732294
21.  Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading 
Scientific Reports  2014;4:4629.
In this communication, we introduce the concept of three dimensional (3D) battery electrodes to enhance the capacity per footprint area for lithium-sulfur battery. In such a battery, 3D electrode of sulfur embedded into porous graphene sponges (S-GS) was directly used as the cathode with large areal mass loading of sulfur (12 mg cm−2), approximately 6–12 times larger than that of most reports. The graphene sponges (GS) worked as a framework that can provide high electronic conductive network, abilities to absorb the polysulfides intermediate, and meanwhile mechanical support to accommodate the volume changes during charge and discharge. As a result, the S-GS electrode with 80 wt.% sulfur can deliver an extremely high areal specific capacitance of 6.0 mAh cm−2 of the 11th cycle, and maintain 4.2 mAh cm−2 after 300 charge−discharge cycles at a rate of 0.1C, representing an extremely low decay rate (0.08% per cycle after 300 cycles), which could be the highest areal specific capacity with comparable cycle stability among the rechargeable Li/S batteries reported ever.
PMCID: PMC3982171  PMID: 24717445
22.  Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries 
Scientific Reports  2012;2:795.
One of the most exciting areas in lithium ion batteries is engineering structured silicon anodes. These new materials promise to lead the next generation of batteries with significantly higher reversible charge capacity than current technologies. One drawback of these materials is that their production involves costly processing steps, limiting their application in commercial lithium ion batteries. In this report we present an inexpensive method for synthesizing macroporous silicon particulates (MPSPs). After being mixed with polyacrylonitrile (PAN) and pyrolyzed, MPSPs can alloy with lithium, resulting in capacities of 1000 mAhg−1 for over 600+ cycles. These sponge-like MPSPs with pyrolyzed PAN (PPAN) can accommodate the large volume expansion associated with silicon lithiation. This performance combined with low cost processing yields a competitive anode material that will have an immediate and direct application in lithium ion batteries.
PMCID: PMC3493010  PMID: 23139860
23.  Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing 
Nanoscale Research Letters  2013;8(1):422.
Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles (RGO-GeNPs) was developed using graphene oxide (GO) as stabilizer, which could be conducive to obtain better excellent electrical properties. The information about morphology and chemical composition of the nanomaterials were obtained by TEM, FTIR, EDS, and XRD measurements. Stable aqueous dispersibility of RGO-GeNPs was further improved by poly(sodium 4-styrenesulfonate) (PSS) to obtain amphiphilic polymer-coated RGO-GeNPs (PSS-RGO-GeNPs). A possible mechanism to interpret the formation of RGO-GeNPs was proposed. The as-synthesized RGO-GeNPs showed excellent battery performance when used as an anode material for Li ion batteries. The resulting nanocomposites exhibited high specific capacity and good cycling stability after 80 cycles. This study showed a facile strategy to synthetize graphene and Ge nanocomposites which can be a hopeful anode material with excellent electrical properties for lithium ion batteries.
PMCID: PMC4016143  PMID: 24134406
Aqueous solution synthesis; Reduced graphene oxide-germanium nanoparticles; Dispersibility
24.  Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries 
Scientific Reports  2013;3:2878.
Nanoarchitectured electroactive materials can boost rates of Li insertion/extraction, showing genuine potential to increase power output of Li-ion batteries. However, electrodes assembled with low-dimensional nanostructured transition metal oxides by conventional approach suffer from dramatic reductions in energy capacities owing to sluggish ion and electron transport kinetics. Here we report that flexible bulk electrodes, made of three-dimensional bicontinuous nanoporous Cu/MnO2 hybrid and seamlessly integrated with Cu solid current collector, substantially optimizes Li storage behavior of the constituent MnO2. As a result of the unique integration of solid/nanoporous hybrid architecture that simultaneously enhances the electron transport of MnO2, facilitates fast ion diffusion and accommodates large volume changes on Li insertion/extraction of MnO2, the supported MnO2 exhibits a stable capacity of as high as ~1100 mA h g−1 for 1000 cycles, and ultrahigh charge/discharge rates. It makes the environmentally friendly and low-cost electrode as a promising anode for high-performance Li-ion battery applications.
PMCID: PMC3791456  PMID: 24096928
25.  Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries 
Scientific Reports  2014;4:6467.
Li2S has a high theoretical capacity of 1166 mAh g−1, but it suffers from limited rate and cycling performance. Herein we reported in-situ synthesis of thermally exfoliated graphene−Li2S (in-situ TG−Li2S) nanocomposite and its application as a superior cathode material alternative to sulfur. Li2S nanoparticles with the size of ~8.5 nm homogeneously anchored in graphene nanosheets were prepared via chemical reduction of pre-sublimed sulfur by lithium triethylborohydride (LiEt3BH). The in-situ TG−Li2S nanocomposite exhibited an initial capacity of 1119 mAh g−1 Li2S (1609 mAh g−1 S) with a negligible charged potential barrier in the first cycle. The discharge capacity retained 791 mAh g−1 Li2S (1137 mAh g−1 S) after 100 cycles at 0.1C and exceeded 560 mAh g−1 Li2S (805 mAh g−1 S) at a high rate of 2C. Moreover, coupling the composite with Si thin film anode, a Li2S/Si full cell was produced, delivering a high specific capacity of ~900 mAh g−1 Li2S (1294 mAh g−1 S). The outstanding electrode performance of in-situ TG−Li2S composite was attributed to the well dispersed small Li2S nanoparticles and highly conductive graphene nanosheets, which provided merits of facile ionic and electronic transport, efficient utilization of the active material, and flexible accommodation of volume change.
PMCID: PMC4174566  PMID: 25253198

Results 1-25 (658637)