Search tips
Search criteria

Results 1-25 (798896)

Clipboard (0)

Related Articles

1.  Facile Synthesis of Coaxial CNTs/MnOx-Carbon Hybrid Nanofibers and Their Greatly Enhanced Lithium Storage Performance 
Scientific Reports  2015;5:17473.
Carbon nanotubes (CNTs)/MnOx-Carbon hybrid nanofibers have been successfully synthesized by the combination of a liquid chemical redox reaction (LCRR) and a subsequent carbonization heat treatment. The nanostructures exhibit a unique one-dimensional core/shell architecture, with one-dimensional CNTs encapsulated inside and a MnOx-carbon composite nanoparticle layer on the outside. The particular porous characteristics with many meso/micro holes/pores, the highly conductive one-dimensional CNT core, as well as the encapsulating carbon matrix on the outside of the MnOx nanoparticles, lead to excellent electrochemical performance of the electrode. The CNTs/MnOx-Carbon hybrid nanofibers exhibit a high initial reversible capacity of 762.9 mAhg−1, a high reversible specific capacity of 560.5 mAhg−1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 396.2 mAhg−1 when cycled at the current density of 1000 mAg−1, indicating that the CNTs/MnOx-Carbon hybrid nanofibers are a promising anode candidate for Li-ion batteries.
PMCID: PMC4664925  PMID: 26621615
2.  Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode 
Scientific Reports  2015;5:9792.
A facile process is demonstrated for the synthesis of layered SiCN-MoS2 structure via pyrolysis of polysilazane functionalized MoS2 flakes. The layered morphology and polymer to ceramic transformation on MoS2 surfaces was confirmed by use of electron microscopy and spectroscopic techniques. Tested as thick film electrode in a Li-ion battery half-cell, SiCN-MoS2 showed the classical three-stage reaction with improved cycling stability and capacity retention than neat MoS2. Contribution of conversion reaction of Li/MoS2 system on overall capacity was marginally affected by the presence of SiCN while Li-irreversibility arising from electrolyte decomposition was greatly suppressed. This is understood as one of the reasons for decreased first cycle loss and increased capacity retention. SiCN-MoS2 in the form of self-supporting paper electrode (at 6 mg·cm−2) exhibited even better performance, regaining initial charge capacity of approximately 530 mAh·g−1 when the current density returned to 100 mA·g−1 after continuous cycling at 2400 mA·g−1 (192 mAh·g−1). MoS2 cycled electrode showed mud-cracks and film delamination whereas SiCN-MoS2 electrodes were intact and covered with a uniform solid electrolyte interphase coating. Taken together, our results suggest that molecular level interfacing with precursor–derived SiCN is an effective strategy for suppressing the metal-sulfide/electrolyte degradation reaction at low discharge potentials.
PMCID: PMC4389211  PMID: 25851595
3.  A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation 
Scientific Reports  2013;3:3383.
Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg−1, the discharge capacity remains 116 mAhg−1 after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity.
PMCID: PMC3843166  PMID: 24287676
4.  Exfoliated MoS2 Sheets and Reduced Graphene Oxide-An Excellent and Fast Anode for Sodium-ion Battery 
Scientific Reports  2015;5:12571.
Three dimensional (3D) MoS2 nanoflowers are successfully synthesized by hydrothermal method. Further, a composite of as prepared MoS2 nanoflowers and rGO is constructed by simple ultrasonic exfoliation technique. The crystallography and morphological studies have been carried out by XRD, FE-SEM, TEM, HR-TEM and EDS etc. Here, XRD study revealed, a composite of exfoliated MoS2 with expanded spacing of (002) crystal plane and rGO can be prepared by simple 40 minute of ultrasonic treatment. While, FE-SEM and TEM studies depict, individual MoS2 nanoflowers with an average diameter of 200 nm are uniformly distributed throughout the rGO surface. When tested as sodium-ion batteries anode material by applying two different potential windows, the composite demonstrates a high reversible specific capacity of 575 mAhg−1 at 100 mAg−1 in between 0.01 V–2.6 V and 218 mAhg−1 at 50 mAg−1 when discharged in a potential range of 0.4 V–2.6 V. As per our concern, the results are one of the best obtained as compared to the earlier published one on MoS2 based SIB anode material and more importantly this material shows such an excellent reversible Na-storage capacity and good cycling stability without addition of any expensive additive stabilizer, like fluoroethylene carbonate (FEC), in comparison to those in current literature.
PMCID: PMC4517166  PMID: 26215284
5.  Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability 
Scientific Reports  2013;3:3392.
We have designed a novel hybrid nanostructure by coating Fe2O3 nanoparticles with multi-walled carbon nanotubes to enhance the lithium storage capability of Fe2O3. The strategy to prepare Fe2O3@MWCNTs involves the synthesis of Fe nanoparticles wrapped in MWCNTs, followed by the oxidation of Fe nanoparticles under carbon dioxide. When used as the anode in a Li-ion battery, this hybrid material (70.32 wt% carbon nanotubes, 29.68 wt% Fe2O3) showed a reversible discharge capacity of 515 mAhg−1 after 50 cycles at a density of 100 mAg−1 and the capacity based on Fe2O3 nanoparticles was calculated as 1147 mAhg−1, Three factors are responsibile for the superior performance: (1) The hollow interiors of MWCNTs provide enough spaces for the accommodation of large volume expansion of inner Fe2O3 nanoparticles, which can improving the stability of electrode; (2) The MWCNTs increase the overall conductivity of the anode; (3) A stable solid electrolyte interface film formed on the surface of MWCNTs may reduce capacity fading.
PMCID: PMC3844968  PMID: 24292097
6.  Fabrication of Nb2O5 Nanosheets for High-rate Lithium Ion Storage Applications 
Scientific Reports  2015;5:8326.
Nb2O5 nanosheets are successfully synthesized through a facile hydrothermal reaction and followed heating treatment in air. The structural characterization reveals that the thickness of these sheets is around 50 nm and the length of sheets is 500 ~ 800 nm. Such a unique two dimensional structure enables the nanosheet electrode with superior performance during the charge-discharge process, such as high specific capacity (~184 mAh·g−1) and rate capability. Even at a current density of 1 A·g−1, the nanosheet electrode still exhibits a specific capacity of ~90 mAh·g−1. These results suggest the Nb2O5 nanosheet is a promising candidate for high-rate lithium ion storage applications.
PMCID: PMC4321166  PMID: 25659574
7.  In-situ One-step Hydrothermal Synthesis of a Lead Germanate-Graphene Composite as a Novel Anode Material for Lithium-Ion Batteries 
Scientific Reports  2014;4:7030.
Lead germanate-graphene nanosheets (PbGeO3-GNS) composites have been prepared by an efficient one-step, in-situ hydrothermal method and were used as anode materials for Li-ion batteries (LIBs). The PbGeO3 nanowires, around 100–200 nm in diameter, are highly encapsulated in a graphene matrix. The lithiation and de-lithiation reaction mechanisms of the PbGeO3 anode during the charge-discharge processes have been investigated by X-ray diffraction and electrochemical characterization. Compared with pure PbGeO3 anode, dramatic improvements in the electrochemical performance of the composite anodes have been obtained. In the voltage window of 0.01–1.50 V, the composite anode with 20 wt.% GNS delivers a discharge capacity of 607 mAh g−1 at 100 mA g−1 after 50 cycles. Even at a high current density of 1600 mA g−1, a capacity of 406 mAh g−1 can be achieved. Therefore, the PbGeO3-GNS composite can be considered as a potential anode material for lithium ion batteries.
PMCID: PMC4229670  PMID: 25391220
8.  Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials 
Scientific Reports  2016;6:20592.
We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to the other Co3O4 nanostructures, including a high reversible capacity of 1053.1 mAhg−1 after 50 cycles at a current density of 0.2 C (1 C = 890 mAg−1), good cycling stability and rate capability.
PMCID: PMC4742879  PMID: 26846434
9.  Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries 
Scientific Reports  2013;3:1506.
High-performance and cost-effective rechargeable batteries are key to the success of electric vehicles and large-scale energy storage systems. Extensive research has focused on the development of (i) new high-energy electrodes that can store more lithium or (ii) high-power nano-structured electrodes hybridized with carbonaceous materials. However, the current status of lithium batteries based on redox reactions of heavy transition metals still remains far below the demands required for the proposed applications. Herein, we present a novel approach using tunable functional groups on graphene nano-platelets as redox centers. The electrode can deliver high capacity of ~250 mAh g−1, power of ~20 kW kg−1 in an acceptable cathode voltage range, and provide excellent cyclability up to thousands of repeated charge/discharge cycles. The simple, mass-scalable synthetic route for the functionalized graphene nano-platelets proposed in this work suggests that the graphene cathode can be a promising new class of electrode.
PMCID: PMC3604708  PMID: 23514953
10.  High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements 
Scientific Reports  2014;4:5622.
Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh·g−1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide–triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.
PMCID: PMC4092329  PMID: 25011939
11.  Dynamics of Electrochemical Lithiation/Delithiation of Graphene-Encapsulated Silicon Nanoparticles Studied by In-situ TEM 
Scientific Reports  2014;4:3863.
The incorporation of nanostructured carbon has been recently reported as an effective approach to improve the cycling stability when Si is used as high-capacity anodes for the next generation Li-ion battery. However, the mechanism of such notable improvement remains unclear. Herein, we report in-situ transmission electron microscopy (TEM) studies to directly observe the dynamic electrochemical lithiation/delithiation processes of crumpled graphene-encapsulated Si nanoparticles to understand their physical and chemical transformations. Unexpectedly, in the first lithiation process, crystalline Si nanoparticles undergo an isotropic to anisotropic transition, which is not observed in pure crystalline and amorphous Si nanoparticles. Such a surprising phenomenon arises from the uniformly distributed localized voltage around the Si nanoparticles due to the highly conductive graphene sheets. It is observed that the intimate contact between graphene and Si is maintained during volume expansion/contraction. Electrochemical sintering process where small Si nanoparticles react and merge together to form large agglomerates following spikes in localized electric current is another problem for batteries. In-situ TEM shows that graphene sheets help maintain the capacity even in the course of electrochemical sintering. Such in-situ TEM observations provide valuable phenomenological insights into electrochemical phenomena, which may help optimize the configuration for further improved performance.
PMCID: PMC3900994  PMID: 24457519
12.  Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries 
Scientific Reports  2015;5:9055.
SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g−1 are 2213 and 1402 mA h g−1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g−1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g−1, respectively. Even at a high current density of 1000 mA g−1, the first discharge and charge capacities are 1502 and 876 mA h g−1, and the discharge specific capacities remains 1057 and 677 mA h g−1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.
PMCID: PMC4357011  PMID: 25761938
13.  Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes 
Scientific Reports  2015;5:13219.
To provide safe lithium-ion batteries (LIBs) at low cost, battery materials which lead to reduced Li dendrite formation are needed. The currently used anode materials have low redox voltages that are very close to the redox potential for the formation of Li metal, which leads to severe short circuiting. Herein, we report that when the three-dimensional amorphous silicon polymers poly(methylsilyne) and poly(phenylsilyne) are used as anode materials, dendritic Li formation on the anode surface is avoided up to a practical current density of 10 mA·g−1 at 5 °C. Equally as significant, poly(methylsilyne) and poly(phenylsilyne) are capable of reacting with 0.45 and 0.9 Li atoms per formula unit, respectively, at an average voltage of approximately 1.0 V, affording reversible capacities of 244 mAh·g−1 and 180 mAh·g−1. Moreover, noteworthy is the fact that polysilynes are suitable for practical applications because they can be prepared through a simple and low-cost process and are easy to handle.
PMCID: PMC4528197  PMID: 26249325
14.  Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density 
Nature Communications  2015;6:7393.
Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.
The volume expansion of silicon is a big problem in lithium-ion batteries with silicon anodes. Here, the authors report direct graphene growth on silicon nanoparticles, which effectively mitigates the problem, leading to excellent electrochemical performance.
PMCID: PMC4491181  PMID: 26109057
15.  Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries 
Scientific Reports  2014;4:5786.
In this study, we synthesized a powder consisting of core-shell-structured Ni/NiO nanocluster-decorated graphene (Ni/NiO-graphene) by a simple process for use as an anodic material for lithium-ion batteries. First, a crumpled graphene powder consisting of uniformly distributed Ni nanoclusters was prepared by one-pot spray pyrolysis. This powder was subsequently transformed into the Ni/NiO-graphene composite by annealing at 300°C in air. The Ni/NiO-graphene composite powder exhibited better electrochemical properties than those of the hollow-structured NiO-Ni composite and pure NiO powders. The initial discharge and charge capacities of the Ni/NiO-graphene composite powder were 1156 and 845 mA h g−1, respectively, and the corresponding initial coulombic efficiency was 73%. The discharge capacities of the Ni/NiO-graphene, NiO-Ni, and pure NiO powders after 300 cycles were 863, 647, and 439 mA h g−1, respectively. The high stability of the Ni/NiO-graphene composite powder, attributable to the unique structure of its particles, resulted in it exhibiting long-term cycling stability even at a current density of 1500 mA g−1, as well as good rate performance. The structural stability of the Ni/NiO-graphene composite powder particles during cycling lowered the charge transfer resistance and improved the Li-ion diffusion rate.
PMCID: PMC4148662  PMID: 25167932
16.  Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries 
SpringerPlus  2015;4:643.
In this paper, we report the synthesis of a Li4Ti5O12/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 C are 206.5, 200.9, 188, 178.1 and 142.3 mAh·g−1, respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh·g−1, respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Ω) compared with LTO (108.05 Ω), and higher exchange current density (j = 1.1 × 10−3 mA cm−2)—about 20 times than those of the LTO (j = 2.38 × 10−4 mA cm−2).
PMCID: PMC4627983  PMID: 26543777
LIBs, Li4Ti5O12; Graphene nanoribbons; Anode; Capacity
17.  The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode 
Scientific Reports  2016;6:19195.
3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm−3), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g−1 at a specific current of 200 mA g−1. Even at the high specific current of 1000 mA g−1 after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g−1, about twice as much as that of SGF (297.6 mAh g−1) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc.
PMCID: PMC4709726  PMID: 26754468
18.  Excellent Temperature Performance of Spherical LiFePO4/C Composites Modified with Composite Carbon and Metal Oxides 
The Scientific World Journal  2014;2014:364327.
Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g−1 at a 0.1 C rate, 152.4 mAh·g−1 at a 1 C rate and 131.7 mAh·g−1 at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, −10°C, and −20°C by comparison withthat of room temperature (25°C) at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.
PMCID: PMC3913080  PMID: 24526888
19.  Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge 
Nature Communications  2015;6:7760.
Lithium–sulphur batteries with a high theoretical energy density are regarded as promising energy storage devices for electric vehicles and large-scale electricity storage. However, the low active material utilization, low sulphur loading and poor cycling stability restrict their practical applications. Herein, we present an effective strategy to obtain Li/polysulphide batteries with high-energy density and long-cyclic life using three-dimensional nitrogen/sulphur codoped graphene sponge electrodes. The nitrogen/sulphur codoped graphene sponge electrode provides enough space for a high sulphur loading, facilitates fast charge transfer and better immobilization of polysulphide ions. The hetero-doped nitrogen/sulphur sites are demonstrated to show strong binding energy and be capable of anchoring polysulphides based on first-principles calculations. As a result, a high specific capacity of 1,200 mAh g−1 at 0.2C rate, a high-rate capacity of 430 mAh g−1 at 2C rate and excellent cycling stability for 500 cycles with ∼0.078% capacity decay per cycle are achieved.
There is intensive research underway into the cathode development of lithium–sulphur batteries. Here, the authors report a lithium–sulphur battery using nitrogen/sulphur codoped graphene structure which displays excellent electrochemical performance with high sulphur loading.
PMCID: PMC4518288  PMID: 26182892
20.  Lithium ion storage between graphenes 
Nanoscale Research Letters  2011;6(1):203.
In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.
PMCID: PMC3211259  PMID: 21711713
21.  Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries 
Scientific Reports  2015;5:11958.
LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 space group. The morphological characterization by scanning electron microscopy and transmission electron microscopy reveals that the LiNi0.5Mn1.5O4 nanorods of 100–200 nm in diameter are well dispersed and wrapped in the graphene nanosheets for the composite. Benefiting from the highly conductive matrix provided by graphene nanosheets and one-dimensional nanostructure of the ordered spinel, the composite electrode exhibits superior rate capability and cycling stability. As a result, the LiNi0.5Mn1.5O4-graphene composite electrode delivers reversible capacities of 127.6 and 80.8 mAh g−1 at 0.1 and 10 C, respectively, and shows 94% capacity retention after 200 cycles at 1 C, greatly outperforming the bare LiNi0.5Mn1.5O4 nanorod cathode. The outstanding performance of the LiNi0.5Mn1.5O4-graphene composite makes it promising as cathode material for developing high energy and high power lithium-ion batteries.
PMCID: PMC4493710  PMID: 26148558
22.  Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries 
Nature Communications  2015;6:8597.
Silicon has the potential to revolutionize the energy storage capacities of lithium-ion batteries to meet the ever increasing power demands of next generation technologies. To avoid the operational stability problems of silicon-based anodes, we propose synergistic physicochemical alteration of electrode structures during their design. This capitalizes on covalent interaction of Si nanoparticles with sulfur-doped graphene and with cyclized polyacrylonitrile to provide a robust nanoarchitecture. This hierarchical structure stabilized the solid electrolyte interphase leading to superior reversible capacity of over 1,000 mAh g−1 for 2,275 cycles at 2 A g−1. Furthermore, the nanoarchitectured design lowered the contact of the electrolyte to the electrode leading to not only high coulombic efficiency of 99.9% but also maintaining high stability even with high electrode loading associated with 3.4 mAh cm−2. The excellent performance combined with the simplistic, scalable and non-hazardous approach render the process as a very promising candidate for Li-ion battery technology.
Silicon anodes are promising for lithium-ion battery development, but suffer from problems such as undesired volume expansion and solid-electrolyte interface formation. Here, the authors report a hierarchical silicon-sulfur-graphene composite anode which mitigates the problems leading to high performance.
PMCID: PMC4639807  PMID: 26497228
23.  The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading 
Scientific Reports  2015;5:15665.
A stable Si-based anode with a high initial coulombic efficiency (ICE) for lithium-ion batteries (LIB) is critical for energy storage. In the present paper, a new scalable method is adopted in combination with giant nitrogen-doped graphene and micron-size electrode materials. We first synthesize a new type of freestanding LIB anode composed of micron-sized Si (mSi) particles wrapped by giant nitrogen-doped graphene (mSi@GNG) film. High ICE (>85%) and long cycle life (more than 80 cycles) are obtained. In the mSi@GNG composite, preferential formation of a stable solid electrolyte interphase (SEI) on the surface of graphene sheets is achieved. The formation and components of SEI are identified for the first time by using UV-resonance Raman spectroscopy and Raman mapping, which will revive the study of formation and evolution of SEI by Raman. New mechanism is proposed that the giant graphene sheets protect the mSi particles from over-lithiation and fracture. Such a simple and scalable method may also be applied to other anode systems to boost their energy and power densities for LIB.
PMCID: PMC4620504  PMID: 26497729
24.  Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites 
Scientific Reports  2013;3:3502.
Fe2O3 nanosheets and nanoparticles are grown on graphene by simply varying reaction solvents in a facile solvothermal/hydrothermal preparation. Fe2O3 nanosheets are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet nanostructure. Due to the structure affinity between two types of two dimensional nanostructures, graphene nanosheets are separated better by Fe2O3 nanosheets compared to nanoparticles and their agglomeration is largely prevented. A large surface area of 173.9 m2 g−1 is observed for Fe2O3-graphene sheet-on-sheet composite, which is more than two times as large as that of Fe2O3-graphene particle-on-sheet composite (81.5 m2 g−1). The sheet-on-sheet composite is found to be better suitable as an anode for Li-ion battery. A high reversible capacity of 662.4 mAh g−1 can be observed after 100 cycles at 1000 mA g−1. The substantially improved cycling performance is ascribed to the unique structure affinity between Fe2O3 nanosheets and graphene nanosheets, thus offering complementary property improvement.
PMCID: PMC3863982  PMID: 24336301
25.  Uniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties 
Scientific Reports  2016;6:20826.
Development of three-dimensional nano-architectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a novel type of Ni3V2O8 nanowires, organized by ultrathin hierarchical nanosheets (less than 5 nm) on Ti foil, has been obtained by a two-step hydrothermal synthesis method. Studies on structural and thermal properties of the as-prepared Ni3V2O8 nanowire arrays are carried out and their morphology has changed obviously in the following heat treatment at 300 and 500 °C. As an electrode material for lithium ion batteries, the unique configuration of Ni3V2O8 nanowires presents enhanced capacitance, satisfying rate capability and good cycling stability. The reversible capacity of the as-prepared Ni3V2O8 nanowire arrays reaches 969.72 mAh·g−1 with a coulombic efficiency over 99% at 500 mA·g−1 after 500 cycles.
PMCID: PMC4748403  PMID: 26860692

Results 1-25 (798896)