Search tips
Search criteria

Results 1-25 (638289)

Clipboard (0)

Related Articles

1.  Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area 
Geochimica et cosmochimica acta  2008;72(2):493-505.
Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276–345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation.
PMCID: PMC2981034  PMID: 21085620
2.  Synthesis and characterization of nanoparticle thin films of a-(PbSe)100−xCdx lead chalcogenides 
Nanoscale Research Letters  2013;8(1):148.
We report the synthesis of amorphous (PbSe)100−xCdx (x = 5, 10, 15, and 20) nanoparticle thin films using thermal evaporation method under argon gas atmosphere. Thin films with a thickness of 20 nm have been deposited on glass substrates at room temperature under a continuous flow (50 sccm) of argon. X-ray diffraction patterns suggest the amorphous nature of these thin films. From the field emission scanning electron microscopy images, it is observed that these thin films contain quite spherical nanoparticles with an average diameter of approximately 20 nm. Raman spectra of these a-(PbSe)100−xCdx nanoparticles show a wavelength shift in the peak position as compared with earlier reported values on PbSe. This shift in peak position may be due to the addition of Cd in PbSe. The optical properties of these nanoparticles include the studies on photoluminescence and optical constants. On the basis of optical absorption measurements, a direct optical bandgap is observed, and the value of the bandgap decreases with the increase in metal (Cd) contents in PbSe. Both extinction coefficient (k) and refractive index (n) show an increasing trend with the increase in Cd concentration. On the basis of temperature dependence of direct current conductivity, the activation energy and pre-exponential factor of these thin films have been estimated. These calculated values of activation energy and pre-exponential factor suggest that the conduction is due to thermally assisted tunneling of the carriers.
PMCID: PMC3635980  PMID: 23547682
Amorphous lead chalcogenides; Nanoparticle thin films; Raman spectra; Photoluminescence; Optical bandgap; dc conductivity
3.  Effect of Annealing Temperature on the Optical Spectra of CdS Thin Films Deposited at Low Solution Concentrations by Chemical Bath Deposition (CBD) Technique 
Two different concentrations of CdCl2 and (NH2)2CS were used to prepare CdS thin films, to be deposited on glass substrate by chemical bath deposition (CBD) technique. CdCl2 (0.000312 M and 0.000625 M) was employed as a source of Cd2+ while (NH2)2CS (0.00125 M and 0.000625 M) for S2− at a constant bath temperature of 70 °C. Adhesion of the deposited films was found to be very good for all the solution concentrations of both reagents. The films were air-annealed at a temperature between 200 °C to 360 °C for one hour. The minimum thickness was observed to be 33.6 nm for film annealed at 320 °C. XRD analyses reveal that the films were cubic along with peaks of hexagonal phase for all film samples. The crystallite size of the films decreased from 41.4 nm to 7.4 nm with the increase of annealing temperature for the CdCl2 (0.000312 M). Optical energy band gap (Eg), Urbach energy (Eu) and absorption coefficient (α) have been calculated from the transmission spectral data. These parameters have been discussed as a function of annealing temperature and solution concentration. The best transmission (about 97%) was obtained for the air-annealed films at higher temperature at CdCl2 (0.000312 M).
PMCID: PMC3083706  PMID: 21541059
chemical bath deposition; cadmium sulphide; window layer; air-annealing
4.  Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD 
Nanoscale Research Letters  2011;6(1):568.
We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion.
PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.
PMCID: PMC3227690  PMID: 22040295
zinc oxide; transparent nanocrystalline film; thermal plasma chemical vapor deposition; annealing; nanorods
5.  One-step synthesis of PbSe-ZnSe composite thin film 
Nanoscale Research Letters  2011;6(1):324.
This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD) from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package.
PMCID: PMC3211412  PMID: 21711822
6.  Structural and Optical Properties of Nanoscale Galinobisuitite Thin Films 
Galinobisuitite thin films of (Bi2S3)(PbS) were prepared using the chemical bath deposition technique (CBD). Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA) complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU) solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS) technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD) technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM), transmission electron microscopes (TEM) and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.
PMCID: PMC3958824  PMID: 24473136
Galinobisuitite (Bi2S3)(PbS) thin film; CBD; nanoscale structural; XRD; AAS; optical band gap
7.  Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy 
The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix.
Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution, agar dilution plate count, and well-diffusion methods.
On the basis of the semiquantitative analysis, there was a direct correlation between the reducing agent ratio and the percentage of zerovalent Cu. This was confirmed with the statistical analysis of population of Cu NPs from TEM micrographs. At lower reducing agent ratios, two phases coexist (Cu2O and zerovalent Cu) due to incomplete reduction of copper ions by the reducing agent; however, at higher reducing agent ratios, the Cu NPs consist mainly of zerovalent Cu. Crystallite size and relative particle size of stabilized Cu NPs showed considerable differences in results and tendencies in respect to TEM analysis. However, the relative particle size values obtained from FT of XRD data agreed well with the histograms from the TEM observations. From FT results, the relative particle size and reducing agent ratio of stabilized Cu NPs showed an inverse correlation. The incomplete reduction of copper ions at lower reducing agent ratios was also confirmed by DSC studies. FT-IR and 2D-IR correlation spectra analysis suggested the first event involved in the stabilization of Cu NPs is their electrostatic interaction with –C=O of carboxylate groups of NaAlg, followed by the interaction with the available O–C–O−, and finally with the –OH groups. Bacterial susceptibility to stabilized nanoparticles was found to vary depending on the bacterial strains. The lowest MIC and MBC of stabilized Cu NPs ranged between 2 mg/L and 8 mg/L for all studied strains. Disk-diffusion studies with both E. coli strains revealed greater effectiveness of the stabilized Cu NPs compared to the positive controls (cloxacillin, amoxicillin, and nitrofurantoin). S. aureus showed the highest sensitivity to stabilized Cu NPs compared to the other studied strains.
Cu NPs were successfully synthesized via chemical reduction assisted with microwave heating. Average particle size, polydispersity, and phase composition of Cu NPs depended mainly on the reducing agent ratio. Likewise, thermal stability and antibacterial activity of stabilized Cu NPs were affected by their phase composition. Because of the carboxylate groups in polymer chains, the structural changes of stabilized Cu NPs are different from those of NaAlg. NaAlg acted as a size controller and stabilizing agent of Cu NPs, due to their ability to bind strongly to the metal surface. Our study on the stabilizing agent–dependent structural changes of stabilized NPs is helpful for wide application of NaAlg as an important biopolymer.
PMCID: PMC3405878  PMID: 22848180
stabilized copper nanoparticles; sodium alginate; 2D-IR correlation spectroscopy; antibacterial activity
8.  Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition 
Nanoscale Research Letters  2014;9(1):219.
Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (−0.1, −0.3, −0.5, −0.7, and −0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV–vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.
PMCID: PMC4019351  PMID: 24872805
Cu2O films; Microstructure; Morphology; Optical properties
9.  Room temperature synthesis of PbSe quantum dots in aqueous solution: Stabilization by interactions with ligands 
Nanoscale  2012;4(4):1312-1320.
An aqueous route of synthesis is described for rapid synthesis of lead selenide quantum dots (PbSe QDs) at room temperature in an attempt to produce water-soluble and stable nanocrystals. Several thiol-ligands, including thioglycolic acid (TGA), thioglycerol (TGC), 3-mercaptopropionic acid (MPA), 2-mercaptoethyleamine hydrochloride (MEA), 6-mercaptohexanoic acid (MHA), and L-cysteine (L-cys), were used for capping/stabilization of PbSe QDs. The effects of the ligands on the stability of PbSe QDs were evaluated for a period of two months at room temperature under normal light conditions and at 4 °C in dark. The TGA- and MEA-capped QDs exhibited the highest stability prior to purification, almost two months when kept in dark at 4 °C. However, the stability of TGA-capped QDs was reduced substantially after purification to about 5 days under same conditions, while MEA-capped QDs did not show any significant instability. The stabilization energies of Pb-thiolate complexes determined by theoretical DFT simulations supported the experimental results. The PbSe QDs capped with TGA, MPA and MEA were successfully purified and re-dispersed in water, while those stabilized with TGC, MHA and L-cys aggregated during purification attempts. The purified PbSe QDs possess very susceptible surface resulting in poor stability for about 30 – 45 min after re-dispersion in water. In the presence of an excess of free ligand, the stability increased up to 5 days for TGA-capped QDs at pH 7.19, 9 –12 days for MPA-capped QDs at pH 7.3–7.5 and 45–47 days for MEA-capped QDs at pH 7.35. X-Ray Diffraction (XRD) results showed that the QDs possess a cubic rock salt structure with the most intense peaks located at 2θ = 25.3° (200) and 2θ = 29.2° (100). TEM images showed that the size of the QDs ranges between 5 and 10 nm. ICP-MS results revealed that Pb:Se ratio was 1.26, 1.28, 3.85, 1.18, and 1.31 for the QDs capped with TGA, MPA, MEA, L-Cys, and TGC, respectively. The proposed method is inexpensive, simple and utilizes environmentally friendly chemicals and solvents.
PMCID: PMC3273634  PMID: 22273747
10.  Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method 
Metal tungstates have attracted much attention due to their interesting structural and photoluminescence properties. Depending on the size of the bivalent cation present, the metal tungstates will adopt structures with different phases. In this work, three different phases of metal tungstates MWO4 (M= Ba, Ni and Bi) were synthesized via the sucrose templated method.
The powders of BaWO4 (tetragonal), NiWO4 (monoclinic) and Bi2WO6 (orthorhombic) formed after calcination temperatures of 750, 650 and 600°C for 4 h respectively are found to be crystalline and exist in their pure phase. Based on Scherrer estimation, their crystallite size are of nanosized. BET results showed NiWO4 has the highest surface area. BaWO4 exhibited less Raman vibrations than the NiWO4 because of the increased lattice symmetry but Bi2WO6 showed almost the same Raman vibrations as BaWO4. From the UV-vis spectra, the band gap transition of the metal tungstates are of the order of BaWO4 > Bi2WO6 > NiWO4. Broad blue-green emission peaks were detected in photoluminescence spectra and the results showed the great dependence on morphology, crystallinity and size of the metal tungstates.
Three different phases of metal tungstates of BaWO4 (scheelite), NiWO4 (wolframite) and Bi2WO6 (perovskite layer) in their pure phase were successfully prepared by the simple and economical sucrose-templated method. The highest surface area is exhibited by NiWO4 while largest band gap is shown by BaWO4. These materials showed promising optical properties.
PMCID: PMC3660196  PMID: 23634962
Metal tungstates; Sucrose; Optical
11.  The Influence of Doping with Transition Metal Ions on the Structure and Magnetic Properties of Zinc Oxide Thin Films 
The Scientific World Journal  2014;2014:265969.
Zn1−xNixO (x = 0.03 ÷ 0.10) and Zn1−xFexO (x = 0.03 ÷ 0.15) thin films were synthesized by sol-gel method. The structure and the surface morphology of zinc oxide thin films doped with transition metal (TM) ions have been investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The magnetic studies were done using vibrating sample magnetometer (VSM) at room temperature. Experimental results revealed that the substitution of Ni ions in ZnO wurtzite lattice for the contents x = 0.03 ÷ 0.10 (Ni2+) leads to weak ferromagnetism of thin films. For Zn1−xFexO with x = 0.03 ÷ 0.05, the Fe3+ ions are magnetic coupling by superexchange interaction via oxygen ions in wurtzite structure. For x = 0.10 ÷ 0.15 (Fe3+) one can observe the increasing of secondary phase of ZnFe2O4 spinel. The Zn0.9Fe0.1O film shows a superparamagnetic behavior due to small crystallite sizes and the net spin magnetic moments arisen from the interaction between the iron ions through an oxygen ion in the spinel structure.
PMCID: PMC3934575  PMID: 24683324
12.  Synthesis of Nanocrystalline SnOx (x = 1–2) Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH 
Sensors (Basel, Switzerland)  2011;11(10):9207-9216.
Nanocrystalline SnOx (x = 1–2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.
PMCID: PMC3231256  PMID: 22163690
nanocrystalline; semiconductor; chemical bath deposition; photoluminescence
13.  Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders 
Nanocrystalline Eu3+, Tb3+ co-doped Lu2O3 powders with a maximum size of 25.5 nm were prepared by the sol-gel process, using lutetium, europium and terbium nitrates as precursors, and ethanol as a solvent. Differential thermal analysis (DTA) and infrared spectroscopy (IR) were used to study the chemical changes during the xerogel annealing. After the sol evaporation at 100 °C, the formed gel was annealed from 300 to 900 °C for 30 min under a rich O2 atmosphere, and the yielded product was analyzed by X-ray diffraction (XRD) to characterize the microstructural behavior and confirm the crystalline structure. The results showed that Lu2O3 nanopowders start to crystallize at 400 °C and that the crystallite size increases along with the annealing temperature. A transmission electron microscopy (TEM) study of samples annealed at 700 and 900 °C was carried out in order to analyze the microstructure, as well as the size, of crystallites. Finally, in regard to scintillating properties, Eu3+ dopant (5 mol%), Tb3+ codoped Lu2O3 exhibited a typical red emission at 611 nm (D°→7F2), furthermore, the effect of Tb3+ molar content (0.01, 0.015 and 0.02% mol) on the Eu3+ radioluminiscence was analyzed and it was found that the higher emission intensity corresponds to the lower Tb3+ content.
PMCID: PMC3189779  PMID: 22016655
sol-gel; nanopowders; Lu2O3:Eu3+-Tb3+; scintillation properties
14.  Thermally Induced Nano-Structural and Optical Changes of nc-Si:H Deposited by Hot-Wire CVD 
Nanoscale Research Letters  2009;4(4):307-312.
We report on the thermally induced changes of the nano-structural and optical properties of hydrogenated nanocrystalline silicon in the temperature range 200–700 °C. The as-deposited sample has a high crystalline volume fraction of 53% with an average crystallite size of ~3.9 nm, where 66% of the total hydrogen is bonded as ≡Si–H monohydrides on the nano-crystallite surface. A growth in the native crystallite size and crystalline volume fraction occurs at annealing temperatures ≥400 °C, where hydrogen is initially removed from the crystallite grain boundaries followed by its removal from the amorphous network. The nucleation of smaller nano-crystallites at higher temperatures accounts for the enhanced porous structure and the increase in the optical band gap and average gap.
PMCID: PMC2893958  PMID: 20596406
Hot-wire CVD; Quantum size effects; Nano-crystallite; Optical band gap
15.  Thermally Induced Nano-Structural and Optical Changes of nc-Si:H Deposited by Hot-Wire CVD 
Nanoscale Research Letters  2009;4(4):307-312.
We report on the thermally induced changes of the nano-structural and optical properties of hydrogenated nanocrystalline silicon in the temperature range 200–700 °C. The as-deposited sample has a high crystalline volume fraction of 53% with an average crystallite size of ~3.9 nm, where 66% of the total hydrogen is bonded as ≡Si–H monohydrides on the nano-crystallite surface. A growth in the native crystallite size and crystalline volume fraction occurs at annealing temperatures ≥400 °C, where hydrogen is initially removed from the crystallite grain boundaries followed by its removal from the amorphous network. The nucleation of smaller nano-crystallites at higher temperatures accounts for the enhanced porous structure and the increase in the optical band gap and average gap.
PMCID: PMC2893958  PMID: 20596406
Hot-wire CVD; Quantum size effects; Nano-crystallite; Optical band gap
16.  High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition 
Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used.
PMCID: PMC3294247  PMID: 22283973
aerosol deposition; Al2O3; polyimide; polymer composite; integrated substrate; high loading of ceramics; system-on-package
17.  Structural and optical properties of ITO/TiO2 anti-reflective films for solar cell applications 
Nanoscale Research Letters  2014;9(1):175.
Indium tin oxide (ITO) and titanium dioxide (TiO2) anti-reflective coatings (ARCs) were deposited on a (100) P-type monocrystalline Si substrate by a radio-frequency (RF) magnetron sputtering. Polycrystalline ITO and anatase TiO2 films were obtained at room temperature (RT). The thickness of ITO (60 to 64 nm) and TiO2 (55 to 60 nm) films was optimized, considering the optical response in the 400- to 1,000-nm wavelength range. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The XRD analysis showed preferential orientation along (211) and (222) for ITO and (200) and (211) for TiO2 films. The XRD analysis showed that crystalline ITO/TiO2 films could be formed at RT. The crystallite strain measurements showed compressive strain for ITO and TiO2 films. The measured average optical reflectance was about 12% and 10% for the ITO and TiO2 ARCs, respectively.
PMCID: PMC3986428  PMID: 24721986
ITO; TiO2; Sputtering; Antireflective films; Room temperature
18.  Area Selective Growth of Titanium Diselenide Thin Films into Micropatterned Substrates by Low-Pressure Chemical Vapor Deposition 
Chemistry of Materials  2013;25(23):4719-4724.
The neutral, distorted octahedral complex [TiCl4(SenBu2)2] (1), prepared from the reaction of TiCl4 with the neutral SenBu2 in a 1:2 ratio and characterized by IR and multinuclear (1H, 13C{1H}, 77Se{1H}) NMR spectroscopy and microanalysis, serves as an efficient single-source precursor for low-pressure chemical vapor deposition (LPCVD) of titanium diselenide, TiSe2, films onto SiO2 and TiN substrates. X-ray diffraction patterns on the deposited films are consistent with single-phase, hexagonal 1T-TiSe2 (P3̅m1), with evidence of some preferred orientation of the crystallites in thicker films. The composition and structural morphology was confirmed by scanning electron microscopy (SEM), energy dispersive X-ray, and Raman spectroscopy. SEM imaging shows hexagonal plate crystallites growing perpendicular to the substrate, but these tend to align parallel to the surface when the quantity of reagent is reduced. The resistivity of the crystalline TiSe2 films is 3.36 ± 0.05 × 10–3 Ω·cm with a carrier density of 1 × 1022 cm–3. Very highly selective film growth from the reagent was observed onto photolithographically patterned substrates, with film growth strongly preferred onto the conducting TiN surfaces of SiO2/TiN patterned substrates. TiSe2 is selectively deposited within the smallest 2 μm diameter TiN holes of the patterned TiN/SiO2 substrates. The variation in crystallite size with different diameter holes is determined by microfocus X-ray diffraction and SEM, revealing that the dimensions increase with the hole size, but that the thickness of the crystals stops increasing above ∼20 μm hole size, whereas their lengths/widths continue to increase.
PMCID: PMC3903341  PMID: 24489437
Selective deposition; single-source precursor; titanium selenide; chemical vapor deposition; selenoether; microfocus X-ray diffraction
19.  H2 Sensing Response of Flame-Spray-Made Ru/SnO2 Thick Films Fabricated from Spin-Coated Nanoparticles 
Sensors (Basel, Switzerland)  2009;9(11):8996-9010.
High specific surface area (SSABET: 141.6 m2/g) SnO2 nanoparticles doped with 0.2–3 wt% Ru were successfully produced in a single step by flame spray pyrolysis (FSP). The phase and crystallite size were analyzed by XRD. The specific surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption (BET analysis). As the Ru concentration increased, the SSABET was found to linearly decrease, while the average BET-equivalent particle diameter (dBET) increased. FSP yielded small Ru particles attached to the surface of the supporting SnO2 nanoparticles, indicating a high SSABET. The morphology and accurate size of the primary particles were further investigated by TEM. The crystallite sizes of the spherical, hexagonal, and rectangular SnO2 particles were in the range of 3–10 nm. SnO2 nanorods were found to range from 3–5 nm in width and 5–20 nm in length. Sensing films were prepared by the spin coating technique. The gas sensing of H2 (500–10,000 ppm) was studied at the operating temperatures ranging from 200–350 °C in presence of dry air. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The 0.2%Ru-dispersed on SnO2 sensing film showed the highest sensitivity and a very fast response time (6 s) compared to a pure SnO2 sensing film, with a highest H2 concentration of 1 vol% at 350 °C and a low H2 detection limit of 500 ppm at 200 °C.
PMCID: PMC3260626  PMID: 22291549
SnO2; ruthenium; flame spray pyrolysis; H2 sensor
20.  Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering 
Nanoscale Research Letters  2012;7(1):547.
Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters.
PMCID: PMC3502530  PMID: 23031449
Silicon nano-crystals; Atom beam sputtering; Rapid thermal annealing; TEM; Raman; Photoluminescence; 81.07; Bc68.37; Lp78.67; Bf
21.  Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia 
The Scientific World Journal  2014;2014:349457.
We report synthesis of ZrO2 nanoparticles (NPs) using microwave assisted chemical method at 80°C temperature. Synthesized ZrO2 NPs were calcinated at 400°C under air atmosphere and characterized using FTIR, XRD, SEM, TEM, BET, and EDS for their formation, structure, morphology, size, and elemental composition. XRD results revealed the formation of mixed phase monoclinic and tetragonal ZrO2 phases having crystallite size of the order 8.8 nm from most intense XRD peak as obtained using Scherrer formula. Electron microscope analysis shows that the NPs were less than 10 nm and highly uniform in size having spherical morphology. BET surface area of ZrO2 NPs was found to be 65.85 m2/g with corresponding particle size of 16 nm. The band gap of synthesized NPs was found to be 2.49 eV and PL spectra of ZrO2 synthesized NPs showed strong peak at 414 nm, which corresponds to near band edge emission (UV emission) and a relatively weak peak at 475 and 562 nm.
PMCID: PMC3918870  PMID: 24578628
22.  Ferromagnetism and optical properties of La1 − x Al x FeO3 nanopowders 
Nanoscale Research Letters  2014;9(1):498.
La1 − x Al x FeO3 (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) nanopowders were prepared by polymerization complex method. All prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectrophotometry (UV-vis). The magnetic properties were investigated using a vibrating sample magnetometer (VSM). The X-ray results of all samples show the formation of an orthorhombic phase with the second phase of α-Fe2O3 in doped samples. The crystallite sizes of nanoparticles decreased with increasing Al content, and they are found to be in the range of 58.45 ± 5.90 to 15.58 ± 4.64 nm. SEM and TEM images show the agglomeration of nanoparticles with average particle size in the range of 60 to 75 nm. The FT-IR spectra confirm the presence of metal oxygen bonds of O-Fe-O and Fe-O in the FeO6 octahedra. The UV-vis spectra show strong absorption peaks at approximately 285 nm, and the calculated optical band gaps are found to be in the range of 2.05 to 2.09 eV with increasing Al content. The M-H loop of the pure sample is antiferromagnetic, whereas those of the doped samples tend to be ferromagnetic with increasing Al content. The magnetization, remanent magnetization, and coercive field of the Al-doped sample with x = 0.5 are enhanced to 1.665 emu/g, 0.623 emu/g, and 4,087.0 Oe, respectively.
PMCID: PMC4170215  PMID: 25246876
Ferromagnetism; Optical properties; Polymerization complex method; La1 − x Al x FeO3; Nanopowders
23.  Quantitative Determination of Lattice Fluoride Effects on the Solubility and Crystallinity of Carbonated Apatites with Incorporated Fluoride 
Caries research  2012;47(3):193-202.
The purpose of this study was to evaluate quantitatively the effects of fluoride on the solubility and crystallinity of carbonated apatites (CAPs) after its incorporation into the crystal lattice using the metastable equilibrium solubility (MES) distribution method. Fluoride incorporated CAPs (F-CAPs) of two different carbonate levels (3% and 5%) and fluoride contents from 0 to 20,000 μg/g were synthesized. X-ray diffraction experiments and Rietveld analysis were conducted to obtain crystallite microstrain and unit cell parameters. Acetate buffer MES solution media were prepared at two solution fluoride concentrations (0.2 mg/L and 2.0 mg/L) and at two pHs (5.0 and 5.7). The unit cell a-axis values of the F-CAPs were found to decrease as the fluoride content increased; consistent with the fluoride being incorporated into the crystal lattice. The fluoride concentrations in the MES solution media were high enough to provide a “swamping” effect such that the fluoride released from the F-CAPs during dissolution was minimal in changing the solution fluoride concentration. Employing the MES distribution superposition method, it was shown that the surface complex possessing the fluorapatite (FAP) stoichiometry (Ca10(PO4)6F2) accounted for the MES distribution behavior of all experiments. In addition, the mean pIFAP [the value of −log(aca 10PO46aF2) calculated from ionic activity product based on FAP stoichiometry of the MES dissolution media in which 50% of the F-CAP had dissolved] correlated well with the crystallite microstrain parameters of the F-CAPs. The incorporated fluoride in the F-CAPs showed only modest effects on F-CAP crystallinity and solubility.
PMCID: PMC3694435  PMID: 23235353
Fluoride; Lattice; Solubility; Crystallinity; Caries; Dental Mineral
24.  Tailoring of polar and nonpolar ZnO planes on MgO (001) substrates through molecular beam epitaxy 
Nanoscale Research Letters  2012;7(1):184.
Polar and nonpolar ZnO thin films were deposited on MgO (001) substrates under different deposition parameters using oxygen plasma-assisted molecular beam epitaxy (MBE). The orientations of ZnO thin films were investigated by in situ reflection high-energy electron diffraction and ex situ X-ray diffraction (XRD). The film roughness measured by atomic force microscopy evolved as a function of substrate temperature and was correlated with the grain sizes determined by XRD. Synchrotron-based X-ray absorption spectroscopy (XAS) was performed to study the conduction band structures of the ZnO films. The fine structures of the XAS spectra, which were consistent with the results of density functional theory calculation, indicated that the polar and nonpolar ZnO films had different electronic structures. Our work suggests that it is possible to vary ZnO film structures from polar to nonpolar using the MBE growth technique and hence tailoring the electronic structures of the ZnO films.
PACS: 81; 81.05.Dz; 81.15.Hi.
PMCID: PMC3315742  PMID: 22405056
ZnO; MgO; polar; nonpolar; RHEED; XRD; XAS
25.  Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering 
Zinc sulfide [ZnS] thin films were deposited on glass substrates using radio frequency magnetron sputtering. The substrate temperature was varied in the range of 100°C to 400°C. The structural and optical properties of ZnS thin films were characterized with X-ray diffraction [XRD], field emission scanning electron microscopy [FESEM], energy dispersive analysis of X-rays and UV-visible transmission spectra. The XRD analyses indicate that ZnS films have zinc blende structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM data also reveal that the films have nano-size grains with a grain size of approximately 69 nm. The films grown at 350°C exhibit a relatively high transmittance of 80% in the visible region, with an energy band gap of 3.79 eV. These results show that ZnS films are suitable for use as the buffer layer of the Cu(In, Ga)Se2 solar cells.
PMCID: PMC3265402  PMID: 22221917
ZnS film; RF magnetron sputtering; solar cell; Cd-free buffer layer

Results 1-25 (638289)