PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1198748)

Clipboard (0)
None

Related Articles

1.  microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma 
A moderate loss of miR-122 function correlates with up-regulation of seed-matched genes and down-regulation of mitochondrially localized genes in both human hepatocellular carcinoma and in normal mice treated with anti-miR-122 antagomir.Putative direct targets up-regulated with loss of miR-122 and secondary targets down-regulated with loss of miR-122 are conserved between human beings and mice and are rapidly regulated in vitro in response to miR-122 over- and under-expression.Loss of miR-122 secondary target expression in either tumorous or adjacent non-tumorous tissue predicts poor survival of heptatocellular carcinoma patients.
Hepatocellular carcinoma (HCC) is one of the most aggressive human malignancies, common in Asia, Africa, and in areas with endemic infections of hepatitis-B or -C viruses (HBV or HCV) (But et al, 2008). Globally, the 5-year survival rate of HCC is <5% and about 600 000 HCC patients die each year. The high mortality associated with this disease is mainly attributed to the failure to diagnose HCC patients at an early stage and a lack of effective therapies for patients with advanced stage HCC. Understanding the relationships between phenotypic and molecular changes in HCC is, therefore, of paramount importance for the development of improved HCC diagnosis and treatment methods.
In this study, we examined mRNA and microRNA (miRNA)-expression profiles of tumor and adjacent non-tumor liver tissue from HCC patients. The patient population was selected from a region of endemic HBV infection, and HBV infection appears to contribute to the etiology of HCC in these patients. A total of 96 HCC patients were included in the study, of which about 88% tested positive for HBV antigen; patients testing positive for HCV antigen were excluded. Among the 220 miRNAs profiled, miR-122 was the most highly expressed miRNA in liver, and its expression was decreased almost two-fold in HCC tissue relative to adjacent non-tumor tissue, confirming earlier observations (Lagos-Quintana et al, 2002; Kutay et al, 2006; Budhu et al, 2008).
Over 1000 transcripts were correlated and over 1000 transcripts were anti-correlated with miR-122 expression. Consistent with the idea that transcripts anti-correlated with miR-122 are potential miR-122 targets, the most highly anti-correlated transcripts were highly enriched for the presence of the miR-122 central seed hexamer, CACTCC, in the 3′UTR. Although the complete set of negatively correlated genes was enriched for cell-cycle genes, the subset of seed-matched genes had no significant KEGG Pathway annotation, suggesting that miR-122 is unlikely to directly regulate the cell cycle in these patients. In contrast, transcripts positively correlated with miR-122 were not enriched for 3′UTR seed matches to miR-122. Interestingly, these 1042 transcripts were enriched for genes coding for mitochondrially localized proteins and for metabolic functions.
To analyze the impact of loss of miR-122 in vivo, silencing of miR-122 was performed by antisense inhibition (anti-miR-122) in wild-type mice (Figure 3). As with the genes negatively correlated with miR-122 in HCC patients, no significant biological annotation was associated with the seed-matched genes up-regulated by anti-miR-122 in mouse livers. The most significantly enriched biological annotation for anti-miR-122 down-regulated genes, as for positively correlated genes in HCC, was mitochondrial localization; the down-regulated mitochondrial genes were enriched for metabolic functions. Putative direct and downstream targets with orthologs on both the human and mouse microarrays showed significant overlap for regulations in the same direction. These overlaps defined sets of putative miR-122 primary and secondary targets. The results were further extended in the analysis of a separate dataset from 180 HCC, 40 cirrhotic, and 6 normal liver tissue samples (Figure 4), showing anti-correlation of proposed primary and secondary targets in non-healthy tissues.
To validate the direct correlation between miR-122 and some of the primary and secondary targets, we determined the expression of putative targets after transfection of miR-122 mimetic into PLC/PRF/5 HCC cells, including the putative direct targets SMARCD1 and MAP3K3 (MEKK3), a target described in the literature, CAT-1 (SLC7A1), and three putative secondary targets, PPARGC1A (PGC-1α) and succinate dehydrogenase subunits A and B. As expected, the putative direct targets showed reduced expression, whereas the putative secondary target genes showed increased expression in cells over-expressing miR-122 (Figure 4).
Functional classification of genes using the total ancestry method (Yu et al, 2007) identified PPARGC1A (PGC-1α) as the most connected secondary target. PPARGC1A has been proposed to function as a master regulator of mitochondrial biogenesis (Ventura-Clapier et al, 2008), suggesting that loss of PPARGC1A expression may contribute to the loss of mitochondrial gene expression correlated with loss of miR-122 expression. To further validate the link of miR-122 and PGC-1α protein, we transfected PLC/PRF/5 cells with miR-122-expression vector, and observed an increase in PGC-1α protein levels. Importantly, transfection of both miR-122 mimetic and miR-122-expression vector significantly reduced the lactate content of PLC/PRF/5 cells, whereas anti-miR-122 treatment increased lactate production. Together, the data support the function of miR-122 in mitochondrial metabolic functions.
Patient survival was not directly associated with miR-122-expression levels. However, miR-122 secondary targets were expressed at significantly higher levels in both tumor and adjacent non-tumor tissues among survivors as compared with deceased patients, providing supporting evidence for the potential relevance of loss of miR-122 function in HCC patient morbidity and mortality.
Overall, our findings reveal potentially new biological functions for miR-122 in liver physiology. We observed decreased expression of miR-122, a liver-specific miRNA, in HBV-associated HCC, and loss of miR-122 seemed to correlate with the decrease of mitochondrion-related metabolic pathway gene expression in HCC and in non-tumor liver tissues, a result that is consistent with the outcome of treatment of mice with anti-miR-122 and is of prognostic significance for HCC patients. Further investigation will be conducted to dissect the regulatory function of miR-122 on mitochondrial metabolism in HCC and to test whether increasing miR-122 expression can improve mitochondrial function in liver and perhaps in liver tumor tissues. Moreover, these results support the idea that primary targets of a given miRNA may be distributed over a variety of functional categories while resulting in a coordinated secondary response, potentially through synergistic action (Linsley et al, 2007).
Tumorigenesis involves multistep genetic alterations. To elucidate the microRNA (miRNA)–gene interaction network in carcinogenesis, we examined their genome-wide expression profiles in 96 pairs of tumor/non-tumor tissues from hepatocellular carcinoma (HCC). Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-122 is under-expressed in HCC and that increased expression of miR-122 seed-matched genes leads to a loss of mitochondrial metabolic function. Furthermore, the miR-122 secondary targets, which decrease in expression, are good prognostic markers for HCC. Transcriptome profiling data from additional 180 HCC and 40 liver cirrhotic patients in the same cohort were used to confirm the anti-correlation of miR-122 primary and secondary target gene sets. The HCC findings can be recapitulated in mouse liver by silencing miR-122 with antagomir treatment followed by gene-expression microarray analysis. In vitro miR-122 data further provided a direct link between induction of miR-122-controlled genes and impairment of mitochondrial metabolism. In conclusion, miR-122 regulates mitochondrial metabolism and its loss may be detrimental to sustaining critical liver function and contribute to morbidity and mortality of liver cancer patients.
doi:10.1038/msb.2010.58
PMCID: PMC2950084  PMID: 20739924
hepatocellular carcinoma; microarray; miR-122; mitochondrial; survival
2.  RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression 
Molecular Cancer  2015;14(1):31.
Background
An increasing amount of evidence has revealed that microRNAs regulate various biological processes, including cell differentiation, cell proliferation, apoptosis, drug resistance, and fat metabolism. Studies have shown that miR-93’s targetome in cancer has not been fully defined. Moreover, the role of miR-93 in epithelial ovarian carcinoma (EOC) remains largely unknown.
Methods
MIR-93 mRNA expression in normal ovarian tissue, benign tumors, borderline tumors, primary ovarian carcinomas, and metastatic omentum was quantified. The ovarian carcinoma cell lines OVCAR3, SKOV3/DDP, and HO8910-PM were transfected with miR-93-5P, after which cell phenotype and expression of relevant molecules were assayed. Dual-luciferase reporter assay and a xenograft mouse model were used to examine miR-93 and its target gene RHOC (Ras homolog gene family member C).
Results
MIR-93 mRNA expression was significantly lower in ovarian carcinomas and borderline tumors than in normal ovarian tissues (p < 0.05), and was lower in metastatic omentum than in relative primary ovarian carcinomas (p < 0.05). MIR-93 mRNA expression was also negatively associated with differentiation (well vs. poor and moderate) and International Federation of Gynecology and Obstetrics staging (FIGO stage I/II vs. stage III/IV) in ovarian carcinoma (p < 0.05), besides, miR-93 was higher expressed in mucinous adenocarcinoma than the other types (p < 0.05). MiR-93-5P overexpression reduced proliferation (p < 0.05); promoted G1 or S arrest and apoptosis (p < 0.05); suppressed migration and invasion (p < 0.05); and reduced RhoC, P70S6 kinase, Bcl-xL, matrix metalloproteinase 9 (MMP9) mRNA or protein expression; conversely, it induced P53 and cleaved PARP expression (p < 0.05). Dual-luciferase reporter assay indicated that miR-93 directly targeted RhoC by binding its 3′ untranslated region. MiR-93-5P transfection also suppressed tumor development and RhoC expression (determined by immunohistochemistry) in vivo in the xenograft mouse model (p < 0.05).
Conclusions
This is the first demonstration that miR-93-5P may inhibit EOC tumorigenesis and progression by targeting RhoC. These findings indicate that miR-93-5P is a potential suppressor of ovarian cellular proliferation. The involvement of miR-93-5P–mediated RhoC downregulation in inhibiting EOC aggressiveness may provide extended insight into the molecular mechanisms underlying cancer aggressiveness.
doi:10.1186/s12943-015-0304-6
PMCID: PMC4328068  PMID: 25649143
MiR-93-5P; RhoC; Ovarian epithelial carcinoma; Tumorigenesis and progression
3.  Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells 
Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the development of miRNA therapies in treating ovarian cancer.
doi:10.2147/DDDT.S51969
PMCID: PMC3938445  PMID: 24591819
microRNA; ovarian cancer; Taxol resistance; Kaplan–Meier survival analysis
4.  Comprehensive MicroRNA Expression Profiling Identifies Novel Markers in Follicular Variant of Papillary Thyroid Carcinoma 
Thyroid  2013;23(11):1383-1389.
Background
Follicular variant of papillary thyroid carcinoma (FVPTC) shares features of papillary (PTC) and follicular (FTC) thyroid carcinomas on a clinical, morphological, and genetic level. MicroRNA (miRNA) deregulation was extensively studied in PTCs and FTCs. However, very limited information is available for FVPTC. The aim of this study was to assess miRNA expression in FVPTC with the most comprehensive miRNA array panel and to correlate it with the clinicopathological data.
Methods
Forty-four papillary thyroid carcinomas (17 FVPTC, 27 classic PTC) and eight normal thyroid tissue samples were analyzed for expression of 748 miRNAs using Human Microarray Assays on the ABI 7900 platform (Life Technologies, Carlsbad, CA). In addition, an independent set of 61 tumor and normal samples was studied for expression of novel miRNA markers detected in this study.
Results
Overall, the miRNA expression profile demonstrated similar trends between FVPTC and classic PTC. Fourteen miRNAs were deregulated in FVPTC with a fold change of more than five (up/down), including miRNAs known to be upregulated in PTC (miR-146b-3p, -146-5p, -221, -222 and miR-222-5p) and novel miRNAs (miR-375, -551b, 181-2-3p, 99b-3p). However, the levels of miRNA expression were different between these tumor types and some miRNAs were uniquely dysregulated in FVPTC allowing separation of these tumors on the unsupervised hierarchical clustering analysis. Upregulation of novel miR-375 was confirmed in a large independent set of follicular cell derived neoplasms and benign nodules and demonstrated specific upregulation for PTC. Two miRNAs (miR-181a-2-3p, miR-99b-3p) were associated with an adverse outcome in FVPTC patients by a Kaplan–Meier (p<0.05) and multivariate Cox regression analysis (p<0.05).
Conclusions
Despite high similarity in miRNA expression between FVPTC and classic PTC, several miRNAs were uniquely expressed in each tumor type, supporting their histopathologic differences. Highly upregulated miRNA identified in this study (miR-375) can serve as a novel marker of papillary thyroid carcinoma, and miR-181a-2-3p and miR-99b-3p can predict relapse-free survival in patients with FVPTC thus potentially providing important diagnostic and predictive value.
doi:10.1089/thy.2012.0632
PMCID: PMC3822383  PMID: 23427895
5.  Prognostic significance of differentially expressed miRNAs in esophageal cancer 
Altered microRNA (miRNA) expression has been found to promote carcinogenesis, but little is known about the role of miRNAs in esophageal cancer. In this study, we selected 10 miRNAs and analyzed their expression in 10 esophageal cancer cell lines and 158 tissue specimens using Northern blotting and in situ hybridization, respectively. We found that Let-7g, miR-21, and miR-195p were expressed in all 10 cell lines, miR-9 and miR-20a were not expressed in any of the cell lines, and miR-16-2, miR-30e, miR-34a, miR-126, and miR-200a were expressed in some of the cell lines but not others. In addition, transient transfection of miR-34a inhibited c-Met and cyclin D1 expression and esophageal cancer cell proliferation, whereas miR-16-2 suppressed RAR-β2 expression and increased tumor cell proliferation. Furthermore, we found that miR-126 expression was associated with tumor cell de-differentiation and lymph node metastasis, miR-16-2 was associated with lymph node metastasis, and miR-195p was associated with higher pathologic disease stages in patients with esophageal adenocarcinoma. Kaplan-Meier analysis showed that miR-16-2 expression and miR-30e expression were associated with shorter overall and disease-free survival in all esophageal cancer patients. In addition, miR-16-2, miR-30e, and miR-200a expression were associated with shorter overall and disease-free survival in esophageal adenocarcinoma patients; however, miR-16-2, miR-30e, and miR-200a expression was not associated with overall or disease-free survival in squamous cell carcinoma patients. Our data indicate that further evaluation of miR-30e and miR-16-2 as prognostic biomarkers is warranted in patients with esophageal adenocarcinoma. In addition, the role of miR-34a in esophageal cancer also warrants further study.
doi:10.1002/ijc.25330
PMCID: PMC2937084  PMID: 20309880
miRNA; cell viability; gene regulation; prognosis; esophageal cancer
6.  Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer 
Oncology Reports  2012;27(4):1238-1244.
Dysregulation of microRNAs (miRNAs) has been found to be associated with a variety of diseases, including epithelial ovarian cancer (EOC). Recently, miR-100 was reported to be downregulated in human ovarian carcinoma, however, the clinical significance and functional roles of miR-100 expression in human EOC are unclear. TaqMan real-time quantitative RT-PCR assay was performed to detect the expression of miR-100 in 98 EOC tissues and 15 adjacent normal epithelial tissues. The relationship between miR-100 expression and clinicopathological factors in 98 EOC patients was statistically analyzed. The effect of miR-100 expression on patient survival was determined. Finally, the role of miR-100 in EOC cell growth and its possible mechanisms were analyzed with miR-100 precursor or inhibitor-transfected cells. We showed that the level of miR-100 was significantly lower in EOC tissues compared to adjacent normal tissues. Low miR-100 expression was found to be closely correlated with advanced FIGO stage, higher serum CA125 expression level and lymph node involvement. Also, low miR-100 expression was correlated with shorter overall survival of EOC patients, and multivariate analysis showed that the status of miR-100 expression was an independent predictor of overall survival in EOC. Additionally, miR-100 could affect the growth of EOC cells by post-transcriptionally regulating polo-like kinase 1 (PLK1) expression. Together, these results suggest that low miR-100 expression may be an independent poor prognostic factor and miR-100 can function as a tumor suppressor by targeting PLK1 in human EOCs.
doi:10.3892/or.2012.1625
PMCID: PMC3583406  PMID: 22246341
epithelial ovarian carcinoma; microRNA-100; TaqMan real-time RT-PCR; prognosis; overall survival; polo-like kinase 1
7.  MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis 
BMC Genomics  2013;14:473.
Background
Neurofibromatosis type 1 (NF1) is a common dominant tumor predisposition syndrome affecting 1 in 3,500 individuals. The hallmarks of NF1 are the development of peripheral nerve sheath tumors either benign (dermal and plexiform neurofibromas) or malignant (MPNSTs).
Results
To comprehensively characterize the role of microRNAs in NF1 tumorigenesis, we analyzed 377 miRNAs expression in a large panel of dermal and plexiform neurofibromas, and MPNSTs. The most significantly upregulated miRNA in plexiform neurofibromas was miR-486-3p that targets the major tumor suppressor gene, PTEN. We confirmed PTEN downregulation at mRNA level. In plexiform neurofibromas, we also report aberrant expression of four miRNAs involved in the RAS-MAPK pathway (miR-370, miR-143, miR-181a, and miR-145). In MPNSTs, significant deregulated miRNAs were involved in PTEN repression (miR-301a, miR-19a, and miR-106b), RAS-MAPK pathway regulation (Let-7b, miR-195, and miR-10b), mesenchymal transition (miR-200c, let-7b, miR-135a, miR-135b, and miR-9), HOX genes expression (miR-210, miR-196b, miR-10a, miR-10b, and miR-9), and cell cycle progression (miR-195, let-7b, miR-20a, miR-210, miR-129-3p, miR-449a, and miR-106b).
Conclusion
We confirmed the implication of PTEN in genesis of plexiform neurofibromas and MPNSTs in NF1. Markedly deregulated miRNAs might have potential diagnostic or prognostic value and could represent novel strategies for effective pharmacological therapies of NF1 tumors.
doi:10.1186/1471-2164-14-473
PMCID: PMC3744175  PMID: 23848554
NF1; Neurofibromatosis type 1; MicroRNAs; MPNST; Neurofibroma; PTEN
8.  Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients 
Background
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with poor clinical outcome. Identification and development of new markers could be beneficial for the diagnosis and prognosis of GBM patients. Deregulation of microRNAs (miRNAs or miRs) is involved in GBM. Therefore, we attempted to identify and develop specific miRNAs as prognostic and predictive markers for GBM patient survival.
Methods
Expression profiles of miRNAs and genes and the corresponding clinical information of 480 GBM samples from The Cancer Genome Atlas (TCGA) dataset were downloaded and interested miRNAs were identified. Patients’ overall survival (OS) and progression-free survival (PFS) associated with interested miRNAs and miRNA-interactions were performed by Kaplan-Meier survival analysis. The impacts of miRNA expressions and miRNA-interactions on survival were evaluated by Cox proportional hazard regression model. Biological processes and network of putative and validated targets of miRNAs were analyzed by bioinformatics.
Results
In this study, 6 interested miRNAs were identified. Survival analysis showed that high levels of miR-326/miR-130a and low levels of miR-323/miR-329/miR-155/miR-210 were significantly associated with long OS of GBM patients, and also showed that high miR-326/miR-130a and low miR-155/miR-210 were related with extended PFS. Moreover, miRNA-323 and miRNA-329 were found to be increased in patients with no-recurrence or long time to progression (TTP). More notably, our analysis revealed miRNA-interactions were more specific and accurate to discriminate and predict OS and PFS. This interaction stratified OS and PFS related with different miRNA levels more detailed, and could obtain longer span of mean survival in comparison to that of one single miRNA. Moreover, miR-326, miR-130a, miR-155, miR-210 and 4 miRNA-interactions were confirmed for the first time as independent predictors for survival by Cox regression model together with clinicopathological factors: Age, Gender and Recurrence. Plus, the availability and rationality of the miRNA-interaction as predictors for survival were further supported by analysis of network, biological processes, KEGG pathway and correlation analysis with gene markers.
Conclusions
Our results demonstrates that miR-326, miR-130a, miR-155, miR-210 and the 4 miRNA-interactions could serve as prognostic and predictive markers for survival of GBM patients, suggesting a potential application in improvement of prognostic tools and treatments.
doi:10.1186/1479-5876-11-10
PMCID: PMC3551827  PMID: 23302469
Glioblastoma multiforme; microRNA; Prognostic marker; Overall survival; Progression-free survival; Interaction
9.  MicroRNAs expression signatures are associated with lineage and survival in acute leukemias 
Blood cells, molecules & diseases  2010;44(3):191-197.
MicroRNAs (miRNAs) are small (~22 nucleotide) non-coding RNAs whose altered expression has been associated with various types of cancers, including leukemia. In the present study, we conducted a quantitative PCR (qPCR) analysis of expression of 23 human precursor miRNAs in bone marrow specimens of 85 Chinese primary leukemia patients, including 53 acute myeloid leukemia (AML) and 32 acute lymphoblastic leukemia (ALL) cases. We show that 16 miRNAs were differentially expressed between AMLs and ALLs; Of them, eight were previously reported (i.e., miR-23a, miR-27a/b, miR-128a, miR-128b, miR-221, miR-222, miR-223, and let-7b) and eight were newly identified (i.e., miR-17, miR-20a, miR-29a/c, miR-29b, miR-146a, miR-150, miR-155, and miR-196b). More importantly, through correlating miRNA expression signatures with outcome of patients, we further show that expression signatures of a group of miRNAs are associated with overall survival of patients. Of them, three (i.e., miR-146a, miR-181a/c, and miR-221), five (i.e., miR-25, miR-26a, miR-29b, miR-146a, and miR-196b), and three (i.e., miR-26a, miR-29b, and miR-146a) miRNAs are significantly associated with overall survival (P<0.05) of the 32 ALL, 53 AML, and 40 non-M3 AML patients, respectively. Particularly, the expression signature of miR-146a is significantly inversely correlated with overall survival of both ALL and AML patients. The prognostic significance of miR-146a in AML has been confirmed further in an independent study of 61 Chinese new AML patient samples. We also identified 622 putative target genes of miR-146a that are predicted by at least three out of the five major prediction programs (i.e., TragetScan, PicTar, miRanda, miRBase Targets, and PITA); Through gene ontology analysis, we found that these genes were particularly enriched (2–9 fold higher than expected by chance) in the GO categories of “negative regulation of biology processes”, “negative regulation of cellular processes”, “apoptosis”, and “cell cycle”, which may be related to the association of miR-146a with poor survival.
doi:10.1016/j.bcmd.2009.12.010
PMCID: PMC2829339  PMID: 20110180
microRNA; acute leukemia; lineage; survival analysis; miR-146a
10.  MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma 
Carcinogenesis  2012;33(5):1113-1120.
The deregulation of microRNA (miRNA) is frequently associated with a variety of cancers, including hepatocellular carcinoma (HCC). In this study, we identified 10 upregulated miRNAs (miR-217, miR-518b, miR-517c, miR-520g, miR-519a, miR-522, miR-518e, miR-525-3p, miR-512-3p and miR-518a-3p) and 10 downregulated miRNAs (miR-138, miR-214, miR-214#, miR-27a#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-5p and miR-483-3p) by Taqman miRNAs array and quantitative real-time PCR (qRT–PCR) confirmation. Additionally, we investigated the expression and possible role of miR-138 in HCC. qRT–PCR results showed that miR-138 was downregulated in 77.8%(14/18) of HCC tissues compared with adjacent non-tumor tissues. Overexpression of miR-138 reduced cell viability and colony formation by induction of cell arrest in HCC cell lines and inhibited tumor cell growth in xenograft nude mice. The use of miR-138 inhibitor increased cell viability and colony formation in HCC cell lines and tumor cell growth in xenograft nude mice. Using TargetScan predictions, CCND3 was defined as a potential direct target of miR-138. Furthermore, CCND3 protein expression was observed to be negatively correlated with miR-138 expression in HCC tissues. The dual-luciferase reporter gene assay results showed that CCND3 was a direct target of miR-138. The use of miR-138 mimic or inhibitor could decrease or increase CCND3 protein levels in HCC cell lines. We conclude that the frequently downregulated miR-138 can regulate CCND3 and function as a tumor suppressor in HCC. Therefore, miR-138 may serve as a useful therapeutic agent for miRNA-based HCC therapy.
doi:10.1093/carcin/bgs113
PMCID: PMC3334515  PMID: 22362728
11.  MicroRNA Profiling of BRCA1/2 Mutation-Carrying and Non-Mutation-Carrying High-Grade Serous Carcinomas of Ovary 
PLoS ONE  2009;4(10):e7314.
Background
MicroRNAs (miRNA) are 20∼25 nucleotide non-coding RNAs that inhibit the translation of targeted mRNA, and they have been implicated in the development of human malignancies. High grade serous ovarian carcinomas, the most common and lethal subtype of ovarian cancer, can occur sporadically or in the setting of BRCA1/2 syndromes. Little is known regarding the miRNA expression profiles of high grade serous carcinoma in relation to BRCA1/2 status, and compared to normal tubal epithelium, the putative tissue of origin for high grade serous carcinomas.
Methodology/Principal Findings
Global miRNA expression profiling was performed on a series of 33 high grade serous carcinomas, characterized with respect to BRCA1/2 status (mutation, epigenetic silencing with loss of expression or normal), and with clinical follow-up, together with 2 low grade serous carcinomas, 2 serous borderline tumors, and 3 normal fallopian tube samples, using miRNA microarrays (328 human miRNA). Unsupervised hierarchical clustering based on miRNA expression profiles showed no clear separation between the groups of carcinomas with different BRCA1/2 status. There were relatively few miRNAs that were differentially expressed between the genotypic subgroups. Comparison of 33 high grade serous carcinomas to 3 normal fallopian tube samples identified several dysregulated miRNAs (false discovery rate <5%), including miR-422b and miR-34c. Quantitative RT-PCR analysis performed on selected miRNAs confirmed the pattern of differential expression shown by microarray analysis. Prognostically, lower level miR-422b and miR-34c in high grade serous carcinomas were both associated with decreased disease-specific survival by Kaplan-Meier analysis (p<0.05).
Conclusions/Significance
High grade serous ovarian carcinomas with and without BRCA1/2 abnormalities demonstrate very similar miRNA expression profiles. High grade serous carcinomas as a group exhibit significant miRNA dysregulation in comparison to tubal epithelium and the levels of miR-34c and miR-422b appear to be prognostically important.
doi:10.1371/journal.pone.0007314
PMCID: PMC2749450  PMID: 19798417
12.  microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN 
Oncology Reports  2012;27(4):1019-1026.
Gastric cancer is one of the most common carcinomas in China. microRNAs, a type of non-coding RNA, are important specific regulators and are involved in numerous bioprocesses of an organism. microRNA-21 (miR-21) has been identified as the most suitable choice for further investigation because it is overexpressed in nearly all solid tumors; furthermore, it has been demonstrated that miR-21 is involved in the genesis and progression of human cancer. It has been reported that PTEN, an important tumour suppressor, is regulated by multiple miRNAs. Thus, in this study we focused on the expression and significance of miR-21 in gastric cancer tissues, and the role of miR-21 in the biological behaviour and the expression of PTEN in gastric cancer cells. Real-time PCR was used to detect miR-21 expression in gastric cancer tissues, the adjacent normal tissues, and the gastric cell lines. The gastric cancer cell line BGC-823 was transfected with pre-miR-21/miR-21 inhibitor to overexpress/downregulate miR-21. The influence of miR-21 on the biological behaviour of gastric cancer cells was evaluated using the CCK-8 kit, FCMs, the scratch healing assay and the transwell test. Western blotting and the Luciferase Reporter Assay were used to evaluate the change of PTEN expression after lowered expression of miR-21 in gastric cancer cell lines. Real-time PCR analysis indicated that miR-21 exhibited higher expression in gastric cancer tissues compared to the adjacent non-tumor tissues. miR-21 expression was significantly associated with the degree of differentiation of the tumour tissues (P=0.004), as well as local invasion and lymph node metastasis (P<0.01). After transfection, pre-miR21 BGC-823 cells grew faster than the negative and control groups (P<0.01). The reduction in miR-21 expression demonstrated a remarkable effect on the biological behaviour of gastric cancer cells (P<0.05); the pre-miR-21-transfected cells healed more quickly compared to the control cells in the scratch healing assay, whereas the transwell test indicated that cell migration in vitro was notably inhibited with the downregulation of miR-21 (P<0.05). The western blot results and Luciferase Reporter Assay demonstrated that PTEN expression was remarkably increased after miR-21 inhibition (P<0.05). microRNA-21 expression was upregulated in gastric carcinoma tissues and was significantly associated with the degree of differentiation of tumour tissues, local invasion and lymph node metastasis. Overexpression of miR-21 promoted BGC-823 cell growth, invasion and cell migration in vitro, whereas downregulation of miR-21 exhibited a stronger inhibitory effect on the biological behaviour of gastric cancer cells; additionally, miR-21 inhibition may upregulate the PTEN expression level, which indicates that PTEN may be a target gene for gastric cancer initiation and development.
doi:10.3892/or.2012.1645
PMCID: PMC3583594  PMID: 22267008
gastric cancer; miR-21; biological behavior; PTEN
13.  Clinicopathological and prognostic implications of the miR-200 family in patients with epithelial ovarian cancer 
The aim of the present study was to investigate the association of the expression of members in the miR-200 family with clinicopathological characteristics and their impacts on overall survival in patients with epithelial ovarian cancer (EOC). Expression levels of members in the miR-200 family, including miR-200a, miR-200b, miR-200c, miR-141, and miR-429, were detected by using miRNA qRT-PCR and in situ hybridization. Associations of their expression with clinicopathological factors and overall survival were statistically evaluated. Among five members in the miR-200 family, the expression levels of miR-200a, miR-200b and miR-200c were significantly higher in EOC tissues than those in normal surface ovarian epithelium tissues, in line with the findings ofin situ hybridization analysis. In addition, tumors with high miR-200a and miR-200 bexpressionwere both more likely to have advanced stage (both P=0.006) and higher grade (P=0.01 and 0.02), whilehighmiR-200 cexpression was onlysignificantly associated with advanced stage disease (P=0.01). Moreover, univariate analysis showed that the patients with high miR-200a, miR-200b and miR-200c expression all correlated with shorter overall survival in EOC patients (all P<0.001). Multivariate statistical analysis further identified miR-200a, miR-200b and miR-200c asindependent prognostic factorsfor EOC (all P=0.01). In conclusion, these findings suggest that miR-200a, miR-200b and miR-200c overexpression may promote the aggressive tumor progression and be recognized as reliable markers to predict the survival in patients with EOCs. The three miRNAs could be attractive therapeutic targets in patients with advanced-stage EOCs.
PMCID: PMC4069884  PMID: 24966949
miR-200 family; clinicopathology; epithelial ovarian cancer; prognosis
14.  Identification of deregulated miRNAs and their targets in hepatitis B virus-associated hepatocellular carcinoma 
AIM: To identify the differentially expressed miRNAs and their targets in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC).
METHODS: Six hundred and sixty seven human miRNAs were quantitatively analyzed by Taqman low-density miRNA array (TLDA) in HBV-HCC tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the significant function and pathway of the differentially expressed miRNAs in HBV-HCC. TargetScan software was used to predict the targets of deregulated miRNAs. Western blotting and luciferase assay were performed to verify the targets of these miRNAs.
RESULTS: Ten up-regulated miRNAs (miR-217, miR-518b, miR-517c, miR-520g, miR-519a, miR-522, miR-518e, miR-525-3p, miR-512-3p, and miR-518a-3p) and 11 down-regulated miRNAs (miR-138, miR-214, miR-214#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-3p, miR-483-5p, miR-708 and miR-1275) were identified by Taqman miRNAs array and confirmed quantitatively by reverse transcription polymerase chain reaction in HCC and adjacent non-tumor tissues. GO and KEGG pathway analysis revealed that “regulation of actin cytoskeleton” and “pathway in cancer” are most likely to play critical roles in HCC tumorigenesis. MiR-519a and ribosomal protein S6 kinase polypeptide 3 (RPS6KA3) were predicted as the most significant candidates by miRNA-mRNA network. In addition, cyclin D3 (CCND3) and clathrin heavy chain (CHC), usually up-regulated in HCC tissues, were validated as the direct target of miR-138 and miR-199a-5p, respectively.
CONCLUSION: Our data suggest an importance of miR-138 and miR-199a-5p as well as their targets CCND3 and CHC in HCC tumorigenesis, and may provide more evidence for reliability of integrative bioinformatics analysis.
doi:10.3748/wjg.v18.i38.5442
PMCID: PMC3471114  PMID: 23082062
Hepatocellular carcinoma; miR-138; miR-199a-5p; Cyclin D3; Clathrin heavy chain; Bioinformatics; Taqman array
15.  miR-205 and miR-200c: Predictive Micro RNAs for Lymph Node Metastasis in Triple Negative Breast Cancer 
Journal of Breast Cancer  2014;17(2):143-148.
Purpose
We examined expression profiles of 16 micro RNAs (miRNAs) in triple negative breast cancers to identify their potential as biomarkers for lymph node metastasis.
Methods
The expression profiles of miR-9, miR-21, miR-30a, miR-30d, miR-31, miR-34a, miR-34c, miR-100, miR-122, miR-125b, miR-146a, miR-146b, miR-155, miR-181a, miR-200c, and miR-205 were examined by using real-time quantitative reverse transcription polymerase chain reaction in tumor samples and corresponding benign breast tissues. Their associations with histopathological features and prognostic parameters were assessed.
Results
When compared with the expression in benign breast tissues, seven of the miRNAs (miR-31, miR-205, miR-34a, miR-146a, miR-125b, miR-34c, and miR-181a) were downregulated more than 1.5-fold in tumor tissues, whereas, only miR-21 was found to be upregulated more than 1.5-fold in tumor tissues. Although miR-200c levels were decreased only 1.12-fold in tumor tissues, the reduced expressions of miR-200c and miR-205 were significantly associated with lymph node metastasis (p=0.021 and p=0.016, respectively).
Conclusion
Our results demonstrate that miR-205 and miR-200c expression levels may be useful in predicting lymph node metastasis in triple negative breast cancer patients.
doi:10.4048/jbc.2014.17.2.143
PMCID: PMC4090316  PMID: 25013435
Breast; Carcinoma; micro RNAs
16.  Upregulation of microRNA-196a and microRNA-196b cooperatively correlate with aggressive progression and unfavorable prognosis in patients with colorectal cancer 
Cancer Cell International  2014;14(1):128.
Background
Both microRNA (miR)-196a and miR-196b are implicated in normal cell differentiation, proliferation, and in tumorigenesis of various cancer types. Especially, miR-196a exerts a pro-oncogenic influence in colorectal cancer (CRC) cells and miR-196b expression is upregulated in CRC tissues. The aim of this study was to evaluate the associations of miR-196a and miR-196b dysregulation with clinicopathological characteristics and prognosis in patients with CRC.
Methods
Quantitative real time-PCR (qRT-PCR) was performed to detect the expression levels of miR-196a and miR-196b in 126 pairs of fresh tumor samples matched with adjacent colorectal mucosa obtained from 126 patients with CRC.
Results
miR-196a and miR-196b expression levels in CRC tissues were significantly higher than those in adjacent colorectal mucosa (both P < 0.002). Interestingly, the expression levels of miR-196a in CRC tissues were positively correlated with those of miR-196b. Then, high miR-196a expression and high miR-196b expression, alone or in combination, were all statistically linked to the presence of lymph node metastasis, the poor differentiation grade, and the advanced TNM stage of CRC. Moreover, overall and disease-free survivals of CRC patients with high miR-196a expression, high miR-196b expression and miR-196a-high/miR-196b-high expression tended to be shorter than the corresponding control groups (log-rank statistic, all P < 0.001). Furthermore, multivariate analysis indicated miR-196a and/or miR-196b expression as independent prognostic indicators for CRC patients (all P < 0.05).
Conclusions
Both miR-196a and miR-196b may be correlated with aggressive progression and unfavorable clinical outcome in CRC patients. Combined expression of miR-196a and miR-196b may be a promising biomarker in identifying a poor prognosis group of CRC.
doi:10.1186/s12935-014-0128-2
PMCID: PMC4269845  PMID: 25525411
Colorectal cancer; MicroRNA-196a; microRNA-196b; Clinicopathological characteristics; Overall survival; Disease free-survival
17.  Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker 
BMC Cancer  2014;14:80.
Background
Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with clinical parameters including survival and c) map miRNA-mRNA interactions.
Methods
Differences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n = 12, 9 and 9, respectively), validated by RT-qPCR (n = 35, 19 and 9, respectively), and evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to differentially expressed mRNAs identified previously.
Results
Differentially expressed miRNAs (n = 78) between HGSC, CCC and OSE were identified (FDR < 0.01%), of which 18 were validated (p < 0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in HGSC and CCC compared with OSE, whereas miR-383 was the most underexpressed. miR-205-5p and miR-200 members target epithelial-mesenchymal transition (EMT) regulators, apparently being important in tumor progression. miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with poor progression-free (p = 0.031) and overall (p = 0.026) survival in HGSC patients. Interacting miRNA and mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC.
Conclusions
Several miRNAs differentially expressed between HGSC, CCC and OSE have been identified, suggesting a carcinogenetic role for these miRNAs. miR-200 family members, targeting EMT drivers, were mostly overexpressed in both subgroups, among which miR-200c-3p was associated with survival in HGSC patients. A set of miRNAs differentiates CCC from HGSC, of which miR-509-3-5p and miR-509-5p are the strongest classifiers. Several interactions between miRNAs and mRNAs in HGSC were mapped.
doi:10.1186/1471-2407-14-80
PMCID: PMC3928323  PMID: 24512620
Ovarian carcinoma; MicroRNA; Microarray; Quantitative PCR; Survival
18.  MicroRNA signatures associate with pathogenesis and progression of osteosarcoma 
Cancer Research  2012;72(7):1865-1877.
Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a, miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy.
doi:10.1158/0008-5472.CAN-11-2663
PMCID: PMC3328547  PMID: 22350417
osteosarcoma; microRNA; chemotherapy; metastasis-related miRs; gene array
19.  The Cluster of miR-143 and miR-145 Affects the Risk for Esophageal Squamous Cell Carcinoma through Co-Regulating Fascin Homolog 1 
PLoS ONE  2012;7(3):e33987.
MicroRNAs (miRNAs), 18–24 nt non-coding RNAs, are thought to play important roles in cell proliferation, differentiation, apoptosis, and development. Recent studies suggest that some of the known microRNAs map to a single genomic locale within a single polycistronic transcript. But the roles of the cluster remain to be known. In order to understand the role and mechanism of a cluster of miR-143 and miR-145 in esophageal squamous cell carcinoma (ESCC), the association of mature miR-143 and miR-145 expression with the risk for esophageal cancer was evaluated in ESCC patients with a case-control study, and target protein regulated by mature miRNA was analyzed in ESCC cell lines with 3′UTR luciferase reporter assay. The expression levels of miR-143 and miR-145 were determined in 110 pairs of esophageal cancer tissues and adjacent normal tissues using real-time reverse transcription PCR. The relative expression of miR-143 and miR-145 were statistically different between cancer tissues and matched controls. The combined expression of miR-143 and miR-145 was significantly associated with the risk for esophageal cancer. Meanwhile, the reduced expression of two miRNAs in tumor patient was supposed to have a trend of lymph node metastases. The co-expression pattern of miR-143 and miR-145 was analyzed with Pearson correlation. It showed a significant correlation between these two miRNAs expression both in tissues and tumor cell lines. 3′UTR luciferase reporter assay indicated that Fascin Homolog 1 (FSCN1) could be co-regulated by miR-143 and miR-145. The protein level of FSCN1 showed no significant linear correlation with miR-143 and miR-145 expression in ESCC cell lines with Western blotting analysis. In conclusion, since miR-143 and miR-145 could regulate oncogenic FSCN1 and take part in the modulation of metastases, the result suggested the combination variable of miR-143 and miR-145 as a potential biomarker for earlier diagnosis and prognosis of esophageal cancer.
doi:10.1371/journal.pone.0033987
PMCID: PMC3311581  PMID: 22457808
20.  Validation of Expression Patterns for Nine miRNAs in 204 Lymph-Node Negative Breast Cancers 
PLoS ONE  2012;7(11):e48692.
Introduction
Although lymph node negative (LN-) breast cancer patients have a good 10-years survival (∼85%), most of them still receive adjuvant therapy, while only some benefit from this. More accurate prognostication of LN- breast cancer patient may reduce over- and under-treatment. Until now proliferation is the strongest prognostic factor for LN- breast cancer patients. The small molecule microRNA (miRNA) has opened a new window for prognostic markers, therapeutic targets and/or therapeutic components. Previously it has been shown that miR-18a/b, miR-25, miR-29c and miR-106b correlate to high proliferation.
Methods
The current study validates nine miRNAs (miR-18a/b miR-25, miR-29c, miR-106b, miR375, miR-424, miR-505 and let-7b) significantly correlated with established prognostic breast cancer biomarkers. Total RNA was isolated from 204 formaldehyde-fixed paraffin embedded (FFPE) LN- breast cancers and analyzed with quantitative real-time Polymerase Chain Reaction (qPCR). Independent T-test was used to detect significant correlation between miRNA expression level and the different clinicopathological features for breast cancer.
Results
Strong and significant associations were observed for high expression of miR-18a/b, miR-106b, miR-25 and miR-505 to high proliferation, oestrogen receptor negativity and cytokeratin 5/6 positivity. High expression of let-7b, miR-29c and miR-375 was detected in more differentiated tumours. Kaplan-Meier survival analysis showed that patients with high miR-106b expression had an 81% survival rate vs. 95% (P = 0.004) for patients with low expression.
Conclusion
High expression of miR-18a/b are strongly associated with basal-like breast cancer features, while miR-106b can identify a group with higher risk for developing distant metastases in the subgroup of Her2 negatives. Furthermore miR-106b can identify a group of patients with 100% survival within the otherwise considered high risk group of patients with high proliferation. Using miR-106b as a biomarker in conjunction to mitotic activity index could thereby possibly save 18% of the patients with high proliferation from overtreatment.
doi:10.1371/journal.pone.0048692
PMCID: PMC3492447  PMID: 23144930
21.  Prognostic Values of microRNAs in Colorectal Cancer 
Biomarker insights  2006;2:113-121.
The functions of non-coding microRNAs (miRNAs) in tumorigenesis are just beginning to emerge. Previous studies from our laboratory have identified a number of miRNAs that were deregulated in colon cancer cell lines due to the deletion of the p53 tumor suppressor gene. In this study, the in vivo significance of some of these miRNAs was further evaluated using colorectal clinical samples. Ten miRNAs (hsa-let-7b, hsa-let-7g, hsa-miR-15b, hsa-miR-181b, hsa-miR-191, hsa-miR-200c, hsa-miR-26a, hsa-miR-27a, hsa-miR-30a-5p and hsa-miR-30c) were evaluated for their potential prognostic value in colorectal cancer patients. Forty eight snap frozen clinical colorectal samples (24 colorectal cancer and 24 paired normal patient samples) with detailed clinical follow-up information were selected. The expression levels of 10 miRNAs were quantified via qRT-PCR analysis. The statistical significance of these markers for disease prognosis was evaluated using a two tailed paired Wilcoxon test. A Kaplan-Meier survival curve was generated followed by performing a Logrank test. Among the ten miRNAs, hsa-miR-15b (p = 0.0278), hsa-miR-181b (p = 0.0002), hsa-miR-191 (p = 0.0264) and hsa-miR-200c (p = 0.0017) were significantly over-expressed in tumors compared to normal colorectal samples. Kaplan-Meier survival analysis indicated that hsa-miR-200c was significantly associated with patient survival (p = 0.0122). The patients (n = 15) with higher hsa-miR-200c expression had a shorter survival time (median survival = 26 months) compared to patients (n = 9) with lower expression (median survival = 38 months). Sequencing analysis revealed that hsa-miR-181b (p = 0.0098) and hsa-miR-200c (p = 0.0322) expression were strongly associated with the mutation status of the p53 tumor suppressor gene. Some of these miRNAs may function as oncogenes due to their over-expression in tumors. hsa-miR-200c may be a potential novel prognostic factor in colorectal cancer.
PMCID: PMC2134920  PMID: 18079988
hsa-miR-200c; micro-RNA; prognosis; colorectal cancer
22.  Prognostic Values of microRNAs in Colorectal Cancer 
Biomarker Insights  2007;1:113-121.
The functions of non-coding microRNAs (miRNAs) in tumorigenesis are just beginning to emerge. Previous studies from our laboratory have identified a number of miRNAs that were deregulated in colon cancer cell lines due to the deletion of the p53 tumor suppressor gene. In this study, the in vivo significance of some of these miRNAs was further evaluated using colorectal clinical samples. Ten miRNAs (hsa-let-7b, hsa-let-7g, hsa-miR-15b, hsa-miR-181b, hsa-miR-191, hsa-miR-200c, hsa-miR-26a, hsa-miR-27a, hsa-miR-30a-5p and hsa-miR-30c) were evaluated for their potential prognostic value in colorectal cancer patients. Forty eight snap frozen clinical colorectal samples (24 colorectal cancer and 24 paired normal patient samples) with detailed clinical follow-up information were selected. The expression levels of 10 miRNAs were quantified via qRT-PCR analysis. The statistical significance of these markers for disease prognosis was evaluated using a two tailed paired Wilcoxon test. A Kaplan-Meier survival curve was generated followed by performing a Logrank test. Among the ten miRNAs, hsa-miR-15b (p = 0.0278), hsa-miR-181b (p = 0.0002), hsa-miR-191 (p = 0.0264) and hsa-miR-200c (p = 0.0017) were significantly over-expressed in tumors compared to normal colorectal samples. Kaplan-Meier survival analysis indicated that hsa-miR-200c was significantly associated with patient survival (p = 0.0122). The patients (n = 15) with higher hsa-miR-200c expression had a shorter survival time (median survival = 26 months) compared to patients (n = 9) with lower expression (median survival = 38 months). Sequencing analysis revealed that hsa-miR-181b (p = 0.0098) and hsa-miR-200c (p = 0.0322) expression were strongly associated with the mutation status of the p53 tumor suppressor gene. Some of these miRNAs may function as oncogenes due to their over-expression in tumors. hsa-miR-200c may be a potential novel prognostic factor in colorectal cancer.
PMCID: PMC2134920  PMID: 18079988
hsa-miR-200c; micro-RNA; prognosis; colorectal cancer
23.  miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: association with patient survival 
The dismal outcome of laryngeal squamous cell carcinoma (SCC) patients highlights the need for novel prognostic biomarkers. The involvement of microRNAs in cancer and their potential as biomarkers of diagnosis and prognosis are becoming increasingly appreciated. We sought to identify microRNAs that exhibit altered expression in laryngeal SCC and to determine whether microRNA (miRNA) expression is predictive of disease progression and/or patient survival. The expression of two miRNAs, miR-21 and miR-375, was evaluated using total RNA isolated from freshly-frozen primary tumors and non-cancerous laryngeal squamous epithelial tissues and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. We further analyzed the association between the expression of miRNAs and the clinicopathological features. A marked difference in the microRNA expression pattern was observed between tumors and non-cancerous tissue. MiR-21 and miR-375 were expressed at higher and lower levels, respectively, in the laryngeal SCC samples, compared to the normal samples (p < 0.01 and p < 0.001, respectively). There was no correlation between characteristics such as age, sex, clinical stage, and alcohol use, and the expression level of mir-21. The relative expression of mir-375 in laryngeal SCC was shown to be associated with localization of the tumor in these patients (p = 0.037) and with alcohol use (p < 0.05). Patients with high miR-21 or low miR-375 expression in tumor tissues had poorer prognoses compared to patients with lower miR-21 or higher miR-375 expression. Furthermore, the miR-21/miR-375 expression ratio was highly sensitive (0.94) and specific (0.94) for disease prediction. These data suggest that the pattern of microRNA expression in primary laryngeal SCC tissues is reflective of the disease status and that miR-21 and miR-375 expression levels, in particular, may serve as potential biomarkers with applications in the clinical setting.
PMCID: PMC4212934  PMID: 25360224
Laryngeal squamous cell carcinoma; microRNA; biomarker; prognosis
24.  Downregulation of serum miR-17 and miR-106b levels in gastric cancer and benign gastric diseases 
Altered microRNA (miRNA) associated with gastric cancer (GC) development and miR-17 and miR-106b were differentially expressed in GC tissues. This study detected serum levels of miR-17 and miR-106b expression in GC, benign gastric disease (BGD) and healthy controls to assess them as tumor markers for GC. Serum samples from 40 GC, 32 BGD (10 gastric ulcer, 14 gastric polyps, and 8 gastric ulcer with polyps) and 36 healthy individuals were subjected to quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of miR-17 and miR-106b expression. The data showed that the serum levels of miR-17 and miR-106b were significantly reduced in healthy individuals and BGD patients compared to GC patients. There was a significant association of miR-17 and miR-106b expression with age, but not with other clinicopathological features, such as gender, tumor differentiation, stage and lymphatic metastasis. Further analysis showed that, in discriminating GC patients from healthy controls, miR-17 could yield a receiver-operating characteristic (ROC) area under the curve (AUC) of 0.879 with 80.6% sensitivity and 87.5% specificity and miR-106b could yield an AUC of 0.856 with 75.0% sensitivity and 92.5% specificity. The combined AUC of miR-17 and miR-106b was 0.913 with 83.3% sensitivity and 87.5% specificity. Collectively, these data suggest that detection of serum miR-17 and miR-106b levels should be further evaluated as novel non-invasive biomarkers in early GC detection and surveillance of disease progression.
doi:10.3978/j.issn.1000-9604.2014.12.03
PMCID: PMC4279196  PMID: 25561770
miR-17; miR-106b; gastric cancer (GC); benign gastric disease (BGD); biomarker
25.  Comparative Analysis Reveals Dynamic Changes in miRNAs and Their Targets and Expression during Somatic Embryogenesis in Longan (Dimocarpus longan Lour.) 
PLoS ONE  2013;8(4):e60337.
Somatic embryogenesis (SE), which resembles zygotic embryogenesis, is an essential component of the process of plant cell differentiation and embryo development. Although microRNAs (miRNAs) are important regulators of many plant develop- mental processes, their roles in SE have not been thoroughly investigated. In this study, we used deep-sequencing, computational, and qPCR methods to identify, profile, and describe conserved and novel miRNAs involved in longan (Dimocarpus longan) SE. A total of 643 conserved and 29 novel miRNAs (including star strands) from more than 169 miRNA families were identified in longan embryogenic tissue using Solexa sequencing. By combining computational and degradome sequencing approaches, we were able to predict 2063 targets of 272 miRNAs and verify 862 targets of 181 miRNAs. Target annotation revealed that the putative targets were involved in a broad variety of biological processes, including plant metabolism, signal transduction, and stimulus response. Analysis of stage- and tissue-specific expressions of 20 conserved and 4 novel miRNAs indicated their possible roles in longan SE. These miRNAs were dlo-miR156 family members and dlo-miR166c* associated with early embryonic culture developmental stages; dlo-miR26, dlo-miR160a, and families dlo-miR159, dlo-miR390, and dlo-miR398b related to heart-shaped and torpedo- shaped embryo formation; dlo-miR4a, dlo-miR24, dlo-miR167a, dlo-miR168a*, dlo-miR397a, dlo-miR398b.1, dlo-miR398b.2, dlo-miR808 and dlo-miR5077 involved in cotyledonary embryonic development; and dlo-miR17 and dlo-miR2089*-1 that have regulatory roles during longan SE. In addition, dlo-miR167a, dlo-miR808, and dlo-miR5077 may be required for mature embryo formation. This study is the first reported investigation of longan SE involving large-scale cloning, characterization, and expression profiling of miRNAs and their targets. The reported results contribute to our knowledge of somatic embryo miRNAs and provide insights into miRNA biogenesis and expression in plant somatic embryo development.
doi:10.1371/journal.pone.0060337
PMCID: PMC3623967  PMID: 23593197

Results 1-25 (1198748)