Search tips
Search criteria

Results 1-25 (954861)

Clipboard (0)

Related Articles

1.  Enterovirus 71 Protease 2Apro Targets MAVS to Inhibit Anti-Viral Type I Interferon Responses 
PLoS Pathogens  2013;9(3):e1003231.
Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease (HFMD). Its pathogenicity is not fully understood, but innate immune evasion is likely a key factor. Strategies to circumvent the initiation and effector phases of anti-viral innate immunity are well known; less well known is whether EV71 evades the signal transduction phase regulated by a sophisticated interplay of cellular and viral proteins. Here, we show that EV71 inhibits anti-viral type I interferon (IFN) responses by targeting the mitochondrial anti-viral signaling (MAVS) protein—a unique adaptor molecule activated upon retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling—upstream of type I interferon production. MAVS was cleaved and released from mitochondria during EV71 infection. An in vitro cleavage assay demonstrated that the viral 2A protease (2Apro), but not the mutant 2Apro (2Apro-110) containing an inactivated catalytic site, cleaved MAVS. The Protease-Glo assay revealed that MAVS was cleaved at 3 residues between the proline-rich and transmembrane domains, and the resulting fragmentation effectively inactivated downstream signaling. In addition to MAVS cleavage, we found that EV71 infection also induced morphologic and functional changes to the mitochondria. The EV71 structural protein VP1 was detected on purified mitochondria, suggesting not only a novel role for mitochondria in the EV71 replication cycle but also an explanation of how EV71-derived 2Apro could approach MAVS. Taken together, our findings reveal a novel strategy employed by EV71 to escape host anti-viral innate immunity that complements the known EV71-mediated immune-evasion mechanisms.
Author Summary
Enterovirus 71 (EV71) is the causative pathogen of hand, foot, and mouth disease (HFMD). Since the 2008 outbreak of HFMD in Fuyang, Anhui province, China, HFMD has been a severe public health concern affecting children. The major obstacle hindering HFMD prevention and control efforts is the lack of targeted anti-viral treatments and preventive vaccines due to the poorly understood pathogenic mechanisms underlying EV71. Viral evasion of host innate immunity is thought to be a key factor in viral pathogenicity, and many viruses have evolved diverse antagonistic mechanisms during virus-host co-evolution. Here, we show that EV71 has evolved an effective mechanism to inhibit the signal transduction pathway leading to the production of type I interferon, which plays a central role in anti-viral innate immunity. This inhibition is carried out by an EV71-encoded 2A protease (2Apro) that cleaves MAVS—an adaptor molecule critical in the signaling pathway activated by the viral recognition receptors RIG-I and MDA-5—to escape host innate immunity. These findings provide new insights to understand EV71 pathogenesis.
PMCID: PMC3605153  PMID: 23555247
2.  Uridine Composition of the Poly-U/UC Tract of HCV RNA Defines Non-Self Recognition by RIG-I 
PLoS Pathogens  2012;8(8):e1002839.
Viral infection of mammalian cells triggers the innate immune response through non-self recognition of pathogen associated molecular patterns (PAMPs) in viral nucleic acid. Accurate PAMP discrimination is essential to avoid self recognition that can generate autoimmunity, and therefore should be facilitated by the presence of multiple motifs in a PAMP that mark it as non-self. Hepatitis C virus (HCV) RNA is recognized as non-self by RIG-I through the presence of a 5′-triphosphate (5′-ppp) on the viral RNA in association with a 3′ poly-U/UC tract. Here we define the HCV PAMP and the criteria for RIG-I non-self discrimination of HCV by examining the RNA structure-function attributes that impart PAMP function to the poly-U/UC tract. We found that the 34 nucleotide poly-uridine “core” of this sequence tract was essential for RIG-I activation, and that interspersed ribocytosine nucleotides between poly-U sequences in the RNA were required to achieve optimal RIG-I signal induction. 5′-ppp poly-U/UC RNA variants that stimulated strong RIG-I activation efficiently bound purified RIG-I protein in vitro, and RNA interaction with both the repressor domain and helicase domain of RIG-I was required to activate signaling. When appended to 5′-ppp RNA that lacks PAMP activity, the poly-U/UC U-core sequence conferred non-self recognition of the RNA and innate immune signaling by RIG-I. Importantly, HCV poly-U/UC RNA variants that strongly activated RIG-I signaling triggered potent anti-HCV responses in vitro and hepatic innate immune responses in vivo using a mouse model of PAMP signaling. These studies define a multi-motif PAMP signature of non-self recognition by RIG-I that incorporates a 5′-ppp with poly-uridine sequence composition and length. This HCV PAMP motif drives potent RIG-I signaling to induce the innate immune response to infection. Our studies define a basis of non-self discrimination by RIG-I and offer insights into the antiviral therapeutic potential of targeted RIG-I signaling activation.
Author Summary
Pathogen recognition receptors (PRRs) are critical components of the innate immune response to viral pathogens, and function in the host to recognize pathogen-associated molecular patterns (PAMPs) in viral proteins or nucleic acids. Retinoic acid-inducible gene I (RIG-I) is a cytoplasmic PRR that senses viral RNA inside an infected cell. RIG-I recognizes hepatitis C virus (HCV) RNA as non-self through the presence of both a 5′-triphosphate (5′-ppp) and a 3′ poly-U/UC tract within the viral RNA. Here we examined the RNA structure-function attributes that define the HCV poly-U/UC tract as non-self to RIG-I, including nucleotide composition. We found that the 34 nucleotide poly-uridine “core” (U-core) within the HCV poly-U/UC tract RNA was required for non-self recognition by RIG-I, and interspersed ribocytosine nucleotides were also important to induce optimal RIG-I signaling. RIG-I/RNA binding studies revealed that RIG-I formed weaker interactions with HCV RNAs lacking poly-U sequences, and RNA interaction with multiple domains of RIG-I was required to activate signaling. Finally, RIG-I recognition of the U-core within the poly-U/UC tract activated anti-HCV responses in vitro and hepatic innate immune responses in vivo. Our studies identify long poly-uridine sequences with interspersed ribocytosines as an HCV PAMP motif that drives optimal RIG-I signaling.
PMCID: PMC3410852  PMID: 22912574
3.  Transcriptional Responses of Leptospira interrogans to Host Innate Immunity: Significant Changes in Metabolism, Oxygen Tolerance, and Outer Membrane 
Leptospira interrogans is the major causative agent of leptospirosis. Phagocytosis plays important roles in the innate immune responses to L. interrogans infection, and L. interrogans can evade the killing of phagocytes. However, little is known about the adaptation of L. interrogans during this process.
Methodology/Principal Findings
To better understand the interaction of pathogenic Leptospira and innate immunity, we employed microarray and comparative genomics analyzing the responses of L. interrogans to macrophage-derived cells. During this process, L. interrogans altered expressions of many genes involved in carbohydrate and lipid metabolism, energy production, signal transduction, transcription and translation, oxygen tolerance, and outer membrane proteins. Among them, the catalase gene expression was significantly up-regulated, suggesting it may contribute to resisting the oxidative pressure of the macrophages. The expressions of several major outer membrane protein (OMP) genes (e.g., ompL1, lipL32, lipL41, lipL48 and ompL47) were dramatically down-regulated (10–50 folds), consistent with previous observations that the major OMPs are differentially regulated in vivo. The persistent down-regulations of these major OMPs were validated by immunoblotting. Furthermore, to gain initial insight into the gene regulation mechanisms in L. interrogans, we re-defined the transcription factors (TFs) in the genome and identified the major OmpR TF gene (LB333) that is concurrently regulated with the major OMP genes, suggesting a potential role of LB333 in OMPs regulation.
This is the first report on global responses of pathogenic Leptospira to innate immunity, which revealed that the down-regulation of the major OMPs may be an immune evasion strategy of L. interrogans, and a putative TF may be involved in governing these down-regulations. Alterations of the leptospiral OMPs up interaction with host antigen-presenting cells (APCs) provide critical information for selection of vaccine candidates. In addition, genome-wide annotation and comparative analysis of TFs set a foundation for further studying regulatory networks in Leptospira spp.
Author Summary
Leptospirosis is an important tropical disease around the world, particularly in humid tropical and subtropical countries. As a major pathogen of this disease, Leptospira interrogans can be shed from the urine of reservoir hosts, survive in soil and water, and infect humans through broken skin or mucous membranes. Recently, host adaptability and immune evasion of L. interrogans to host innate immunity was partially elucidated in infection or animal models. A better understanding of the molecular mechanisms of L. interrogans in response to host innate immunity is required to learn the nature of early leptospirosis. This study focused on the transcriptome of L. interrogans during host immune cells interaction. Significant changes in energy metabolism, oxygen tolerance and outer membrane protein profile were identified as potential immune evasion strategies by pathogenic Leptospira during the early stage of infection. The major outer membrane proteins (OMPs) of L. interrogans may be regulated by the major OmpR specific transcription factor (LB333). These results provide a foundation for further studying the pathogenesis of leptospirosis, as well as identifying gene regulatory networks in Leptospira spp.
PMCID: PMC2964297  PMID: 21049008
4.  Vibrio cholerae Proteome-Wide Screen for Immunostimulatory Proteins Identifies Phosphatidylserine Decarboxylase as a Novel Toll-Like Receptor 4 Agonist 
PLoS Pathogens  2009;5(8):e1000556.
Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called “EPSIA”, Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD) as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFα and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced ∼40% and ∼15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant.
Author Summary
Innate immune responses are the first line of defense and involve the early recognition of pathogenic microorganisms. Furthermore, these early innate responses can help shape and influence the development of more specific adaptive immune responses. One way that innate immunity is triggered is by activation of TLRs, or Toll-like Receptors. TLRs recognize a wide spectrum of microbes by binding to pathogen-associated molecular patterns (PAMPs), which are conserved microbial products. Here, we have used a high-throughput method to understand more about how a pathogen can trigger early innate immune responses and also how these early responses to infection can influence the adaptive, more specific, immune response. This technique can also be utilized for adjuvant discovery which is important in vaccine development since different adjuvants can induce or enhance different kinds of immune responses to a particular antigen. Using this method, we identified a novel bacterial protein that activates a TLR and further characterized its role as an adjuvant. Identifying the TLRs, their ligands, and the signal transduction events that they initiate has provided insight into our understanding of how the immune response to infection begins, and how these factors also collectively influence the adaptive immune response.
PMCID: PMC2722020  PMID: 19696891
5.  The Coxsackievirus B 3Cpro Protease Cleaves MAVS and TRIF to Attenuate Host Type I Interferon and Apoptotic Signaling 
PLoS Pathogens  2011;7(3):e1001311.
The host innate immune response to viral infections often involves the activation of parallel pattern recognition receptor (PRR) pathways that converge on the induction of type I interferons (IFNs). Several viruses have evolved sophisticated mechanisms to attenuate antiviral host signaling by directly interfering with the activation and/or downstream signaling events associated with PRR signal propagation. Here we show that the 3Cpro cysteine protease of coxsackievirus B3 (CVB3) cleaves the innate immune adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor domain-containing adaptor inducing interferon-beta (TRIF) as a mechanism to escape host immunity. We found that MAVS and TRIF were cleaved in CVB3-infected cells in culture. CVB3-induced cleavage of MAVS and TRIF required the cysteine protease activity of 3Cpro, occurred at specific sites and within specialized domains of each molecule, and inhibited both the type I IFN and apoptotic signaling downstream of these adaptors. 3Cpro-mediated MAVS cleavage occurred within its proline-rich region, led to its relocalization from the mitochondrial membrane, and ablated its downstream signaling. We further show that 3Cpro cleaves both the N- and C-terminal domains of TRIF and localizes with TRIF to signalosome complexes within the cytoplasm. Taken together, these data show that CVB3 has evolved a mechanism to suppress host antiviral signal propagation by directly cleaving two key adaptor molecules associated with innate immune recognition.
Author Summary
Mammalian cells utilize a variety of defenses to protect themselves from microbial pathogens. These defenses are initiated by families of receptors termed pattern recognition receptors (PRRs) and converge on the induction of molecules that function to suppress microbial infections. PRRs respond to essential components of microorganisms that are broadly expressed within classes of pathogens. The relative non-specificity of this detection thus allows for a rapid antimicrobial response to a variety of microorganisms. Coxsackievirus B3 (CVB3), a member of the enterovirus genus, is associated with a number of diverse syndromes including meningitis, febrile illness, diabetes, and is commonly associated with virus-induced heart disease in adults and children. Despite its significant impact on human health, there are no therapeutic interventions to treat CVB3 infections. Here we show that CVB3 has evolved an effective mechanism to suppress PRR signal propagation by utilizing a virally-encoded protein, termed 3Cpro, to directly degrade molecules that function downstream of PRR signaling. By targeting these molecules, CVB3 can evade host detection and escape antiviral defenses normally induced by mammalian cells. These findings will lead to a better understanding of the mechanisms employed by CVB3 to suppress host antiviral signaling and could lead to the development of therapeutic interventions aimed at modulating CVB3 pathogenesis.
PMCID: PMC3059221  PMID: 21436888
6.  Post-Translational Control of IL-1β via the Human Papillomavirus Type 16 E6 Oncoprotein: A Novel Mechanism of Innate Immune Escape Mediated by the E3-Ubiquitin Ligase E6-AP and p53 
PLoS Pathogens  2013;9(8):e1003536.
Infections with high-risk human papillomaviruses (HPVs) are causally involved in the development of anogenital cancer. HPVs apparently evade the innate immune response of their host cells by dysregulating immunomodulatory factors such as cytokines and chemokines, thereby creating a microenvironment that favors malignancy. One central key player in the immune surveillance interactome is interleukin-1 beta (IL-1β) which not only mediates inflammation, but also links innate and adaptive immunity. Because of its pleiotropic physiological effects, IL-1β production is tightly controlled on transcriptional, post-translational and secretory levels. Here, we describe a novel mechanism how the high-risk HPV16 E6 oncoprotein abrogates IL-1β processing and secretion in a NALP3 inflammasome-independent manner. We analyzed IL-1β regulation in immortalized keratinocytes that harbor the HPV16 E6 and/or E7 oncogenes as well as HPV-positive cervical tumor cells. While in primary and in E7-immortalized human keratinocytes the secretion of IL-1β was highly inducible upon inflammasome activation, E6-positive cells did not respond. Western blot analyses revealed a strong reduction of basal intracellular levels of pro-IL-1β that was independent of dysregulation of the NALP3 inflammasome, autophagy or lysosomal activity. Instead, we demonstrate that pro-IL-1β is degraded in a proteasome-dependent manner in E6-positive cells which is mediated via the ubiquitin ligase E6-AP and p53. Conversely, in E6- and E6/E7-immortalized cells pro-IL-1β levels were restored by siRNA knock-down of E6-AP and simultaneous recovery of functional p53. In the context of HPV-induced carcinogenesis, these data suggest a novel post-translational mechanism of pro-IL-1β regulation which ultimately inhibits the secretion of IL-1β in virus-infected keratinocytes. The clinical relevance of our results was further confirmed in HPV-positive tissue samples, where a gradual decrease of IL-1β towards cervical cancer could be discerned. Hence, attenuation of IL-1β by the HPV16 E6 oncoprotein in immortalized cells is apparently a crucial step in viral immune evasion and initiation of malignancy.
Author Summary
Persistently high-risk HPV-infected individuals have an increased risk to develop anogenital cancer. HPV encodes the viral proteins E6 and E7 that interact with and induce the degradation of the cell cycle regulators p53 and pRb, respectively, priming immortalized keratinocytes towards malignant transformation. In early antiviral immune response, IL-1β is an important factor for the initiation of inflammation and activation of immune cells such as macrophages and T cells. Our study describes a post-translationally controlled pathway where E6 mediates proteasomal degradation of IL-1β in HPV16-immortalized human keratinocytes. This process depends on the cellular ubiquitin ligase E6-AP and p53 highlighting a novel molecular mechanism of a virus-host interaction that is critical for evading innate immune defense. IL-1β dysregulation is also found in tissue sections which represent different stages of virus-induced carcinogenesis, underlining the clinical relevance of our findings.
PMCID: PMC3731255  PMID: 23935506
7.  Viral Pathogen-Associated Molecular Patterns Regulate Blood-Brain Barrier Integrity via Competing Innate Cytokine Signals 
mBio  2014;5(5):e01476-14.
Pattern recognition receptor (PRR) detection of pathogen-associated molecular patterns (PAMPs), such as viral RNA, drives innate immune responses against West Nile virus (WNV), an emerging neurotropic pathogen. Here we demonstrate that WNV PAMPs orchestrate endothelial responses to WNV via competing innate immune cytokine signals at the blood-brain barrier (BBB), a multicellular interface with highly specialized brain endothelial cells that normally prevents pathogen entry. While Th1 cytokines increase the permeability of endothelial barriers, type I interferon (IFN) promoted and stabilized BBB function. Induction of innate cytokines by pattern recognition pathways directly regulated BBB permeability and tight junction formation via balanced activation of the small GTPases Rac1 and RhoA, which in turn regulated the transendothelial trafficking of WNV. In vivo, mice with attenuated type I IFN signaling or IFN induction (Ifnar−/− Irf7−/−) exhibited enhanced BBB permeability and tight junction dysregulation after WNV infection. Together, these data provide new insight into host-pathogen interactions at the BBB during neurotropic viral infection.
West Nile virus (WNV) is an emerging pathogen capable of infecting the central nervous system (CNS), causing fatal encephalitis. However, the mechanisms that control the ability of WNV to cross the blood-brain barrier (BBB) and access the CNS are unclear. In this study, we show that detection of WNV by host tissues induces innate immune cytokine expression at the BBB, regulating BBB structure and function and impacting transendothelial trafficking of WNV. This regulatory effect is shown to happen rapidly following exposure to virus, to occur independently of viral replication within BBB cells, and to require the signaling of cytoskeletal regulatory Rho GTPases. These results provide new understanding of host-pathogen interactions at the BBB during viral encephalitis.
PMCID: PMC4173776  PMID: 25161189
8.  RIG-I Like Receptors and Their Signaling Crosstalk in the Regulation of Antiviral Immunity 
Current opinion in virology  2011;1(3):167-176.
During virus infection, multiple immune signaling pathways are triggered, both within the host cell and bystander cells of an infected tissue. These pathways act in concert to mediate innate antiviral immunity and to initiate the inflammatory response against infection. The RIG-I-like receptor (RLR) family of pattern recognition receptors (PRRs) is a group of cytosolic RNA helicase proteins that can identify viral RNA as nonself via binding to pathogen associated molecular patter (PAMP) motifs within RNA ligands that accumulate during virus infection. This interaction then leads to triggering of an innate antiviral response within the infected cells through RLR induction of downstream effector molecules such as type I interferon (IFN) and other pro-inflammatory cytokines that serve to induce antiviral and inflammatory gene expression within the local tissue. Cellular regulation of RLR signaling is a critical process that can direct the outcome of infection and is essential for governance of the overall immune response and avoidance of immune toxicity. Mechanisms of positive and negative regulation of RLR signaling have been identified that include signaling crosstalk between RLR pathways and Nuclear Oligomerization Domain (NOD)-Like Receptor (NLR) pathways and Caspase networks. Furthermore, many viruses have evolved mechanisms to target these pathways to promote enhanced replication and spread within the host. These virus-host interactions therefore carry important consequences for host immunity and viral pathogenesis. Understanding the pivotal role of RLRs in immune regulation and signaling crosstalk in antiviral immunity may provide new insights into therapeutic strategies for the control of virus infection and immunity.
PMCID: PMC3177754  PMID: 21949557
RIG-I-like receptors; immunity (author to check)
9.  COX5B Regulates MAVS-mediated Antiviral Signaling through Interaction with ATG5 and Repressing ROS Production 
PLoS Pathogens  2012;8(12):e1003086.
Innate antiviral immunity is the first line of the host defense system that rapidly detects invading viruses. Mitochondria function as platforms for innate antiviral signal transduction in mammals through the adaptor protein, MAVS. Excessive activation of MAVS-mediated antiviral signaling leads to dysfunction of mitochondria and cell apoptosis that likely causes the pathogenesis of autoimmunity. However, the mechanism of how MAVS is regulated at mitochondria remains unknown. Here we show that the Cytochrome c Oxidase (CcO) complex subunit COX5B physically interacts with MAVS and negatively regulates the MAVS-mediated antiviral pathway. Mechanistically, we find that while activation of MAVS leads to increased ROS production and COX5B expression, COX5B down-regulated MAVS signaling by repressing ROS production. Importantly, our study reveals that COX5B coordinates with the autophagy pathway to control MAVS aggregation, thereby balancing the antiviral signaling activity. Thus, our study provides novel insights into the link between mitochondrial electron transport system and the autophagy pathway in regulating innate antiviral immunity.
Author Summary
Pattern recognition receptors are vital to innate immunity. In the antiviral innate immunity, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), such as RIG-I and MDA5, sense viral RNAs through their C-terminal helicase domains, then initiate the antiviral response through interaction with the essential adaptor protein MAVS, which is located in mitochondrial outer membrane. Although cumulative studies have showed that mitochondria-associated MAVS plays an important role in antiviral signaling, much remains unknown about the mechanism of MAVS activity related to mitochondrial membrane localization. In this article we demonstrate that the CcO complex subunit COX5B negatively regulates the MAVS-mediated antiviral pathway through interaction with MAVS. At the mechanistic level, we show that COX5B inhibits MAVS-mediated antiviral pathway by suppressing ROS production, and coordinating with the autophagy pathway to control MAVS aggregation. Our data support a notion that mitochondrial electron transport system coordinates with the autophagy pathway to regulate MAVS-mediated signaling for a tight control of innate antiviral immunity.
PMCID: PMC3534373  PMID: 23308066
10.  Human Cytomegalovirus Modulates Monocyte-Mediated Innate Immune Responses during Short-Term Experimental Latency In Vitro 
Journal of Virology  2014;88(16):9391-9405.
The ability of human cytomegalovirus (HCMV) to establish lifelong persistence and reactivate from latency is critical to its success as a pathogen. Here we describe a short-term in vitro model representing the events surrounding HCMV latency and reactivation in circulating peripheral blood monocytes that was developed in order to study the immunological consequence of latent virus carriage. Infection of human CD14+ monocytes by HCMV resulted in the immediate establishment of latency, as evidenced by the absence of particular lytic gene expression, the transcription of latency-associated mRNAs, and the maintenance of viral genomes. Latent HCMV induced cellular differentiation to a macrophage lineage, causing production of selective proinflammatory cytokines and myeloid-cell chemoattractants that most likely play a role in virus dissemination in the host. Analysis of global cellular gene expression revealed activation of innate immune responses and the modulation of protein and lipid synthesis to accommodate latent HCMV infection. Remarkably, monocytes harboring latent virus exhibited selective responses to secondary stimuli known to induce an antiviral state. Furthermore, when challenged with type I and II interferon, latently infected cells demonstrated a blockade of signaling at the level of STAT1 phosphorylation. The data demonstrate that HCMV reprograms specific cellular pathways in monocytes, most notably innate immune responses, which may play a role in the establishment of, maintenance of, and reactivation from latency. The modulation of innate immune responses is likely a viral evasion strategy contributing to viral dissemination and pathogenesis in the host.
IMPORTANCE HCMV has the ability to establish a lifelong infection within the host, a phenomenon termed latency. We have established a short-term model system in human peripheral blood monocytes to study the immunological relevance of latent virus carriage. Infection of CD14+ monocytes by HCMV results in the generation of latency-specific transcripts, maintenance of viral genomes, and the capacity to reenter the lytic cycle. During short-term latency in monocytes the virus initiates a program of differentiation to inflammatory macrophages that coincides with the modulation of cytokine secretion and specific cellular processes. HCMV-infected monocytes are hindered in their capacity to exert normal immunoprotective mechanisms. Additionally, latent virus disrupts type I and II interferon signaling at the level of STAT1 phosphorylation. This in vitro model system can significantly contribute to our understanding of the molecular and inflammatory factors that initiate HCMV reactivation in the host and allow the development of strategies to eradicate virus persistence.
PMCID: PMC4136239  PMID: 24920803
11.  Vpu Mediates Depletion of Interferon Regulatory Factor 3 during HIV Infection by a Lysosome-Dependent Mechanism 
Journal of Virology  2012;86(16):8367-8374.
HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV.
PMCID: PMC3421752  PMID: 22593165
12.  Influenza A Virus-Induced Degradation of Eukaryotic Translation Initiation Factor 4B Contributes to Viral Replication by Suppressing IFITM3 Protein Expression 
Journal of Virology  2014;88(15):8375-8385.
Although alteration in host cellular translation machinery occurs in virus-infected cells, the role of such alteration and the precise pathogenic processes are not well understood. Influenza A virus (IAV) infection shuts off host cell gene expression at transcriptional and translational levels. Here, we found that the protein level of eukaryotic translation initiation factor 4B (eIF4B), an integral component of the translation initiation apparatus, was dramatically reduced in A549 cells as well as in the lung, spleen, and thymus of mice infected with IAV. The decrease in eIF4B level was attributed to lysosomal degradation of eIF4B, which was induced by viral NS1 protein. Silencing eIF4B expression in A549 cells significantly promoted IAV replication, and conversely, overexpression of eIF4B markedly inhibited the viral replication. Importantly, we observed that eIF4B knockdown transgenic mice were more susceptible to IAV infection, exhibiting faster weight loss, shorter survival time, and more-severe organ damage. Furthermore, we demonstrated that eIF4B regulated the expression of interferon-induced transmembrane protein 3 (IFITM3), a critical protein involved in immune defense against a variety of RNA viruses, including influenza virus. Taken together, our findings reveal that eIF4B plays an important role in host defense against IAV infection at least by regulating the expression of IFITM3, which restricts viral entry and thereby blocks early stages of viral production. These data also indicate that influenza virus has evolved a strategy to overcome host innate immunity by downregulating eIF4B protein.
IMPORTANCE Influenza A virus (IAV) infection stimulates the host innate immune system, in part, by inducing interferons (IFNs). Secreted IFNs activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, leading to elevated transcription of a large group of IFN-stimulated genes that have antiviral function. To circumvent the host innate immune response, influenza virus has evolved multiple strategies for suppressing the production of IFNs. Here, we show that IAV infection induces lysosomal degradation of eIF4B protein; and eIF4B inhibits IAV replication by upregulating expression of interferon-induced transmembrane protein 3 (IFITM3), a key protein that protects the host from virus infection. Our finding illustrates a critical role of eIF4B in the host innate immune response and provides novel insights into the complex mechanisms by which influenza virus interacts with its host.
PMCID: PMC4135930  PMID: 24829357
13.  Recognition of viruses by cytoplasmic sensors 
Current opinion in immunology  2010;22(1):41-47.
Summary of recent advances
The immune response to virus infection is initiated when pathogen recognition receptors (PRRs) of the host cell recognize specific non-self motifs within viral products to trigger intracellular signaling events that induce innate immunity, the front line of defense against microbial infection. The replication program of all viruses includes a cytosolic phase of genome amplification and/or mRNA metabolism and viral protein expression. Cytosolic recognition of viral infection by specific PRRs takes advantage of the dependence of viruses on the cytosolic component of their replication programs. Such PRR-PAMP interactions lead to PRR-dependent non-self recognition and the downstream induction of type I interferons and proinflammatory cytokines. These factors serve to induce innate immune programs and drive the maturation of adaptive immunity and inflammation for the control of infection. Recent studies have focused on identifying the particular viral ligands recognized as non-self by cytosolic PRRs, and on defining the nature of the PRRs and their signaling pathways involved in immunity. The RIG-I-like receptors, RIG-I and MDA5, have been defined as essential PRRs for host detection of a variety of RNA viruses. Novel PRRs and their signaling pathways involved in detecting DNA viruses through non-self recognition of viral DNA are also being elucidated. Moreover, studies to identify the PRRs and signaling factors of the host cell that mediate inflammatory signaling through inflammasome activation following virus infection are currently underway and have already revealed specific NOD-like receptors (NLRs) as inflammatory triggers. This review summarizes recent progress and current areas of focus in pathogen recognition and immune triggering by cytosolic PRRs.
PMCID: PMC3172156  PMID: 20061127
14.  Viral evasion mechanisms of early antiviral responses involving regulation of ubiquitin pathways 
Trends in microbiology  2013;21(8):421-429.
Early innate and cell-intrinsic responses are essential to protect host cells against pathogens. In turn, viruses have developed sophisticated mechanisms to establish productive infections, counteracting the host innate immune responses. Increasing evidence indicates that these antiviral factors may have a dual role by directly inhibiting viral replication, as well as by sensing and transmitting signals to induce antiviral cytokines. Recent studies have pointed at new, unappreciated mechanisms of viral evasion of host innate protective responses including manipulating the host ubiquitin system. Viral inhibition of antiviral factors by ubiquitin-dependent degradation is emerging as critical evasion mechanism of the antiviral response. In addition, recent studies have uncovered new mechanisms by which viral encoded proteins inhibit ubiquitin and ubiquitin-like modification of host proteins involved innate immune signaling pathways. Here we discuss recent findings and novel strategies that viruses have developed to counteract these early innate antiviral defenses.
PMCID: PMC3740364  PMID: 23850008
Antiviral; Evasion of Innate immunity; Restriction Factors; Ubiquitin System
15.  IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity 
PLoS Pathogens  2010;6(2):e1000757.
The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.
Author Summary
West Nile virus (WNV) is a mosquito-transmitted RNA virus that has emerged in the Western hemisphere and is now the leading cause of arboviral encephalitis in the United States. However, the virus/host interface that controls WNV pathogenesis is not well understood. Previous studies have established that the innate immune response and interferon (IFN) defenses are essential for controlling virus replication and dissemination. In this study, we assessed the importance of the RIG-I like receptor (RLR) signaling pathway in WNV pathogenesis through analysis of mice lacking IPS-1, the central adaptor molecule of RLR signaling. Our studies revealed that IPS-1 is essential for protection against WNV infection and that it regulates processes that control virus replication and triggering of innate immune defenses. We found that IPS-1 plays an important role in establishing adaptive immunity through an innate/adaptive interface that elicits effective antibody responses and controls the expansion of regulatory T cells. Thus, RLRs are essential for pathogen recognition of WNV infection and their signaling programs help orchestrate immune response maturation, regulation of inflammation, and immune homeostasis that define the outcome of WNV infection.
PMCID: PMC2816698  PMID: 20140199
16.  Identification of Host Cytosolic Sensors and Bacterial Factors Regulating the Type I Interferon Response to Legionella pneumophila 
PLoS Pathogens  2009;5(11):e1000665.
Legionella pneumophila is a gram-negative bacterial pathogen that replicates in host macrophages and causes a severe pneumonia called Legionnaires' Disease. The innate immune response to L. pneumophila remains poorly understood. Here we focused on identifying host and bacterial factors involved in the production of type I interferons (IFN) in response to L. pneumophila. It was previously suggested that the delivery of L. pneumophila DNA to the host cell cytosol is the primary signal that induces the type I IFN response. However, our data are not easily reconciled with this model. We provide genetic evidence that two RNA-sensing proteins, RIG-I and MDA5, participate in the IFN response to L. pneumophila. Importantly, these sensors do not seem to be required for the IFN response to L. pneumophila DNA, whereas we found that RIG-I was required for the response to L. pneumophila RNA. Thus, we hypothesize that bacterial RNA, or perhaps an induced host RNA, is the primary stimulus inducing the IFN response to L. pneumophila. Our study also identified a secreted effector protein, SdhA, as a key suppressor of the IFN response to L. pneumophila. Although viral suppressors of cytosolic RNA-sensing pathways have been previously identified, analogous bacterial factors have not been described. Thus, our results provide new insights into the molecular mechanisms by which an intracellular bacterial pathogen activates and also represses innate immune responses.
Author Summary
Initial detection of invading microorganisms is one of the primary tasks of the innate immune system. However, the molecular mechanisms by which pathogens are recognized remain incompletely understood. Here, we provide evidence that an immunosurveillance pathway (called the RIG-I/MDA5 pathway), thought primarily to detect viruses, is also involved in the innate immune response to an intracellular bacterial pathogen, Legionella pneumophila. In the response to viruses, the RIG-I/MDA5 immunosurveillance pathway has been shown to respond to viral RNA or DNA. We found that the RIG-I pathway was required for the response to L. pneumophila RNA, but was not required for the response to L. pneumophila DNA. Thus, one explanation of our results is that L. pneumophila RNA may access the host cell cytosol, where it triggers the RIG-I/MDA5 pathway. This is unexpected since bacteria have not previously been thought to translocate RNA into host cells. We also found that L. pneumophila encodes a secreted bacterial protein, SdhA, which suppresses the RIG-I/MDA5 pathway. Several viral repressors of the RIG-I/MDA5 pathway have been described, but bacterial repressors of RIG-I/MDA5 are not known. Thus, our study provides novel insights into the molecular mechanisms by which the immune system detects bacterial infection, and conversely, by which bacteria suppress innate immune responses.
PMCID: PMC2773930  PMID: 19936053
17.  Encephalomyocarditis Virus Viroporin 2B Activates NLRP3 Inflammasome 
PLoS Pathogens  2012;8(8):e1002857.
Nod-like receptors (NLRs) comprise a large family of intracellular pattern- recognition receptors. Members of the NLR family assemble into large multiprotein complexes, termed the inflammasomes. The NLR family, pyrin domain-containing 3 (NLRP3) is triggered by a diverse set of molecules and signals, and forms the NLRP3 inflammasome. Recent studies have indicated that both DNA and RNA viruses stimulate the NLRP3 inflammasome, leading to the secretion of interleukin 1 beta (IL-1β) and IL-18 following the activation of caspase-1. We previously demonstrated that the proton-selective ion channel M2 protein of influenza virus activates the NLRP3 inflammasome. However, the precise mechanism by which NLRP3 recognizes viral infections remains to be defined. Here, we demonstrate that encephalomyocarditis virus (EMCV), a positive strand RNA virus of the family Picornaviridae, activates the NLRP3 inflammasome in mouse dendritic cells and macrophages. Although transfection with RNA from EMCV virions or EMCV-infected cells induced robust expression of type I interferons in macrophages, it failed to stimulate secretion of IL-1β. Instead, the EMCV viroporin 2B was sufficient to cause inflammasome activation in lipopolysaccharide-primed macrophages. While cells untransfected or transfected with the gene encoding the EMCV non-structural protein 2A or 2C expressed NLRP3 uniformly throughout the cytoplasm, NLRP3 was redistributed to the perinuclear space in cells transfected with the gene encoding the EMCV 2B or influenza virus M2 protein. 2B proteins of other picornaviruses, poliovirus and enterovirus 71, also caused the NLRP3 redistribution. Elevation of the intracellular Ca2+ level, but not mitochondrial reactive oxygen species and lysosomal cathepsin B, was important in EMCV-induced NLRP3 inflammasome activation. Chelation of extracellular Ca2+ did not reduce virus-induced IL-1β secretion. These results indicate that EMCV activates the NLRP3 inflammasome by stimulating Ca2+ flux from intracellular storages to the cytosol, and highlight the importance of viroporins, transmembrane pore-forming viral proteins, in virus-induced NLRP3 inflammasome activation.
Author Summary
The innate immune system, the first line of defense against invading pathogens, plays a key role not only in limiting microbe replications at early stages of infection, but also in initiating and orchestrating antigen-specific adaptive immune responses. The innate immune responses against viruses usually rely on recognition of viral nucleic acids by host pattern-recognition receptors such as Toll-like receptors and cytosolic helicases. In addition, recent studies have indicated that certain viruses activate the NLRP3 inflammasome, a multiprotein complex containing the intracellular pattern-recognition receptor NLRP3, which in turn induces secretion of proinflammatory cytokines. We have previously revealed the role of the NLRP3 inflammasome in innate recognition of influenza virus, in which the influenza virus proton-selective ion channel M2 protein, but not viral RNA, is required. Here, we demonstrate that another RNA virus, encephalomyocarditis virus (EMCV), also activates the NLRP3 inflammasome in a viral RNAindependent manner. Instead, the EMCV viroporin 2B, which is involved in Ca2+ flux from intracellular storages into the cytosol, activates the NLRP3 inflammasome. Our results highlight the importance of viroporins, virusencoded transmembrane pore-forming proteins, in recognition of virus infections by NLRP3.
PMCID: PMC3415442  PMID: 22916014
18.  HIV and HCV Activate the Inflammasome in Monocytes and Macrophages via Endosomal Toll-Like Receptors without Induction of Type 1 Interferon 
PLoS Pathogens  2014;10(5):e1004082.
Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation.
Author Summary
Pathogens are detected by the immune system in multiple ways that initiate responses to control infection. Two systems of first line defense against viruses are 1) the production of Type I interferons and 2) production of the cytokines IL-1β and IL-18 by the inflammasome. Type I interferons promote an antiviral state in the infected host. Inflammasome cytokines induce inflammation, modulate adaptive immune responses, and have direct antiviral effects. While both are produced in response to the chronic human viral infections HIV and HCV, we demonstrate here that inflammasome activation does not require cell infection and that the mechanisms for viral sensing as well as cell types in which sensing occurs are distinct between the two viruses and between the type I interferon vs. inflammasome systems. The relative amount of sensing via these different mechanisms may affect the balance between antiviral and inflammatory responses to chronic infection.
PMCID: PMC4006909  PMID: 24788318
19.  Host Defense against Viral Infection Involves Interferon Mediated Down-Regulation of Sterol Biosynthesis 
PLoS Biology  2011;9(3):e1000598.
Upon infection, our immune cells produce a small protein called interferon, which in turn signals a protective response through a series of biochemical reactions that involves lowering the cells' ability to make cholesterol by targeting a gene essential for controlling the pathway for cholesterol metabolism.
Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or β but not TNF, IL1β, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNβ treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNβ, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNβ treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as a potential antiviral strategy.
Author Summary
Currently, little is known about the crosstalk between the body's immune and metabolic systems that occurs after viral infection. This work uncovers a previously unappreciated physiological role for the cholesterol-metabolic pathway in protecting against infection that involves a molecular link with the protein interferon, which is made by immune cells and known to “interfere” with viral replication. We used a clinically relevant model based on mouse cytomegalovirus (CMV) infection of bone-marrow-derived cells. Upon infection these cells produce high levels of interferon as part of the innate-immune response, which we show in turn signals through the interferon receptor resulting in lowering enzyme levels on the cholesterol pathway. We observed this effect with a range of other viruses, and in each case it leads to a notable drop in the metabolites involved in the cholesterol pathway. We found that the control mechanism involves regulation by interferon of an essential transcription factor, named SREBP-2, which coordinates the gene activity of the cholesterol pathway. This mechanism may explain clinical observations of reduced cholesterol levels in patients receiving interferon treatment. Our initial investigation into how lowered cholesterol might protect against viral infection reveals that the protection is not due to a requirement of the virus for cholesterol itself but instead involves a particular side-branch of the pathway that chemically links lipids to proteins. Drugs such as statins and small interfering RNAs that block this part of the pathway are also shown to protect against CMV infection of cells in culture and in mice. This provides the first example of targeting a host metabolic pathway in order to protect against an acute infection.
PMCID: PMC3050939  PMID: 21408089
20.  Surface α-1,3-Glucan Facilitates Fungal Stealth Infection by Interfering with Innate Immunity in Plants 
PLoS Pathogens  2012;8(8):e1002882.
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.
Author Summary
Magnaporthe oryzae, Cochlioborus miyabeanus, and Rhizoctonia solani are the top three fungal pathogens that are responsible for devastating damage to the production of rice, a staple cereal for half of the world's population. These fungal pathogens infect host plants despite the plants' innate immunity, which is activated upon recognition of a conserved cell wall component in fungi, such as chitin. Fungal pathogens seem to have evading mechanism(s) against the host innate immunity; however, the mechanisms are still unclear. In this study, we discovered a novel mechanism that is commonly used by fungal pathogens to prevent host innate immunity. In this mechanism, fungal pathogens mask the cell wall surfaces with α-1,3-glucan, a polysaccharide that plants cannot degrade. In fact, a transgenic rice secreting a bacterial α-1,3-glucanase, which is able to remove α-1,3-glucan on the fungal surfaces, obtained strong resistance to all of those fungal pathogens. We also showed that plants rapidly activated defense responses against fungi (even before the fungal penetration) when α-1,3-glucan on the fungal surfaces were damaged or removed. Our study suggests that fungal surface α-1,3-glucan interferes with host immunity in many fungal pathogens and that α-1,3-glucan is a potential target for controlling various fungal diseases in plants.
PMCID: PMC3426526  PMID: 22927818
21.  Key Role of Splenic Myeloid DCs in the IFN-αβ Response to Adenoviruses In Vivo 
PLoS Pathogens  2008;4(11):e1000208.
The early systemic production of interferon (IFN)-αβ is an essential component of the antiviral host defense mechanisms, but is also thought to contribute to the toxic side effects accompanying gene therapy with adenoviral vectors. Here we investigated the IFN-αβ response to human adenoviruses (Ads) in mice. By comparing the responses of normal, myeloid (m)DC- and plasmacytoid (p)DC-depleted mice and by measuring IFN-αβ mRNA expression in different organs and cells types, we show that in vivo, Ads elicit strong and rapid IFN-αβ production, almost exclusively in splenic mDCs. Using knockout mice, various strains of Ads (wild type, mutant and UV-inactivated) and MAP kinase inhibitors, we demonstrate that the Ad-induced IFN-αβ response does not require Toll-like receptors (TLR), known cytosolic sensors of RNA (RIG-I/MDA-5) and DNA (DAI) recognition and interferon regulatory factor (IRF)-3, but is dependent on viral endosomal escape, signaling via the MAP kinase SAPK/JNK and IRF-7. Furthermore, we show that Ads induce IFN-αβ and IL-6 in vivo by distinct pathways and confirm that IFN-αβ positively regulates the IL-6 response. Finally, by measuring TNF-α responses to LPS in Ad-infected wild type and IFN-αβR−/− mice, we show that IFN-αβ is the key mediator of Ad-induced hypersensitivity to LPS. These findings indicate that, like endosomal TLR signaling in pDCs, TLR-independent virus recognition in splenic mDCs can also produce a robust early IFN-αβ response, which is responsible for the bulk of IFN-αβ production induced by adenovirus in vivo. The signaling requirements are different from known TLR-dependent or cytosolic IFN-αβ induction mechanisms and suggest a novel cytosolic viral induction pathway. The hypersensitivity to components of the microbial flora and invading pathogens may in part explain the toxic side effects of adenoviral gene therapy and contribute to the pathogenesis of adenoviral disease.
Author Summary
Adenoviruses (Ads) are important pathogens and promising vectors for gene therapy applications. In the course of adenoviral infections innate immune responses are activated, which can be beneficial for the antiviral host defense but also detrimental if activated in a deregulated manner. Type I IFNs are crucial for the innate immune control of various viral infections in the mammalian host. So far, the early, systemic release of IFN-αβ during viral infections has been attributed to specialized immune cells, the plasmacytoid dendritic cells. Here, in a mouse infection model, we show that wild type Ads, as well as adenoviral vectors, elicit rapid IFN-αβ production almost exclusively in another cell population, the splenic myeloid dendritic cells. This IFN-αβ storm depends on viral escape from endosomes to the cytosol and the requirements of the response are suggestive of a novel viral induction pathway. Furthermore, we show that virus induced IFN-αβ is the key mediator of Ad-induced hypersensitivity to the cytokine-inducing and toxic activity of lipopolysaccharide, a common constituent of Gram-negative bacteria. Since these bacteria comprise several commensals and pathogens, enhanced susceptibility to lipopolysaccharide may contribute to toxic reactions observed during adenoviral gene therapy and to the clinical symptoms of adenoviral diseases.
PMCID: PMC2576454  PMID: 19008951
22.  Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense 
PLoS Computational Biology  2005;1(6):e63.
There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC) is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.
The immune system is a complex and highly developed system of specialized cells and organs that protects an organism against bacterial, parasitic, fungal, and viral infections. Broadly speaking, the different types of immune responses subdivide the immune system into two categories: innate (or nonadaptive) and adaptive immune system. The innate immune system serves as a first line of defense but lacks the ability to recognize certain pathogens and to provide the specific protective immunity that prevents reinfection. Just as metazoans have developed many different defenses against pathogens, so have pathogens evolved elaborate strategies to evade these defenses. Based on a comparative genomics approach and data mining, the authors have discovered a new family of proteins with a striking phylogenetic distribution, occurring in most eukaryotes and in subsets of mostly pathogenic or commensal prokaryotes. While the precise functions of these proteins remain unknown, prokaryotic versions have been implicated in the synthesis of extracellular polysaccharides known to be potent regulators of the innate immune system. This previously unrecognized link hints towards a potentially novel regulatory mechanism of the innate immune system. It remains to be shown if drugs selectively inhibiting Stealth in pathogens will help fight Stealth-mediated infections.
PMCID: PMC1285062  PMID: 16299590
23.  A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity 
eLife  2013;2:e00994.
RNA interference defends against viral infection in plant and animal cells. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model of host-virus interaction. Using a genome-wide association study in C. elegans wild populations and quantitative trait locus mapping, we identify a 159 base-pair deletion in the conserved drh-1 gene (encoding a RIG-I-like helicase) as a major determinant of viral sensitivity. We show that DRH-1 is required for the initiation of an antiviral RNAi pathway and the generation of virus-derived siRNAs (viRNAs). In mammals, RIG-I-domain containing proteins trigger an interferon-based innate immunity pathway in response to RNA virus infection. Our work in C. elegans demonstrates that the RIG-I domain has an ancient role in viral recognition. We propose that RIG-I acts as modular viral recognition factor that couples viral recognition to different effector pathways including RNAi and interferon responses.
eLife digest
Most organisms—from bacteria to mammals—have at least a rudimentary immune system that can detect and defend against pathogens, particularly viruses. This defense mechanism, which is known as the innate immune system, uses sensor proteins to recognize viral RNA, and then mobilizes other immune components to attack the invaders.
The specific mechanisms used to destroy viruses differ between species. In mammals, a protein called RIG-1 binds to viral RNA and activates a signaling pathway that leads to the production of interferons: immune proteins named after their ability to ‘interfere’ with viral replication. Plants and insects do not use interferons, but instead use a mechanism called RNA interference, in which long double-stranded RNAs are cleaved into shorter fragments.
The nematode worm C. elegans also deploys RNA interference against viruses but, in contrast to insects and plants, worms do not possess a specific set of RNA interference enzymes that participate solely in the antiviral response. They do, however, express a protein called DRH-1 that is related to the RIG-I protein found in mammals.
To investigate whether DRH-1 contributes to innate immunity in C. elegans, Ashe et al. infected 97 strains of C. elegans from around the world with a virus, and showed that some strains were more sensitive to the virus than others, with certain strains showing complete resistance. By comparing a sensitive strain with a resistant one, Ashe et al. revealed that viral sensitivity was caused by a mutation in the gene encoding DRH-1.
Further experiments showed that DRH-1 is required for the first step in RNA interference. Ashe et al. have thus identified a conserved role for RIG-1 in initiating antiviral responses, and propose that the protein couples virus recognition to distinct defense mechanisms in different evolutionary groups.
PMCID: PMC3793227  PMID: 24137537
RNA interference; immunity; virus infection; C. elegans
24.  Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons 
An increasing number of studies show that the activation of the innate immune system and inflammatory mechanisms play an important role in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms and its activation occurs in response to pathogens or tissue injury via pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Intracellular pathways, linking immune and inflammatory response to ion channel expression and function, have been recently identified. Among ion channels, the transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes.
In this review, we summarize current knowledge of interactions between immune cells and PRRs and ion channels of TRP families with PAMPs and DAMPs to provide new insights into the pathogenesis of inflammatory diseases. TRP channels have been found to interfere with innate immunity via both nuclear factor-kB and procaspase-1 activation to generate the mature caspase-1 that cleaves pro-interleukin-1β cytokine into the mature interleukin-1β.
Sensory neurons are also adapted to recognize dangers by virtue of their sensitivity to intense mechanical, thermal and irritant chemical stimuli. As immune cells, they possess many of the same molecular recognition pathways for danger. Thus, they express PRRs including Toll-like receptors 3, 4, 7, and 9, and stimulation by Toll-like receptor ligands leads to induction of inward currents and sensitization in TRPs. In addition, the expression of inflammasomes in neurons and the involvement of TRPs in central nervous system diseases strongly support a role of TRPs in inflammasome-mediated neurodegenerative pathologies. This field is still at its beginning and further studies may be required.
Overall, these studies highlight the therapeutic potential of targeting the inflammasomes in proinflammatory, autoinflammatory and metabolic disorders associated with undesirable activation of the inflammasome by using specific TRP antagonists, anti-human TRP monoclonal antibody or different molecules able to abrogate the TRP channel-mediated inflammatory signals.
PMCID: PMC4322456  PMID: 25644504
Innate immunity; Inflammasome; IL-1β; Caspase-1; PAMPs; DAMPs; PRRs; TLRs; Ion channels; TRP channels
25.  Hepatitis B Virus Polymerase Blocks Pattern Recognition Receptor Signaling via Interaction with DDX3: Implications for Immune Evasion 
PLoS Pathogens  2010;6(7):e1000986.
Viral infection leads to induction of pattern-recognition receptor signaling, which leads to interferon regulatory factor (IRF) activation and ultimately interferon (IFN) production. To establish infection, many viruses have strategies to evade the innate immunity. For the hepatitis B virus (HBV), which causes chronic infection in the liver, the evasion strategy remains uncertain. We now show that HBV polymerase (Pol) blocks IRF signaling, indicating that HBV Pol is the viral molecule that effectively counteracts host innate immune response. In particular, HBV Pol inhibits TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε), the effector kinases of IRF signaling. Intriguingly, HBV Pol inhibits TBK1/IKKε activity by disrupting the interaction between IKKε and DDX3 DEAD box RNA helicase, which was recently shown to augment TBK1/IKKε activity. This unexpected role of HBV Pol may explain how HBV evades innate immune response in the early phase of the infection. A therapeutic implication of this work is that a strategy to interfere with the HBV Pol-DDX3 interaction might lead to the resolution of life-long persistent infection.
Author Summary
Viral infection is sensed by the host innate immune system, which acts to limit viral infection by inducing antiviral cytokines such as the interferons. To establish infection, many viruses have strategies to evade the innate immunity. For the hepatitis B virus (HBV), which causes chronic infection in the liver, the evasion strategy remains mysterious. An earlier study using the chimpanzee as a model suggested that the host innate immune system failed to detect HBV. As a result, it was dubbed “stealth virus”. In contrast, subsequent studies performed in vitro have suggested that HBV is, in fact, detected by the innate immune system but can effectively counteract this response. Whether HBV is detected by the innate immune system remains controversial; however, it is widely accepted that, regardless of detection, HBV effectively inhibits the host innate immune response early in infection through an unknown mechanism. The data presented here indicate that HBV Pol (polymerase or reverse transcriptase) blocks the innate immune response. This unexpected role of HBV Pol may explain why HBV appears to act as a “stealth virus” in the early phase of the infection.
PMCID: PMC2904777  PMID: 20657822

Results 1-25 (954861)