PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (803550)

Clipboard (0)
None

Related Articles

1.  Ecosystem services of Phragmites in North America with emphasis on habitat functions 
AoB Plants  2013;5:plt008.
In North America, Phragmites australis (common reed) has generally been regarded as a weed to be controlled. This paper shows that Phragmites-dominated vegetation provides important non-habitat ecosystem services (e.g., carbon sequestration, water quality maintenance) in proportion to its biomass, and many habitat functions for other organisms that vary depending on characteristics of the vegetation and surrounding landscape. Phragmites has both detrimental and beneficial functions; therefore decision-makers must clarify their management goals and understand the local situation. Extensive dense Phragmites may be managed to optimize ecosystem services by partial removal of biomass for a bioenergy feedstock.
Phragmites australis (common reed) is widespread in North America, with native and non-native haplotypes. Many ecologists and wetland managers have considered P. australis a weed with little value to the native biota or human society. I document important ecosystem services of Phragmites including support for many common and rare species of plants and animals. This paper is based on an extensive review of the ecology and natural history literature, discussions with field workers, and observations in 13 US states and one Canadian province during the past 40 years. Phragmites sequesters nutrients, heavy metals and carbon, builds and stabilizes soils, and creates self-maintaining vegetation in urban and industrial areas where many plants do not thrive. These non-habitat ecosystem services are proportional to biomass and productivity. Phragmites was widely used by Native Americans for many purposes; the most important current direct use is for the treatment of wastes. Most of the knowledge of non-habitat ecosystem services is based on studies of P. australis haplotype M (an Old World haplotype). Phragmites also has habitat functions for many organisms. These functions depend on the characteristics of the landscape, habitat, Phragmites stand, species using Phragmites and life history element. The functions that Phragmites provides for many species are optimal at lower levels of Phragmites biomass and extent of stands. Old World Phragmites, contrary to many published statements, as well as North American native Phragmites, provide valuable ecosystem services including products for human use and habitat functions for other organisms. Phragmites stands may need management (e.g. thinning, fragmentation, containment or removal) to create or maintain suitable habitat for desired species of animals and plants.
doi:10.1093/aobpla/plt008
PMCID: PMC4104640
Bio-energy; ecosystem services; habitat functions; invasive plants; management; methodology; non-native species; Phragmites
2.  Exploring the borders of European Phragmites within a cosmopolitan genus 
AoB Plants  2012;2012:pls020.
European Phragmites australis is one of four main cp-DNA haplotype clusters present worldwide. The European gene pool extends from North America to Far East Asia and South Africa. Extensive gene flow occurs only within the temperate region of Europe.
Background and aims
Two Phragmites australis taxa are recognized in Europe: P. australis ssp. altissimus, also known as Phragmites isiaca, in the Mediterranean region and P. australis in the temperate region. Another taxonomic group in the Mediterranean is Phragmites frutescens. European genotypes are diverse genetically, cytologically and morphologically, and are related to African, Asiatic and American genotypes. We investigated chloroplast DNA (cpDNA) diversity in Europe and defined the current borders of the European gene pool.
Methodology
We analysed chloroplast variation with parsimony and genetic distance methods, and compared it with that of nuclear amplified fragment length polymorphism and microsatellites. We also investigated the phenological pattern of 188 genotypes collected worldwide in a common garden in Denmark. We assumed that non-flowering genotypes could indicate climatic, geographic and/or reproductive barriers to dispersal and would have been recorded in the genetic pattern as groups genetically isolated from, or within, the European pool.
Principal results
The European P. australis gene pool extends from North America to the Far East and South Africa. However, African and North American genotypes are differentiating from the European genotypes. Mediterranean P. australis is genetically different from temperate P. australis and shares several similarities with Phragmites mauritianus in Africa and Phragmites karka in Asia. Phragmites frutescens shares the cpDNA sequences with both these tropical species. Two DNA bands can distinguish Mediterranean P. australis from P. frutescens and P. mauritianus and from temperate P. australis, and reveal possible hybrids among these species in the Mediterranean region. Phenological data confirmed possible gene flow within the temperate region of Europe, whereas the Mediterranean genotypes did not set inflorescences in Denmark, suggesting reproductive barriers between temperate and Mediterranean P. australis.
Conclusions
European P. australis appears as one of four main Phragmites groups known in the world. Further research is needed to understand the implications of long-distance dispersal at the population level.
doi:10.1093/aobpla/pls020
PMCID: PMC3435523  PMID: 22962631
3.  Physiological ecology and functional traits of North American native and Eurasian introduced Phragmites australis lineages 
AoB Plants  2013;5:plt048.
Biological invasion pose serious threats to biodiversity and ecosystem services worldwide. While the effects of invasive species are well-documents, less is known about which specific plant traits convey “invasiveness” because most studies compare closely related, but different species which can confound results. A review of the literature by Mozdzer and other scientists compared genetic lineages of the same species, those native to North American and a lineage introduced from Europe to address this complex issue. The authors found that the ability to change both physiologically and morphologically were the key to success of the introduced genetic lineage under current and predicted global change conditions.
Physiological ecology and plant functional traits are often used to explain plant invasion. To gain a better understanding of how traits influence invasion, studies usually compare the invasive plant to a native congener, but there are few conspecific examples in the literature. In North America, the presence of native and introduced genetic lineages of the common reed, Phragmites australis, presents a unique example to evaluate how traits influence plant invasion. We reviewed the literature on functional traits of P. australis lineages in North America, specifically contrasting lineages present on the Atlantic Coast. We focused on differences in physiology between the lineage introduced from Eurasia and the lineage native to North America, specifically seeking to identify the causes underlying the recent expansion of the introduced lineage. Our goals were to better understand which traits may confer invasiveness, provide predictions of how these lineages may respond to interspecific competition or imminent global change, and provide guidance for future research. We reviewed published studies and articles in press, and conducted personal communications with appropriate researchers and managers to develop a comparative dataset. We compared the native and introduced lineages and focused on plant physiological ecology and functional traits. Under both stressful and favourable conditions, our review showed that introduced P. australis consistently exhibited greater ramet density, height and biomass, higher and more plastic relative growth rate, nitrogen productivity and specific leaf area, higher mass specific nitrogen uptake rates, as well as greater phenotypic plasticity compared with the native lineage. We suggest that ecophysiological and other plant functional traits elucidate potential mechanisms for the introduced lineage's invasiveness under current and predicted global change conditions. However, our review identified a disconnect between field surveys, experiments, natural competition and plant ecophysiology that must be addressed in future field studies. Given the likelihood of hybridization between lineages, a better understanding of plant traits in native, non-native and hybrid lineages is needed to manage current invasions and to predict the outcome of interactions among novel genotypes. Comparative physiology and other plant functional traits may provide additional tools to predict the trajectory of current and potential future invasions.
doi:10.1093/aobpla/plt048
PMCID: PMC4104623
Conspecific; global change; invasive; nitrogen; nitrogen productivity; phenotypic plasticity; relative growth rate; specific leaf area; wetland.
4.  Moving from a regional to a continental perspective of Phragmites australis invasion in North America 
AoB Plants  2012;2012:pls040.
Here we describe the results of a regional comparison of introduced Phragmites australis and two other P. australis lineages found in North America. The regional similarities and differences in introduced P. australis invasion highlight the importance of continental-scale studies for decoding plant invasions.
Aims
We use a regional comparison of Phragmites australis (common reed) subsp. americanus, P. australis subsp. berlandieri and introduced P. australis (possibly five sublineages) in the Chesapeake Bay, the St Lawrence River, Utah and the Gulf Coast to inform a North American perspective on P. australis invasion patterns, drivers, impacts and research needs.
Findings and research needs
Our regional assessments reveal substantial diversity within and between the three main lineages of P. australis in terms of mode of reproduction and the types of environment occupied. For introduced P. australis, the timing of introduction also differed between the regions. Nevertheless, a common finding in these regions reinforces the notion that introduced P. australis is opportunistic and thrives in disturbed habitats. Thus, we expect to see substantial expansion of introduced P. australis with increasing anthropogenic disturbances in each of these regions. Although there have been some studies documenting the negative impacts of introduced P. australis, it also plays a beneficial role in some regions, and in some cases, the purported negative impacts are unproven. There is also a broader need to clarify the genetic and ecological relationships between the different introduced sublineages observed in North America, and their relative competitive ability and potential for admixture. This may be done through regional studies that use similar methodologies and share results to uncover common patterns and processes. To our knowledge, such studies have not been performed on P. australis in spite of the broad attention given to this species. Such research could advance theoretical knowledge on biological invasion by helping to determine the extent to which the patterns observed can be generalized or are sublineage specific or region specific.
Synthesis
Given what appears to be sometimes idiosyncratic invasion patterns when interpreted in isolation in the regions that we analysed, it may be time to consider initiatives on a continental (if not intercontinental) scale to tackle unresolved issues about P. australis.
doi:10.1093/aobpla/pls040
PMCID: PMC3676263  PMID: 23755351
5.  Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America 
Ecology and Evolution  2014;4(24):4567-4577.
Compared with non-invasive species, invasive plant species may benefit from certain advantageous traits, for example, higher photosynthesis capacity and resource/energy-use efficiency. These traits can be preadapted prior to introduction, but can also be acquired through evolution following introduction to the new range. Disentangling the origins of these advantageous traits is a fundamental and emerging question in invasion ecology. We conducted a multiple comparative experiment under identical environmental condition with the invasive haplotype M lineage of the wetland grass Phragmites australis and compared the ecophysiological traits of this invasive haplotype M in North America with those of the European ancestor and the conspecific North American native haplotype E lineage, P. australis ssp. americanus. The invasive haplotype M differed significantly from the native North American conspecific haplotype E in several ecophysiological and morphological traits, and the European haplotype M had a more efficient photosynthetic apparatus than the native North American P. australis ssp. americanus. Within the haplotype M lineage, the introduced North American P. australis exhibited different biomass allocation patterns and resource/energy-use strategies compared to its European ancestor group. A discriminant analysis of principal components separated the haplotype M and the haplotype E lineages completely along the first canonical axis, highly related to photosynthetic gas-exchange parameters, photosynthetic energy-use efficiency and payback time. The second canonical axis, highly related to photosynthetic nitrogen use efficiency and construction costs, significantly separated the introduced P. australis in North America from its European ancestor. Synthesis. We conclude that the European P. australis lineage was preadapted to be invasive prior to its introduction, and that the invasion in North America is further stimulated by rapid post-introduction evolution in several advantageous traits. The multicomparison approach used in this study could be an effective approach for distinguishing preadaptation and post-introduction evolution of invasive species. Further research is needed to link the observed changes in invasive traits to the genetic variation and the interaction with the environment.
doi:10.1002/ece3.1286
PMCID: PMC4278810  PMID: 25558352
Biomass allocation; common reed; common-environment experiment; discriminant analysis; ecophysiological trade-off; functional traits; invasion ecology; leaf construction cost; photosynthesis; standardized major axis (SMA)
6.  Phragmites australis management in the United States: 40 years of methods and outcomes 
AoB Plants  2014;6:plu001.
We reviewed all available studies on Phragmites australis management in the United States. Our results show that there is a heavy emphasis on herbicides to manage Phragmites, relative to other methods, and a lack of information on what types of plant communities establish once Phragmites is removed. Our model of Phragmites establishment and reproduction describes the invasion as a symptom of watershed-scale land use and disturbance. We advocate more holistic approaches to control and management that focus on improving water quality and minimizing human disturbance to deter future invasion and improve resilience of native plant communities.
Studies on invasive plant management are often short in duration and limited in the methods tested, and lack an adequate description of plant communities that replace the invader following removal. Here we present a comprehensive review of management studies on a single species, in an effort to elucidate future directions for research in invasive plant management. We reviewed the literature on Phragmites management in North America in an effort to synthesize our understanding of management efforts, identify gaps in knowledge and improve the efficacy of management. Additionally, we assessed recent ecological findings concerning Phragmites mechanisms of invasion and integrated these findings into our recommendations for more effective management. Our overall goal is to examine whether or not current management approaches can be improved and whether they promote reestablishment of native plant communities. We found: (i) little information on community-level recovery of vegetation following removal of Phragmites; and (ii) most management approaches focus on the removal of Phragmites from individual stands or groups of stands over a relatively small area. With a few exceptions, recovery studies did not monitor vegetation for substantial durations, thus limiting adequate evaluation of the recovery trajectory. We also found that none of the recovery studies were conducted in a landscape context, even though it is now well documented that land-use patterns on adjacent habitats influence the structure and function of wetlands, including the expansion of Phragmites. We suggest that Phragmites management needs to shift to watershed-scale efforts in coastal regions, or larger management units inland. In addition, management efforts should focus on restoring native plant communities, rather than simply eradicating Phragmites stands. Wetlands and watersheds should be prioritized to identify ecosystems that would benefit most from Phragmites management and those where the negative impact of management would be minimal.
doi:10.1093/aobpla/plu001
PMCID: PMC4038441  PMID: 24790122
Common reed; ecological restoration; herbicide; invasive plant; invasive species; management; Phragmites australis; watershed restoration.
7.  Belowground advantages in construction cost facilitate a cryptic plant invasion 
AoB Plants  2014;6:plu020.
Energetic costs of tissue construction were compared in two subspecies of Phragmites australis, the common reed – namely the primary native and introduced lineages in North America. Caplan et al. report that the introduced lineage has lower construction costs than the native under all environmental conditions assessed, driven mainly by its lower cost rhizomes. These results highlight the fact that belowground energetics, which are seldom investigated, can influence the performance advantages that drive many plant invasions. The authors also demonstrate that tissue construction costs in organs not typically assessed can shift with global change, suggesting that they may have increasingly important implications into the future.
The energetic cost of plant organ construction is a functional trait that is useful for understanding carbon investment during growth (e.g. the resource acquisition vs. tissue longevity tradeoff), as well as in response to global change factors like elevated CO2 and N. Despite the enormous importance of roots and rhizomes in acquiring soil resources and responding to global change, construction costs have been studied almost exclusively in leaves. We sought to determine how construction costs of aboveground and belowground organs differed between native and introduced lineages of a geographically widely dispersed wetland plant species (Phragmites australis) under varying levels of CO2 and N. We grew plants under ambient and elevated atmospheric CO2, as well as under two levels of soil nitrogen. We determined construction costs for leaves, stems, rhizomes and roots, as well as for whole plants. Across all treatment conditions, the introduced lineage of Phragmites had a 4.3 % lower mean rhizome construction cost than the native. Whole-plant construction costs were also smaller for the introduced lineage, with the largest difference in sample means (3.3 %) occurring under ambient conditions. In having lower rhizome and plant-scale construction costs, the introduced lineage can recoup its investment in tissue construction more quickly, enabling it to generate additional biomass with the same energetic investment. Our results suggest that introduced Phragmites has had an advantageous tissue investment strategy under historic CO2 and N levels, which has facilitated key rhizome processes, such as clonal spread. We recommend that construction costs for multiple organ types be included in future studies of plant carbon economy, especially those investigating global change.
doi:10.1093/aobpla/plu020
PMCID: PMC4060782  PMID: 24938305
Carbon dioxide; common reed; construction cost; eutrophication; intraspecific; invasion ecology; Phragmites; plant functional traits; rhizomes; wetlands.
8.  Modeling the role of the close-range effect and environmental variables in the occurrence and spread of Phragmites australis in four sites on the Finnish coast of the Gulf of Finland and the Archipelago Sea 
Ecology and Evolution  2014;4(7):987-1005.
Phragmites australis, a native helophyte in coastal areas of the Baltic Sea, has significantly spread on the Finnish coast in the last decades raising ecological questions and social interest and concern due to the important role it plays in the ecosystem dynamics of shallow coastal areas. Despite its important implications on the planning and management of the area, predictive modeling of Phragmites distribution is not well studied. We examined the prevalence and progression of Phragmites in four sites along the Southern Finnish coast in multiple time frames in relation to a number of predictors. We also analyzed patterns of neighborhood effect on the expansion and disappearance of Phragmites in a cellular data model. We developed boosted regression trees models to predict Phragmites occurrences and produce maps of habitat suitability. Various Phragmites spread figures were observed in different areas and time periods, with a minimum annual expansion rate of 1% and a maximum of 8%. The water depth, shore openness, and proximity to river mouths were found influential in Phragmites distribution. The neighborhood configuration partially explained the dynamics of Phragmites colonies. The boosted regression trees method was successfully used to interpolate and extrapolate Phragmites distributions in the study sites highlighting its potential for assessing habitat suitability for Phragmites along the Finnish coast. Our findings are useful for a number of applications. With variables easily available, delineation of areas susceptible for Phragmites colonization allows early management plans to be made. Given the influence of reed beds on the littoral species and ecosystem, these results can be useful for the ecological studies of coastal areas. We provide estimates of habitat suitability and quantification of Phragmites expansion in a form suitable for dynamic modeling, which would be useful for predicting future Phragmites distribution under different scenarios of land cover change and Phragmites spatial configuration.
doi:10.1002/ece3.986
PMCID: PMC3997316  PMID: 24772277
Baltic Sea; boosted regression trees; common reed; habitat suitability; machine learning; species distribution models
9.  Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity 
Plant Signaling & Behavior  2009;4(6):506-513.
Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis's rhizosphere and its inhibitory effects against the native plants.
PMCID: PMC2688296  PMID: 19816146
ultraviolet; gallic acid; mesoxalic acid; novel weapons; invasive species; Phragmites australis
10.  Positive Effects of Nonnative Invasive Phragmites australis on Larval Bullfrogs 
PLoS ONE  2012;7(8):e44420.
Background
Nonnative Phragmites australis (common reed) is one of the most intensively researched and managed invasive plant species in the United States, yet as with many invasive species, our ability to predict, control or understand the consequences of invasions is limited. Rapid spread of dense Phragmites monocultures has prompted efforts to limit its expansion and remove existing stands. Motivation for large-scale Phragmites eradication programs includes purported negative impacts on native wildlife, a view based primarily on observational results. We took an experimental approach to test this assumption, estimating the effects of nonnative Phragmites australis on a native amphibian.
Methodology/Principal Findings
Concurrent common garden and reciprocal transplant field experiments revealed consistently strong positive influences of Phragmites on Rana catesbeiana (North American bullfrog) larval performance. Decomposing Phragmites litter appears to contribute to the effect.
Conclusions/Significance
Positive effects of Phragmites merit further research, particularly in regions where both Phragmites and R. catesbeiana are invasive. More broadly, the findings of this study reinforce the importance of experimental evaluations of the effects of biological invasion to make informed conservation and restoration decisions.
doi:10.1371/journal.pone.0044420
PMCID: PMC3431391  PMID: 22952976
11.  Livestock as a potential biological control agent for an invasive wetland plant 
PeerJ  2014;2:e567.
Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites) can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6,000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species.
doi:10.7717/peerj.567
PMCID: PMC4178463  PMID: 25276502
Top-down control; Salt marshes; Invasive species; Biocontrol
12.  Jack-and-Master Trait Responses to Elevated CO2 and N: A Comparison of Native and Introduced Phragmites australis 
PLoS ONE  2012;7(10):e42794.
Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function. Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities. However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and physiology. Here we present a novel case investigating the role of fitness trait values and phenotypic plasticity to global change factors between conspecific lineages of Phragmites australis. We hypothesized that due to observed differences in the competitive success of North American-native and Eurasian-introduced P. australis genotypes, Eurasian-introduced P. australis would exhibit greater fitness in response to global change factors. Plasticity and plant performance to ambient and predicted levels of carbon dioxide and nitrogen pollution were investigated to understand how invasion pressure may change in North America under a realistic global change scenario. We found that the introduced Eurasian genotype expressed greater mean trait values in nearly every ecophysiological trait measured – aboveground and belowground – to elevated CO2 and nitrogen, outperforming the native North American conspecific by a factor of two to three under every global change scenario. This response is consistent with “jack and master” phenotypic plasticity. We suggest that differences in plant nitrogen productivity, specific leaf area, belowground biomass allocation, and inherently higher relative growth rate are the plant traits that may enhance invasion of Eurasian Phragmites in North America. Given the high degree of genotypic variability within this species, and our limited number of genotypes, our results must be interpreted cautiously. Our study is the first to demonstrate the potential importance of jack-and-master phenotypic plasticity in plant invasions when facing imminent global change conditions. We suggest that jack-and-master invasive genotypes and/or species similar to introduced P. australis will have an increased ecological fitness, facilitating their invasion in both stressful and resource rich environments.
doi:10.1371/journal.pone.0042794
PMCID: PMC3485286  PMID: 23118844
13.  Photosynthesis of co-existing Phragmites haplotypes in their non-native range: are characteristics determined by adaptations derived from their native origin? 
AoB Plants  2013;5:plt016.
Several Phragmites lineages differing in origin and phenotype co-exist in the Gulf Coast of North America. We collected rhizomes of four lineages and propagated them in a common environment to compare photosynthetic characteristics. We observed substantial differences among and within lineages. As the lineages originating in Africa and in the Mediterranean region had higher photosynthetic capacity than the lineages originating in Eurasia, and showed typical ecophysiological traits of plants adapted to warm and arid climates, we concluded that the differences observed are due to adaptations acquired in the native ranges. The four lineages can therefore be regarded as ecotypes.
The Gulf Coast of North America (GC) is a ‘hot spot’ of Phragmites diversity as several lineages (defined according to the haplotypes of their chloroplast DNA) differing in origin, genetic traits and phenotype co-exist and interbreed in this area. We analysed differences in photosynthetic characteristics among and within four haplotypes to understand if differences in gas exchange can be attributed to adaptations acquired in their native ranges. We collected rhizomes of four GC haplotypes (I2, M1, M and AI; including the phenotypes ‘Land-type’, ‘Delta-type’, ‘EU-type’ and ‘Greeny-type’) and propagated them in a common controlled environment to compare photosynthesis–irradiance responses, CO2 responses, chlorophyll fluorescence, the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), specific leaf area (SLA), pigment contents, stomatal density and guard cell length. The maximum light-saturated photosynthetic rate, Amax, in the haplotype I2 (Land-type) and haplotype M1 (Delta-type) (34.3–36.1 µmol CO2 m−2 s−1) was higher than that in the invasive Eurasian haplotype M (22.4 ± 2.3 µmol CO2 m−2 s−1). The Amax of haplotype AI (Greeny3-type) was 29.1 ± 4.0 µmol CO2 m−2 s−1 and did not differ from the Amax of the other haplotypes. The carboxylation rate (Vcmax) and electron transport rate (Jmax) followed the same pattern as Amax. The haplotypes also differed in SLA (17.0–24.3 m2 kg−1 dry mass) and pigment content, whereas stomatal density and guard cell length, Rubisco activity and chlorophyll fluorescence did not differ significantly among haplotypes. The high photosynthetic activity and gas-exchange capacity of the two haplotypes originating in tropical Africa and the Mediterranean area (haplotypes I2 and M1) are apparently adaptations derived from their native ranges. Hence, the haplotypes can be regarded as ecotypes. However, it remains unclear how these differences relate to plant competitiveness and fitness in the GC of North America environment.
doi:10.1093/aobpla/plt016
PMCID: PMC4104645
Adaptations; Gulf Coast of North America; genotypes; haplotypes; invasion; photosynthesis; Phragmites
14.  Interactions among Plant Species and Microorganisms in Salt Marsh Sediments 
The interactions among Spartina patens and sediment microbial populations and the interactions among Phragmites australis and sediment microbial populations were studied at monotypic sites in Piermont Marsh, a salt marsh of the Hudson River north of New York, N.Y., at key times during the growing season. Arbuscular mycorrhizal fungi (AMF) effectively colonized S. patens but not P. australis, and there were seasonal increases and decreases that coincided with plant growth and senescence (17 and 6% of the S. patens root length were colonized, respectively). In sediment samples from the Spartina site, the microbial community and specific bacterial populations were at least twice as large in terms of number and biomass as the microbial community and specific bacterial populations in sediment samples from the Phragmites site, and peak values occurred during reproduction. Members of the domain Bacteria, especially members of the α-, γ-, and δ-subdivisions of the Proteobacteria, were the most abundant organisms at both sites throughout the growing season. The populations were generally more dynamic in samples from the Spartina site than in samples from the Phragmites site. No differences between the two sites and no differences during the growing season were observed when restriction fragment length polymorphism analyses of nifH amplicons were performed in an attempt to detect shifts in the diversity of nitrogen-fixing bacteria. Differences were observed only in the patterns generated by PCR or reverse transcription-PCR for samples from the Spartina site, suggesting that there were differences in the overall and active populations of nitrogen-fixing bacteria. Regression analyses indicated that there was a positive interaction between members of the δ-subdivision of the Proteobacteria and root biomass but not between members of the δ-subdivision of the Proteobacteria and macroorganic matter at both sites. In samples from the Spartina site, there were indications that there were bacterium-fungus interactions since populations of members of the α-subdivision of the Proteobacteria were negatively associated with AMF colonization and populations of members of the γ-subdivision of the Proteobacteria were positively associated with AMF colonization.
doi:10.1128/AEM.68.3.1157-1164.2002
PMCID: PMC123761  PMID: 11872463
15.  Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis 
Plant Signaling & Behavior  2008;3(1):1-5.
Chemical communication and perception strategies between plants are highly sophisticated but are only partly understood. Among the different interactions, the suppressive interaction of a class of chemicals released by one plant through root exudates against the neighbouring plants (allelopathy) have been implicated in the invasiveness of many exotic weedy species. Phragmites australis (common reed) is one of the dominant colonizers of the North American wetland marshes and exhibits invasive behavior by virtually replacing the entire native vegetation in its niche. Recently, by adopting a systematic bioassay driven approach we elucidated the role of root derived allelopathy as one of the important mechanisms by which P. australis exerts its invasive behavior. Additionally, our recent preliminary data indicates the involvement of rhizobacterial signaling in the invasive success of P. australis. A better understanding of biochemical weaponry used by P. australis will aid scientists and technologists in addressing the impact of root secretions in invasiveness of weedy species and thus promote a more informed environmental stewardship.
PMCID: PMC2633947  PMID: 19516974
Phragmites australis; roots; phytotoxicity; reactive oxygen species; microtubules; microcosm
16.  Interspecific Interactions between Phragmites australis and Spartina alterniflora along a Tidal Gradient in the Dongtan Wetland, Eastern China 
PLoS ONE  2013;8(1):e53843.
The invasive species Spartina alterniora Loisel was introduced to the eastern coast of China in the 1970s and 1980s for the purposes of land reclamation and the prevention of soil erosion. The resulting interspecific competition had an important influence on the distribution of native vegetation, which makes studying the patterns and mechanisms of the interactions between Spartina alterniora Loisel and the native species Phragmites australis (Cav.) Trin ex Steud in this region very important. There have been some researches on the interspecific interactions between P. australis and S. alterniora in the Dongtan wetland of Chongming, east China, most of which has focused on the comparison of their physiological characteristics. In this paper, we conducted a neighbor removal experiment along a tidal gradient to evaluate the relative competitive abilities of the two species by calculating their relative neighbor effect (RNE) index. We also looked at the influence of environmental stress and disturbance on the competitive abilities of the two species by comparing interaction strength (I) among different tidal zones both for P. australis and S. alterniora. Finally, we measured physiological characteristics of the two species to assess the physiological mechanisms behind their different competitive abilities. Both negative and positive interactions were found between P. australis and S. alterniora along the environmental gradient. When the direction of the competitive intensity index for P. australis and S. alterniora was consistent, the competitive or facilitative effect of S. alterniora on P. australis was stronger than that of P. australis on S. alterniora. The interspecific interactions of P. australis and S. alterniora varied with environmental conditions, as well as with the method used, to measure interspecific interactions.
doi:10.1371/journal.pone.0053843
PMCID: PMC3547036  PMID: 23342017
17.  Mortality in Patients with HIV-1 Infection Starting Antiretroviral Therapy in South Africa, Europe, or North America: A Collaborative Analysis of Prospective Studies 
PLoS Medicine  2014;11(9):e1001718.
Analyzing survival in HIV treatment cohorts, Andrew Boulle and colleagues find mortality rates in South Africa comparable to or better than those in North America by 4 years after starting antiretroviral therapy.
Please see later in the article for the Editors' Summary
Background
High early mortality in patients with HIV-1 starting antiretroviral therapy (ART) in sub-Saharan Africa, compared to Europe and North America, is well documented. Longer-term comparisons between settings have been limited by poor ascertainment of mortality in high burden African settings. This study aimed to compare mortality up to four years on ART between South Africa, Europe, and North America.
Methods and Findings
Data from four South African cohorts in which patients lost to follow-up (LTF) could be linked to the national population register to determine vital status were combined with data from Europe and North America. Cumulative mortality, crude and adjusted (for characteristics at ART initiation) mortality rate ratios (relative to South Africa), and predicted mortality rates were described by region at 0–3, 3–6, 6–12, 12–24, and 24–48 months on ART for the period 2001–2010. Of the adults included (30,467 [South Africa], 29,727 [Europe], and 7,160 [North America]), 20,306 (67%), 9,961 (34%), and 824 (12%) were women. Patients began treatment with markedly more advanced disease in South Africa (median CD4 count 102, 213, and 172 cells/µl in South Africa, Europe, and North America, respectively). High early mortality after starting ART in South Africa occurred mainly in patients starting ART with CD4 count <50 cells/µl. Cumulative mortality at 4 years was 16.6%, 4.7%, and 15.3% in South Africa, Europe, and North America, respectively. Mortality was initially much lower in Europe and North America than South Africa, but the differences were reduced or reversed (North America) at longer durations on ART (adjusted rate ratios 0.46, 95% CI 0.37–0.58, and 1.62, 95% CI 1.27–2.05 between 24 and 48 months on ART comparing Europe and North America to South Africa). While bias due to under-ascertainment of mortality was minimised through death registry linkage, residual bias could still be present due to differing approaches to and frequency of linkage.
Conclusions
After accounting for under-ascertainment of mortality, with increasing duration on ART, the mortality rate on HIV treatment in South Africa declines to levels comparable to or below those described in participating North American cohorts, while substantially narrowing the differential with the European cohorts.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
AIDS has killed about 36 million people since the first recorded case of the disease in 1981, and a similar number of people (including 25 million living in sub-Saharan Africa) are currently infected with HIV, the virus that causes AIDS. HIV destroys immune system cells (including CD4 cells, a type of lymphocyte), leaving infected individuals susceptible to other serious infections. Early in the AIDS epidemic, HIV-positive people usually died within 10 years of becoming infected. In 1996, effective antiretroviral therapy (ART) became available and, for people living in high-income countries, HIV infection became a chronic condition. But ART was expensive, so HIV/AIDS remained largely untreated and fatal in resource-limited countries. Then, in 2003, the international community began to work towards achieving universal access to ART. By the end of 2012, nearly two-thirds of HIV-positive people (nearly 10 million individuals) living in low- and middle-income countries who were eligible for treatment because their CD4 cell count had fallen below 350/mm3 blood or because they had developed an AIDS-defining condition were receiving treatment.
Why Was This Study Done?
It is known that a larger proportion of HIV-positive patients starting ART die during the first year of treatment in sub-Saharan Africa than in Europe and North America. This difference arises in part because patients in resource-limited settings tend to have lower CD4 counts when they start treatment than patients in wealthy countries. However, the lack of reliable data on mortality (death) in resource-limited settings has made it hard to compare longer-term outcomes in different settings. Information on the long-term outcomes of HIV-positive patients receiving ART in resource-limited countries is needed to guide the development of appropriate health systems and treatment regimens in these settings. In this collaborative analysis of prospective cohort studies, the researchers compare mortality up to 4 years on ART in South Africa, Europe, and North America. A prospective cohort study follows a group of individuals over time to see whether differences in specific characteristics at the start of the study affect subsequent outcomes. A collaborative analysis combines individual patient data from several studies.
What Did the Researchers Do and Find?
The researchers combined data from four South Africa cohorts of HIV-positive patients starting ART included in the International Epidemiologic Databases to Evaluate AIDS South African (IeDEA-SA) collaboration with data from six North American cohorts and nine European cohorts included in the ART Cohort Collaboration (ART-CC). The South African cohorts were chosen because unusually for studies undertaken in countries in sub-Saharan Africa the vital status of patients (whether they had died) who had been lost to follow-up in these cohorts could be obtained from the national population register. Patients in South Africa began treatment with more advanced disease (indicated by a lower average CD4 count) than patients in Europe or North America. Notably, high early mortality after starting ART in South Africa occurred mainly in patients starting ART with a CD4 count below 50 cells/mm3. The cumulative mortality after 4 years of ART was 16.6%, 4.7%, and 15.3% in South Africa, Europe, and North America, respectively. After adjusting for patient characteristics at ART initiation, the mortality rate among patients beginning ART was initially lower in Europe and North American than in South Africa. However, although the adjusted mortality rate in Europe remained lower than the rate in South Africa, the rate in North America was higher than that in South Africa between 24 and 48 months on ART.
What Do These Findings Mean?
Although the linkage to national vital registration systems (databases of births and deaths) undertaken in this collaborative analysis is likely to have greatly reduced bias due to under-ascertainment of mortality, the accuracy of these findings may still be limited by differences in how this linkage was undertaken in different settings. Nevertheless, these findings suggest that mortality among HIV-infected patients receiving ART in South Africa, although initially higher than in Europe and North America, rapidly declines with increasing duration on ART and, after 4 years of treatment, approaches the rate seen in high-income settings. Intriguingly, these findings also highlight the relatively higher late mortality in North America compared to either Europe or South Africa, a result that needs to be investigated to explore the extent to which differences in mortality ascertainment, patient characteristics and comorbidities, or health systems and treatment regimens contribute to variations in outcomes among HIV-positive patients in various settings.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001718.
This study is further discussed in a PLOS Medicine Perspective by Agnes Binagwaho and colleagues
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
NAM/aidsmap provides basic information about HIV/AIDS, and summaries of recent research findings on HIV care and treatment
Information is available from Avert, an international AIDS charity, on many aspects of HIV/AIDS, including information on universal access to ART, on HIV and AIDS in sub-Saharan Africa, and on HIV and AIDS in South Africa (in English and Spanish)
The World Health Organization provides information on all aspects of HIV/AIDS (in several languages); its 2013 Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infections: recommendations for a public health approach are available
The 2013 UNAIDS World AIDS Day Report provides up-to-date information about the AIDS epidemic and efforts to halt it
Information about the International Epidemiologic Databases to Evaluate AIDS South African (IeDEA-SA) collaboration and about the ART Cohort Collaboration is available
Personal stories about living with HIV/AIDS are available through Avert, Nam/aidsmap, and Healthtalkonline
doi:10.1371/journal.pmed.1001718
PMCID: PMC4159124  PMID: 25203931
18.  Soil pathogen communities associated with native and non-native Phragmites australis populations in freshwater wetlands 
Ecology and Evolution  2013;3(16):5254-5267.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above-ground plant responses. As a result, specific soil pathogen responses accompanying above-ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non-native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2-year period. Despite a diversity of oomycete taxa detected in soils from both native and non-native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non-native P. australis haplotypes, pathogen communities associated with the dominant non-native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non-native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.
doi:10.1002/ece3.900
PMCID: PMC3892333  PMID: 24455153
Oomycetes; plant invasions; plant–soil feedbacks.
19.  Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect 
Scientific Reports  2014;4:5488.
Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.
doi:10.1038/srep05488
PMCID: PMC4074794  PMID: 24976274
20.  Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species 
PLoS ONE  2014;9(5):e98478.
Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species.
doi:10.1371/journal.pone.0098478
PMCID: PMC4039472  PMID: 24878928
21.  Differences in salinity tolerance of genetically distinct Phragmites australis clones 
AoB Plants  2013;5:plt019.
The common reed (Phragmites australis) is a clonal wetland grass with high genetic variability. Clone-specific differences are reflected in morphological and physiological traits, and hence in the ability to cope with environmental stress. The responses to progressively increasing salinity of fifteen distinct Phragmites australis clones reveal genotype-related strategies of salt avoidance and exclusion. The salinity-induced inhibition in shoot elongation rate and photosynthesis varies widely between clones. The differences can be partially attributed to their geographic range, but not correlated to ploidy level. Thus, the genetic background is a major factor influencing the salinity tolerance of distinct Phragmites australis clones.
Different clones of the wetland grass Phragmites australis differ in their morphology and physiology, and hence in their ability to cope with environmental stress. We analysed the responses of 15 P. australis clones with distinct ploidy levels (PLs) (4n, 6n, 8n, 10n, 12n) and geographic origins (Romania, Russia, Japan, Czech Republic, Australia) to step-wise increased salinity (8, 16, 24, 32, 40, 56 and 72 ppt). Shoot elongation rate, photosynthesis and plant part-specific ion accumulation were studied in order to assess if traits associated with salinity tolerance can be related to the genetic background and the geographic origin of the clones. Salt stress affected all clones, but at different rates. The maximum height was reduced from 1860 mm in control plants to 660 mm at 40 ppt salinity. The shoot elongation rate of salt-exposed plants varied significantly between clones until 40 ppt salinity. The light-saturated photosynthesis rate (Pmax) was stimulated by a salinity of 8 ppt, but decreased significantly at higher salinities. The stomatal conductance (gs) and the transpiration rate (E) decreased with increasing salinity. Only three clones survived at 72 ppt salinity, although their rates of photosynthesis were strongly inhibited. The roots and basal leaves of the salt-exposed plants accumulated high concentrations of water-extractable Na+ (1646 and 1004 µmol g−1 dry mass (DM), respectively) and Cl− (1876 and 1400 µmol g−1 DM, respectively). The concentrations of water-extractable Mg2+ and Ca2+ were reduced in salt-exposed plants compared with controls. The variation of all the measured parameters was higher among clones than among PLs. We conclude that the salinity tolerance of distinct P. australis clones varies widely and can be partially attributed to their longitudinal geographic origin, but not to PL. Further investigation will help in improving the understanding of this species' salt tolerance mechanisms and their connection to genetic factors.
doi:10.1093/aobpla/plt019
PMCID: PMC4104622
Common reed; ecophysiology; geographic range; ion concentration; ploidy level; salt-stress tolerance
22.  Investigations of the Host Range of the Corn Cyst Nematode, Heterodera zeae, from Maryland 
Journal of Nematology  1987;19(Annals 1):97-106.
The host range of the corn cyst nematode, Heterodera zeae, recently detected in Maryland, was investigated. A total of 269 plant entries, representing 68 families, 172 genera, and 204 species, was inoculated with cysts or a mixture of eggs and second-stage juveniles of H. zeae. The host range of the Maryland population of H. zeae was limited to plants of the Gramineae and included 11 tribes, 33 genera, 42 species, and 77 entries. All 22 corn (Zea mays) cultivars tested were hosts. Other economic hosts included certain cultivars of barley (Hordeum vulgare), oat (Arena sativa), rice (Oryza sativa), sorghum (Sorghum bicolor), sugar cane (Saccharum interspecific hybrid), and wheat (Triticum aestivum). Fall panicum (Panicum dichotomiflorum), a weed species common to cultivated fields in Maryland, was also a host for H. zeae. Other hosts included meadow foxtail (Alopecurus pratensis), Calamagrostis eipgeios, Job's tears (Coix Lachryma-Jobi), green sprangletop (Leptochloa dubia), witchgrass (Panicum capillare), broomcorn (Panicum miliaceum), fountain grass (Pennisetum rueppeli), reed canary grass (Phalaris arundinacea), common reed (Phragmites australis), eastern gamagrass (Tripsacum dactyloides), corn (Zea mays), and teosinte (Zea mexicana).
PMCID: PMC2618679  PMID: 19290286
corn; corn cyst nematode; Heterodera zeae; host range; maize; Zea mays
23.  Soil As Levels and Bioaccumulation in Suaeda salsa and Phragmites australis Wetlands of the Yellow River Estuary, China 
BioMed Research International  2015;2015:301898.
Little information is available on As contamination dynamics in the soil-plant systems of wetlands. Total arsenic (As) in soil and plant samples from Suaeda salsa and Phragmites australis wetlands was measured in the Yellow River Estuary (YRE) in summer and autumn of 2007 to investigate the seasonal changes in As concentrations in different wetlands. The results showed that soil As levels greatly exceeded the global and regional background values. As levels in soil and the roots and stems of both types of plants were much higher in summer than in autumn, whereas leaf As showed higher level in autumn. Soil sulfur was the main factor influencing As levels in Suaeda salsa wetlands, whereas soil porosity was the most important factor for Phragmites australis wetlands. The contamination factor (CF) showed moderately to considerably polluted levels of As in both wetland soils. Plant roots and leaves of Suaeda salsa had higher As concentrations and biological concentration factors (BCFs) than stems, while the leaves and stems of Phragmites australis showed higher As levels and BCFs than roots. Compared to Phragmites australis, Suaeda salsa generally showed higher translocation factor (TF), while TF values for both plant species were higher in summer than in autumn.
doi:10.1155/2015/301898
PMCID: PMC4317578
24.  Tidal Flushing Restores the Physiological Condition of Fish Residing in Degraded Salt Marshes 
PLoS ONE  2012;7(9):e46161.
Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.
doi:10.1371/journal.pone.0046161
PMCID: PMC3459893  PMID: 23029423
25.  Spatial Genetic Structure in Natural Populations of Phragmites australis in a Mosaic of Saline Habitats in the Yellow River Delta, China 
PLoS ONE  2012;7(8):e43334.
Determination of spatial genetic structure (SGS) in natural populations is important for both theoretical aspects of evolutionary genetics and their application in species conservation and ecological restoration. In this study, we examined genetic diversity within and among the natural populations of a cosmopolitan grass Phragmites australis (common reed) in the Yellow River Delta (YRD), China, where a mosaic of habitat patches varying in soil salinity was detected. We demonstrated that, despite their close geographic proximity, the common reed populations in the YRD significantly diverged at six microsatellite loci, exhibiting a strong association of genetic variation with habitat heterogeneity. Genetic distances among populations were best explained as a function of environmental difference, rather than geographical distance. Although the level of genetic divergence among populations was relatively low (F’ST = 0.073), weak but significant genetic differentiation, as well as the concordance between ecological and genetic landscapes, suggests spatial structuring of genotypes in relation to patchy habitats. These findings not only provided insights into the population dynamics of common reed in changing environments, but also demonstrated the feasibility of using habitat patches in a mosaic landscape as test systems to identify appropriate genetic sources for ecological restoration.
doi:10.1371/journal.pone.0043334
PMCID: PMC3420903  PMID: 22916244

Results 1-25 (803550)