PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1340146)

Clipboard (0)
None

Related Articles

1.  Smoking-mediated up-regulation of GAD67 expression in the human airway epithelium 
Respiratory Research  2010;11(1):150.
Background
The production of gamma-amino butyric acid (GABA) is dependent on glutamate decarboxylases (GAD65 and GAD67), the enzymes that catalyze the decarboxylation of glutamate to GABA. Based on studies suggesting a role of the airway epithelial GABAergic system in asthma-related mucus overproduction, we hypothesized that cigarette smoking, another disorder associated with increased mucus production, may modulate GABAergic system-related gene expression levels in the airway epithelium.
Methods
We assessed expression of the GABAergic system in human airway epithelium obtained using bronchoscopy to sample the epithelium and microarrays to evaluate gene expression. RT-PCR was used to confirm gene expression of GABAergic system gene in large and small airway epithelium from heathy nonsmokers and healthy smokers. The differences in the GABAergic system gene was further confirmed by TaqMan, immunohistochemistry and Western analysis.
Results
The data demonstrate there is a complete GABAergic system expressed in the large and small human airway epithelium, including glutamate decarboxylase, GABA receptors, transporters and catabolism enzymes. Interestingly, of the entire GABAergic system, smoking modified only the expression of GAD67, with marked up-regulation of GAD67 gene expression in both large (4.1-fold increase, p < 0.01) and small airway epithelium of healthy smokers (6.3-fold increase, p < 0.01). At the protein level, Western analysis confirmed the increased expression of GAD67 in airway epithelium of healthy smokers compared to healthy nonsmokers (p < 0.05). There was a significant positive correlation between GAD67 and MUC5AC gene expression in both large and small airway epithelium (p < 0.01), implying a link between GAD67 and mucin overproduction in association with smoking.
Conclusions
In the context that GAD67 is the rate limiting enzyme in GABA synthesis, the correlation of GAD67 gene expression with MUC5AC expressions suggests that the up-regulation of airway epithelium expression of GAD67 may contribute to the increase in mucus production observed in association with cigarette smoking.
Trial registration
NCT00224198; NCT00224185
doi:10.1186/1465-9921-11-150
PMCID: PMC2988726  PMID: 21034448
2.  Differential Muc2 and Muc5ac secretion by stimulated guinea pig tracheal epithelial cells in vitro 
Respiratory Research  2006;7(1):35.
Background
Mucus overproduction is a characteristic of inflammatory pulmonary diseases including asthma, chronic bronchitis, and cystic fibrosis. Expression of two mucin genes, MUC2 and MUC5AC, and their protein products (mucins), is modulated in certain disease states. Understanding the signaling mechanisms that regulate the production and secretion of these major mucus components may contribute significantly to development of effective therapies to modify their expression in inflamed airways.
Methods
To study the differential expression of Muc2 and Muc5ac, a novel monoclonal antibody recognizing guinea pig Muc2 and a commercially-available antibody against human MUC5AC were optimized for recognition of specific guinea pig mucins by enzyme-linked immunosorbent assay (ELISA), Western blot, and immunohistochemistry (IHC). These antibodies were then used to analyze expression of Muc2 and another mucin subtype (likely Muc5ac) in guinea pig tracheal epithelial (GPTE) cells stimulated with a mixture of pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interferon- γ (IFN-γ)].
Results
The anti-Muc2 (C4) and anti-MUC5AC (45M1) monoclonal antibodies specifically recognized proteins located in Muc2-dominant small intestinal and Muc5ac-dominant stomach mucosae, respectively, in both Western and ELISA experimental protocols. IHC protocols confirmed that C4 recognizes murine small intestine mucosal proteins while 45M1 does not react. C4 and 45M1 also stained specific epithelial cells in guinea pig lung sections. In the resting state, Muc2 was recognized as a highly expressed intracellular mucin in GPTE cells in vitro. Following cytokine exposure, secretion of Muc2, but not the mucin recognized by the 45M1 antibody (likely Muc5ac), was increased from the GPTE cells, with a concomitant increase in intracellular expression of both mucins.
Conclusion
Given the tissue specificity in IHC and the differential hybridization to high molecular weight proteins by Western blot, we conclude that the antibodies used in this study can recognize specific mucin subtypes in guinea pig airway epithelium and in proteins from GPTE cells. In addition, Muc2 is highly expressed constitutively, modulated by inflammation, and secreted differentially (as compared to Muc5ac) in GPTE cells. This finding contrasts with expression patterns in the airway epithelium of a variety of mammalian species in which only Muc5ac predominates.
doi:10.1186/1465-9921-7-35
PMCID: PMC1484480  PMID: 16504136
3.  Hypoxia-Mediated Mechanism of MUC5AC Production in Human Nasal Epithelia and Its Implication in Rhinosinusitis 
PLoS ONE  2014;9(5):e98136.
Background
Excessive mucus production is typical in various upper airway diseases. In sinusitis, the expression of MUC5AC, a major respiratory mucin gene, increases. However, the mechanisms leading to mucus hypersecretion in sinusitis have not been characterized. Hypoxia due to occlusion of the sinus ostium is one of the major pathologic mechanisms of sinusitis, but there have been no reports regarding the mechanism of hypoxia-induced mucus hypersecretion.
Methods and Findings
This study aims to identify whether hypoxia may induce mucus hypersecretion and elucidate its mechanism. Normal human nasal epithelial (NHNE) cells and human lung mucoepidermoid carcinoma cell line (NCI-H292) were used. Sinus mucosa from patients was also tested. Anoxic condition was in an anaerobic chamber with a 95% N2/5% CO2 atmosphere. The regulatory mechanism of MUC5AC by anoxia was investigated using RT-PCR, real-time PCR, western blot, ChIP, electrophoretic mobility shift, and luciferase assay. We show that levels of MUC5AC mRNA and the corresponding secreted protein increase in anoxic cultured NHNE cells. The major transcription factor for hypoxia-related signaling, HIF-1α, is induced during hypoxia, and transfection of a mammalian expression vector encoding HIF-1α results in increased MUC5AC mRNA levels under normoxic conditions. Moreover, hypoxia-induced expression of MUC5AC mRNA is down-regulated by transfected HIF-1α siRNA. We found increased MUC5AC promoter activity under anoxic conditions, as indicated by a luciferase reporter assay, and mutation of the putative hypoxia-response element in MUC5AC promoter attenuated this activity. Binding of over-expressed HIF-1α to the hypoxia-response element in the MUC5AC promoter was confirmed. In human sinusitis mucosa, which is supposed to be hypoxic, expression of MUC5AC and HIF-1α is higher than in control mucosa.
Conclusion
The results indicate that anoxia up-regulates MUC5AC by the HIF-1α signaling pathway in human nasal epithelia and suggest that hypoxia might be a pathogenic mechanism of mucus hypersecretion in sinusitis.
doi:10.1371/journal.pone.0098136
PMCID: PMC4026485  PMID: 24840724
4.  Human fetal ductal plate revisited: II. MUC1, MUC5AC, and MUC6 are expressed in human fetal ductal plate and MUC1 is expressed also in remodeling ductal plate, remodeled ductal plate and mature bile ducts of human fetal livers 
Mucins are high-molecular-weight glycoproteins, which are heavily decorated with a large number of O-linked oligosaccharides and a few N-glycan chains, linked to a protein backbone. The protein backbone is called mucin core protein or MUC apomucins. MUC expression is down-regulated or up-regulated in malignant neoplasms. These alterations of MUC apomucins, which are regulated by MUC genes, are associated with carcinogenesis and malignant potentials of cancers. MUC expression during human fetal intrahepatic bile duct (IBD) development has been studied only once, and there has been only one histochemical study of mucins in human fetal IBD development. The author herein immunohistochemically investigated the expression of MUC1, MUC2, MUC5AC, and MUC6, and histochemically investigated carbohydrate component of mucins in human fetal cholangiocytes with the use of 32 human fetal livers of various gestational ages. MUC1 is a transmembranous apomucin, while MUC2, MUC5AC and MUC6 are secretory apomucins. Under normal conditions, MUC1 (polymorphic epithelial mucin) is present mainly in the pancreatic epithelium. MUC2 (goblet cell mucin) is mainly located in goblet cells. MUC5AC (gastric foveolar mucin) and MUC6 (pyloric gland-type mucin) are located in the stomach. In the present study, the processes of the human IBD development could be categorized into four stages; ductal plate (DP), remodeling DP, remodeled DP, and mature IBDs. The author identified that MUC1 was present in ductal plate (DP), remodeling DP, remodeled DP, and mature IBD in human fetal livers. MUC5AC and MUC6 were present only in the DP. MUC5AC and MUC6 were absent in remodeling DP, remodeled DP, and mature IBD in human fetal livers. No expression of MUC2 was seen throughout the fetal IBD development. Histochemically, no carbohydrate component of mucins were seen in the remodeling DP and remodeled DP, while neutral and acidic mucins (carboxylated and sulfated mucins) were seen in mature IBD in human fetal livers. The DP showed frequently neutral mucins and less frequently acidic mucins (carboxylated and sulfated mucins residues). These findings suggest that the DP cells have MUC1, MUC5AC and MUC6, and that remodeling DP, remodeled DP, and mature IBDs have MUC1, but not MUC5AC and MUC6. The presence of neutral and acidic carbohydrates in DP suggests that these carbohydrates of mucin are attached to the MUC5AC and MUC6 mucin core proteins. Although the implications are unclear, the expression of these MUC apomucins and their carbohydrate residues are associated with normal development of IBDs in human fetal livers.
PMCID: PMC3606847  PMID: 23573304
Ductal plate; human fetal liver; intrahepatic bile duct development; mucins; MUC apomucins; histochemistry; immunohistochemistry
5.  Humanized Mouse Model Used to Monitor MUC Gene Expression in Nasal Polyps and to Preclinically Evaluate the Efficacy of Montelukast in Reducing Mucus Production 
Objectives
To determine whether MUC gene expression could be down-regulated in nasal polyps by the leukotriene receptor antagonist montelukast, we developed a system in which nondisrupted human nasal polyps could be successfully implanted into severely immunocompromised mice, and in which the histopathology of the original nasal polyp tissue could be preserved for long periods. In addition, the histopathologic changes in the human nasal polyps were carefully examined to determine the origin of the submucosal glands (SMGs) that develop in true nasal polyps found in the anterior third of the nose.
Methods
Small, nondisrupted pieces of human nasal polyp tissues were subcutaneously implanted into NOD-scid IL-2rγnull mice. Xenograft-bearing mice were treated with either montelukast or saline solution. Xenografts at 8 to 12 weeks after implantation were examined histologically, and expression of MUC genes 4, 5AC, and 7 was studied in the polyps before implantation and in the 8-week xenograft. Alzet pumps were inserted into the mice, and montelukast (Singulair) was continuously delivered to determine its effect on goblet cell hyperplasia, mucus production, and the enlargement of nasal polyps over an 8-week period.
Results
The xenografts were maintained in a viable and functional state for up to 3 months and retained a histopathology similar to that of the original tissue, but with a noticeable increase in goblet cell hyperplasia and marked mucus accumulation in the SMGs. MUC4 and MUC5AC were significantly increased in the xenograft 8 weeks after implantation, but MUC7 was significantly decreased compared to the preimplantation polyps. Inasmuch as MUC7 is found exclusively in serous glands, the findings suggest that serous glands are not found in polyps in the anterior third of the nose. The histopathologic findings confirm the original findings of Tos et al suggesting that the SMGs are derived from pinching-off of the epithelium of the enlarging polyp following inflammatory changes. These SMGs have the same epithelium as surface epithelium and consist of multiple goblet cells that secrete periodic acid Schiff stain–positive mucin into the interior of the SMGs. A progressive increase in the volume of the xenografts was observed, with little or no evidence of mouse cell infiltration into the human leukocyte antigen–positive human tissue. An average twofold increase in polyp volume was found 2 months after engraftment. Montelukast did not decrease the growth of the xenograft in the 8-week NOD-scid mice, nor did it affect MUC gene expression.
Conclusions
The use of innate and adaptive immunodeficient NOD-scid mice homozygous for targeted mutations in the IL-2 gamma-chain locus NOD-scid IL-2rγnull for establishing engraftment of nondisrupted pieces of human nasal polyp tissues represents a significant advancement in studying chronic inflammation over a long period of time. In the present study, we utilized this humanized mouse model to confirm our prediction that MUC genes 4 and 5AC are highly expressed and significantly increased over those of preimplanted polyps. The overexpression of these 2 MUC genes correlates with both the goblet cell hyperplasia and the excessive mucus production that are found in nasal polyp xenografts. MUC7, which is primarily associated with the submucosa, as opposed to MUC4 and MUC5AC, which are primarily expressed in the epithelium, was significantly decreased in the nasal polyp xenografts. Montelukast had no significant effect on MUC gene expression in the xenografts. In addition to the MUC gene expression patterns, the histology of the xenografts supports the concept that mucinous glands that are characteristic of true nasal polyps are significantly different from those in the mucosa found in the lateral wall of the nose in patients with chronic sinusitis without nasal polyps. The mucinous glands seen in nasal polyps (which appear to be derived from an invagination of hyperplastic epithelial mucosa containing large numbers of goblet cells) are histologically distinct from the seromucinous glands found in the submucosa of hyperplastic middle turbinates. The data presented here establish a humanized mouse model as a viable approach to study nasal polyp growth, to assess the therapeutic efficacy of various drugs in this chronic inflammatory disease, and to contribute to our understanding of the pathogenesis of this disease.
PMCID: PMC3621975  PMID: 22724276
montelukast; mucous gland; nasal polyp; SCID mouse
6.  Hyaluronan Fragments/CD44 Mediate Oxidative Stress–Induced MUC5B Up-Regulation in Airway Epithelium 
Mucus hypersecretion with elevated MUC5B mucin production is a pathologic feature in many airway diseases associated with oxidative stress. In the present work, we evaluated MUC5B expression in airways and in primary cultures of normal human bronchial epithelial (NHBE) cells, as well as the mechanisms involved in its regulation. We found that oxidative stress generated by cigarette smoke or reactive oxygen species (ROS) induces MUC5B up-regulation in airway epithelium from smokers and in NHBE cells, respectively. We have previously shown that ROS-induced MUC5AC expression in NHBE cells is dependent on hyaluronan depolymerization and epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) activation. Since hyaluronan fragments can activate MAPK through the hyaluronan receptor CD44, and CD44 heterodimerizes with EGFR, we tested whether ROS and/or hyaluronan fragments induce MUC5B mRNA and protein expression through CD44/EGFR. We found that ROS promotes CD44/EGFR interaction, EGFR/MAPK activation, and MUC5B up-regulation that are prevented by blocking CD44 and/or EGFR. These results were mimicked by hyaluronan fragments. In summary, our results show that oxidative stress in vivo (cigarette smoke) or in vitro (ROS) induces MUC5B up-regulation. This ROS-induced MUC5B expression requires CD44 as well as EGFR and MAPK activation. In addition, we also provide evidence that hyaluronan fragments are sufficient to induce CD44/EGFR interaction and downstream signaling that results in MUC5B up-regulation, suggesting that hyaluronan depolymerization during inflammatory responses could be directly involved in the induction of mucus hypersecretion.
doi:10.1165/rcmb.2008-0073OC
PMCID: PMC2645525  PMID: 18757307
MUC5B; hyaluronan fragments; CD44; airway epithelium
7.  Aberrant Mucin Assembly in Mice Causes Endoplasmic Reticulum Stress and Spontaneous Inflammation Resembling Ulcerative Colitis 
PLoS Medicine  2008;5(3):e54.
Background
MUC2 mucin produced by intestinal goblet cells is the major component of the intestinal mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we used random mutagenesis to produce two murine models of inflammatory bowel disease, characterised the basis and nature of the inflammation in these mice, and compared the pathology with human ulcerative colitis.
Methods and Findings
By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis scores versus wild-type mice, p < 0.01) and chronic diarrhoea. Monitoring over 300 mice of each strain demonstrated that 25% and 40% of each strain, respectively, developed severe clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced by a luminal toxin. Enhanced local production of IL-1β, TNF-α, and IFN-γ was seen in the distal colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2 cytokines (IFN-γ, TNF-α, and IL-13). This pathology was accompanied by accumulation of the Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER) stress in goblet cells, activation of the unfolded protein response, and altered intestinal expression of genes involved in ER stress, inflammation, apoptosis, and wound repair. Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate similar accumulation of nonglycosylated MUC2 precursor in goblet cells together with ultrastructural and biochemical evidence of ER stress even in noninflamed intestinal tissue. Although our study demonstrates that mucin misfolding and ER stress initiate colitis in mice, it does not ascertain the genetic or environmental drivers of ER stress in human colitis.
Conclusions
Characterisation of the mouse models we created and comparison with human disease suggest that ER stress-related mucin depletion could be a fundamental component of the pathogenesis of human colitis and that clinical studies combining genetics, ER stress-related pathology and relevant environmental epidemiology are warranted.
Michael McGuckin and colleagues identify two mutations that cause aberrant mucin oligomerization in mice. The resulting phenotype, including endoplasmic reticulum stress, resembles clinical and pathologic features of human ulcerative colitis.
Editors' Summary
Background.
Inflammatory bowel diseases (IBD) are common disorders in which parts of the digestive tract become inflamed. The two main types of IBD are Crohn's disease, which mainly affects the small bowel, and ulcerative colitis (UC), which mainly affects the large bowel (colon). Both types tend to run in families and usually develop between 15 and 35 years old. Their symptoms include diarrhea, abdominal cramps, and unintentional weight loss. These symptoms can vary in severity, can be chronic (persistent) or intermittent, and may start gradually or suddenly. There is no cure for IBD (except removal of the affected part of the digestive tract), but drugs that modulate the immune system (for example, corticosteroids) or that inhibit “proinflammatory cytokines” (proteins made by the immune system that stimulate inflammation) can sometimes help.
Why Was This Study Done?
Although the clinical and pathological (disease-associated) features of Crohn's disease and UC are somewhat different, both disorders are probably caused by an immune system imbalance. Normally, the immune system protects the body from potentially harmful microbes in the gut but does not react to the many harmless bacteria that live there or to the food that passes along the digestive tract. In IBD, the immune system becomes overactive for unknown reasons, and lymphocytes (immune system cells) accumulate in the lining of the bowel and cause inflammation. In this study, the researchers use a technique called random mutagenesis (the random introduction of small changes, called mutations, into the genes of an organism using a chemical that damages DNA) to develop two mouse models that resemble human UC and that throw new light on to how this disorder develops.
What Did the Researchers Do and Find?
The researchers establish two mutant mouse strains—Winnie and Eeyore mice—that develop mild spontaneous inflammation of the colon and chronic diarrhea and that have more proinflammatory cytokines and more lymphocytes in their colons than normal mice. 25% and 40% of the Winnie and Eeyore mice, respectively, have severe clinical signs of colitis by 1 year of age. Both strains have a mutation in the Muc2 gene, which codes for MUC2 mucin, the main protein in mucus. This viscous substance (which coats the inside of the intestine) is produced by and stored in intestinal “goblet” cells. Mucus helps to maintain the intestine's immunological balance but is depleted in UC. The researchers show that the manufacture and assembly of Muc2 molecules is abnormal in Winnie and Eeyore mice, that less mucin is stored in their goblet cells than in normal mice, and that their intestinal mucus barrier is reduced. In addition, an incompletely assembled version of the molecule, called Muc2 precursor, accumulates in the endoplasmic reticulum (ER; the cellular apparatus that prepares newly manufactured proteins for release) of goblet cells, leading to overload with abnormal protein and causing a state of cellular distress known as the “ER stress response.” Finally, the researchers report that MUC2 precursor also accumulates in the goblet cells of people with UC and that even the noninflamed intestinal tissue of these patients shows signs of ER stress.
What Do These Findings Mean?
These findings indicate that mucin abnormalities and ER stress can initiate colitis in mice. Results from animal studies do not always reflect what happens in people, but these findings, together with those from the small study in humans, suggest that ER stress-related mucin depletion could be a component in the development of human colitis. The results do not identify the genetic changes and/or environmental factors that might trigger ER stress in human colitis, but suggest that once initiated, ER stress might interfere with MUC2 production, which would lead to a diminished mucus barrier, expose the lining of the intestine to more toxins and foreign substances, and trigger local mucosal inflammation. The release of inflammatory cytokines would then damage the intestine's lining and exacerbate ER stress, thus setting up a cycle of intestinal damage and inflammation. Clinical studies to look for genetic changes and environmental factors capable of triggering ER stress and for ER-stress related changes in human UC should now be undertaken to test this hypothesis.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050054.
The MedlinePlus Encyclopedia has pages on Crohn's disease and on ulcerative colitis (in English and Spanish)
The US National Institute of Diabetes and Digestive and Kidney Diseases provides information on Crohn's disease and ulcerative colitis
Information and support for patients with inflammatory bowel disease and their caregivers is provided by the Crohn's and Colitis Foundation of America and by the UK National Association for Colitis and Crohn's Disease
Wikipedia has pages on mucins and on mucus (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050054
PMCID: PMC2270292  PMID: 18318598
8.  Mucus hypersecretion in asthma: causes and effects 
Purpose of review
Airway mucus plugging has long been recognized as a principal cause of death in asthma. However, molecular mechanisms of mucin overproduction and secretion have not been understood until recently. These mechanisms are reviewed together with ongoing investigations relating them to lung pathophysiology.
Recent findings
Of the five secreted gel-forming mucins in mammals, only MUC5AC and MUC5B are produced in significant quantities in intrapulmonary airways. MUC5B is the principal gel-forming mucin at baseline in small airways of humans and mice, and therefore likely performs most homeostatic clearance functions. MUC5AC is the principal gel-forming mucin upregulated in airway inflammation and is under negative control by forkhead box a2 and positive control by hypoxia inducible factor-1. Mucin secretion is regulated separately from production, principally by extracellular triphosphate nucleotides that bind P2Y2 receptors on the lumenal surface of airway secretory cells, generating intracellular second messengers that activate the exocytic proteins, Munc13-2 and synaptotagmin-2.
Summary
Markedly upregulated production of MUC5AC together with stimulated secretion leads to airflow obstruction in asthma. As MUC5B appears to mediate homeostatic functions, it may be possible to selectively inhibit MUC5AC production without impairing airway function. The precise roles of mucin hypersecretion in asthma symptoms such as dyspnea and cough and in physiologic phenomena such as airway hyperresponsiveness remain to be defined.
doi:10.1097/MCP.0b013e32831da8d3
PMCID: PMC2709596  PMID: 19077699
airway; asthma; mucin; mucous; mucus
9.  Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa 
PLoS Pathogens  2010;6(5):e1000902.
Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium.
Author Summary
Enteropathogenic E. coli (EPEC) and Enterohemorrhagic E. coli (EHEC) are important causes of diarrheal disease and other serious complications worldwide. Despite many studies addressing the pathogenic strategies used by these microbes, how the host protects itself from these pathogens is poorly understood. A critical question we address here is whether the thick mucus layer that overlies the intestinal surface plays a role in host protection. Since EPEC and EHEC do not infect mice efficiently, we used a related mouse pathogen called Citrobacter rodentium to infect and compare responses between wildtype mice and Muc2-deficient mice, which are defective in mucus production. We show that Muc2-deficient mice are extremely susceptible to C. rodentium infection-induced mortality and disease. Muc2-deficient mice were also colonized faster and had higher pathogen burdens throughout the experiment. Resident (non-pathogenic) bacteria were found to interact with C. rodentium and host tissues in Muc2-deficient mice, indicating Muc2 regulates all forms of intestinal microbiota at the gut surface. Deficiency in mucus production also contributed to increased leakiness of the gut, which allowed microbes to enter mucosal tissues. Our study shows that Muc2-dependent mucus production is critical for effective management of both pathogenic and non-pathogenic bacteria during infection by an EPEC/EHEC-like pathogen.
doi:10.1371/journal.ppat.1000902
PMCID: PMC2869315  PMID: 20485566
10.  JNK activation is responsible for mucus overproduction in smoke inhalation injury 
Respiratory Research  2010;11(1):172.
Background
Increased mucus secretion is one of the important characteristics of the response to smoke inhalation injuries. We hypothesized that gel-forming mucins may contribute to the increased mucus production in a smoke inhalation injury. We investigated the role of c-Jun N-terminal kinase (JNK) in modulating smoke-induced mucus secretion.
Methods
We intubated mice and exposed them to smoke from burning cotton for 15 min. Their lungs were then isolated 4 and 24 h after inhalation injury. Three groups of mice were subjected to the smoke inhalation injury: (1) wild-type (WT) mice, (2) mice lacking JNK1 (JNK1-/- mice), and (3) WT mice administered a JNK inhibitor. The JNK inhibitor (SP-600125) was injected into the mice 1 h after injury.
Results
Smoke exposure caused an increase in the production of mucus in the airway epithelium of the mice along with an increase in MUC5AC gene and protein expression, while the expression of MUC5B was not increased compared with control. We found increased MUC5AC protein expression in the airway epithelium of the WT mice groups both 4 and 24 h after smoke inhalation injury. However, overproduction of mucus and increased MUC5AC protein expression induced by smoke inhalation was suppressed in the JNK inhibitor-treated mice and the JNK1 knockout mice. Smoke exposure did not alter the expression of MUC1 and MUC4 proteins in all 3 groups compared with control.
Conclusion
An increase in epithelial MUC5AC protein expression is associated with the overproduction of mucus in smoke inhalation injury, and that its expression is related on JNK1 signaling.
doi:10.1186/1465-9921-11-172
PMCID: PMC3014901  PMID: 21134294
11.  The Idiopathic Pulmonary Fibrosis Honeycomb Cyst Contains A Mucocilary Pseudostratified Epithelium 
PLoS ONE  2013;8(3):e58658.
Background
We previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP.
Methods
Immunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC).
Results
MUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC.
Conclusions
The distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway.
doi:10.1371/journal.pone.0058658
PMCID: PMC3603941  PMID: 23527003
12.  β2-Adrenoceptor Involved in Smoking-Induced Airway Mucus Hypersecretion through β-Arrestin-Dependent Signaling 
PLoS ONE  2014;9(6):e97788.
Progression of chronic obstructive pulmonary disease is associated with small airway obstruction by accumulation of inflammatory mucous exudates. However, the mechanism of mucin hypersecretion after exposure to cigarette smoke (CS) is still not clear. In this study, we explored the contribution of β2-adrenoceptor (β2-AR) signaling to CS extract (CSE)-induced mucus hypersecretion in vitro and examined the effect of a β-blocker on airway mucin hypersecretion in vivo. NCI-H292 epithelial cell line was used to determine the contribution of β2-AR signaling to CSE-induced MUC5AC production by treatment with β2-AR antagonists propranolol and ICI118551 and β2-AR-targeted small interfering RNA. The effect of propranolol on airway mucus hypersecretion was examined in a rat model exposed to CS. MUC5AC expression was assayed by real-time PCR, immunohistochemistry and ELISA. β2-AR and its downstream signaling were detected by western blot analysis. We found that pretreating NCI-H292 cells with propranolol, ICI118551 for 30 min or β2AR–targeted siRNA for 48 h reduced MUC5AC mRNA and protein levels stimulated by CSE. However,inhibiting the classical β2AR–cAMP-PKA pathway didn’t attenuate CSE-induced MUC5AC production, while silencing β-arretin2 expression significantly decreased ERK and p38MAPK phosphorylation, thus reduced the CSE-stimulated MUC5AC production. In vivo, we found that administration of propranolol (25 mg kg−1d−1) for 28 days significantly attenuated the airway goblet cell metaplasia, mucus hypersecretion and MUC5AC expression of rats exposed to CS. From the study, β2-AR–β-arrestin2–ERK1/2 signaling was required for CS-induced airway MUC5AC expression. Chronic propranolol administration ameliorated airway mucus hypersecretion and MUC5AC expression in smoking rats. The exploration of these mechanisms may contribute to the optimization of β2-AR target therapy in chronic obstructive pulmonary disease.
doi:10.1371/journal.pone.0097788
PMCID: PMC4048185  PMID: 24905583
13.  CREB Mediates Prostaglandin F2α-Induced MUC5AC Overexpression 
Mucus secretion is an important protective mechanism for the luminal lining of open tubular organs, but mucin overproduction in the respiratory tract can exacerbate the inflammatory process and cause airway obstruction. Production of MUC5AC, a predominant gel-forming mucin secreted by airway epithelia, can be induced by various inflammatory mediators such as prostaglandins. The two major prostaglandins involved in inflammation are prostaglandin (PG) E2 and F2α. PGE2-induced mucin production has been well studied, but the effect of PGF2α on mucin production remains poorly understood. To elucidate the effect and underlying mechanism of PGF2α on MUC5AC production, we investigated the signal transduction of PGF2α associated with this effect using normal human tracheobronchial epithelial cells. Our results demonstrated that PGF2α induces MUC5AC overproduction via a signaling cascade involving protein kinase C, extracellular signal-regulated kinase, p90 ribosomal S6 protein kinase, and cAMP response element binding protein (CREB). The regulation of PGF2α-induced MUC5AC expression by CREB was further confirmed by cAMP response element-dependent MUC5AC promoter activity and by interaction between CREB and MUC5AC promoter. The abrogation of all downstream signaling activities via suppression of each signaling molecule along the pathway indicates that a single pathway from PGF2α receptor to CREB is responsible for inducing MUC5AC overproduction. As CREB also mediates mucin overproduction induced by PGE2 and other inflammatory mediators, our findings have important clinical implication for the management of airway mucus hypersecretion.
doi:10.4049/jimmunol.0713637
PMCID: PMC2756474  PMID: 19201889
Lung; Inflammation; Signal Transduction; Transcription Factors; Human; Gene Regulation
14.  Serine Protease(s) Secreted by the Nematode Trichuris muris Degrade the Mucus Barrier 
The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s).
Author Summary
Gastrointestinal parasitic worm infections cause significant morbidity, affecting up to a third of the world's populationand their domestic pets and livestock. Mucus, the gel-like material that blankets the surface of the intestine, forms a protective barrier that is an important part of our innate immune system. The whipworm Trichuris is closely associated with the intestinal mucus barrier. The major structural component of this barrier, large glycoproteins known as mucins play a significant role in the expulsion of these worms in a mouse model. Using mice that get longterm chronic infections and others able to expel the worms from the intestine, we uncover a novel role for products secreted by the worms. Enzymes secreted by whipworms can disrupt the mucin network that gives mucus its viscous properties. Moreover, we unravel that worm products are unable to degrade forms of mucins present in the mucus barrier during worm expulsion, suggesting that these enzymes may be released by the worm as part of its regime to improve its niche and survival in the host. However, the host is capable of producing mucins and other protective molecules that protect the mucus barrier from degradation and are detrimental to the viability of the worm.
doi:10.1371/journal.pntd.0001856
PMCID: PMC3469553  PMID: 23071854
15.  Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells 
Thorax  2005;60(2):144-152.
Background: A common pathological feature of chronic inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) is mucus hypersecretion. MUC5AC is the predominant mucin gene expressed in healthy airways and is increased in asthmatic and COPD patients. Recent clinical trials indicate that phosphodiesterase type 4 (PDE4) inhibitors may have therapeutic value for COPD and asthma. However, their direct effects on mucin expression have been scarcely investigated.
Methods: MUC5AC mRNA and protein expression were examined in cultured human airway epithelial cells (A549) and in human isolated bronchial tissue stimulated with epidermal growth factor (EGF; 25 ng/ml). MUC5AC mRNA was measured by real time RT-PCR and MUC5AC protein by ELISA (cell lysates and tissue homogenates), Western blotting (tissue homogenates) and immunohistochemistry.
Results: EGF increased MUC5AC mRNA and protein expression in A549 cells. PDE4 inhibitors produced a concentration dependent inhibition of the EGF induced MUC5AC mRNA and protein expression with potency values (–log IC50): roflumilast (∼7.5) > rolipram (∼6.5) > cilomilast (∼5.5). Roflumilast also inhibited the EGF induced expression of phosphotyrosine proteins, EGF receptor, and phospho-p38- and p44/42-MAPK measured by Western blot analysis in A549 cells. In human isolated bronchus, EGF induced MUC5AC mRNA and protein expression was inhibited by roflumilast (1 µM) as well as the MUC5AC positive staining shown by immunohistochemistry.
Conclusion: Selective PDE4 inhibition is effective in decreasing EGF induced MUC5AC expression in human airway epithelial cells. This effect may contribute to the clinical efficacy of this new drug category in mucus hypersecretory diseases.
doi:10.1136/thx.2004.025692
PMCID: PMC1747298  PMID: 15681504
16.  Muc5b Is Required for Airway Defense 
Nature  2013;505(7483):412-416.
Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them via mucociliary clearance (MCC)1,2. However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases1. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus1,3. Genetic variants are linked to diverse lung diseases4-6, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in the lungs. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally7. Apoptotic macrophages accumulated, phagocytosis was impaired, and IL-23 production was reduced inMuc5b−/− mice. By contrast, in Muc5b transgenic (Tg) mice, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum1,8. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%9-11. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.
doi:10.1038/nature12807
PMCID: PMC4001806  PMID: 24317696
17.  Down-regulation of the Notch Pathway in Human Airway Epithelium in Association with Smoking and Chronic Obstructive Pulmonary Disease 
Rationale: The airway epithelium of smokers is subject to a variety of mechanisms of injury with consequent modulation of epithelial regeneration and disordered differentiation. Several signaling pathways, including the Notch pathway, control epithelial differentiation in lung morphogenesis, but little is known about the role of these pathways in adults.
Objectives: We tested the hypotheses that Notch-related genes are expressed in the normal nonsmoker small airway epithelium of human adults, and that Notch-related gene expression is down-regulated in healthy smokers and smokers with chronic obstructive pulmonary disease (COPD).
Methods: We used microarray technology to evaluate the expression of 55 Notch-related genes in the small airway epithelium of nonsmokers. We used TaqMan quantitative polymerase chain reaction (PCR) to confirm the expression of key genes and we used immunohistochemistry to assess the expression of Notch-related proteins in the airway epithelium. Changes in expression of Notch genes in healthy smokers and smokers with COPD compared with nonsmokers were evaluated by PCR.
Measurements and Main Results: Microarray analysis demonstrated that 45 of 55 Notch-related genes are expressed in the small airway epithelium of adults. TaqMan PCR confirmed the expression of key genes with highest expression of the ligand DLL1, the receptor NOTCH2, and the downstream effector HES1. Immunohistochemistry demonstrated the expression of Jag1, Notch2, Hes1, and Hes5 in airway epithelium. Several Notch ligands, receptors, and downstream effector genes were down-regulated in smokers, with more genes down-regulated in smokers with COPD than in healthy smokers.
Conclusions: These observations are consistent with the hypothesis that the Notch pathway likely plays a role in the human adult airway epithelium, with down-regulation of Notch pathway gene expression in association with smoking and COPD.
doi:10.1164/rccm.200705-795OC
PMCID: PMC2654975  PMID: 19106307
gene expression; microarray analysis; delta-like ligand; basic helix-loop-helix transcription factors; Notch receptors
18.  TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells 
eLife  2013;2:e00658.
Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca2+-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca2+ signal. ATP-induced MUC5AC secretion depended strongly on Ca2+ influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca2+ entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca2+ and by inhibition of the Na+/Ca2+ exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na+ entry to promote Ca2+ uptake via an NCX to trigger MUC5AC secretion.
DOI: http://dx.doi.org/10.7554/eLife.00658.001
eLife digest
Goblet cells are specialized cells that produce proteins called mucins, which combine with water, salt and other proteins to form mucus, the slippery fluid that protects the respiratory and digestive tracts from bacteria, viruses and other pathogens. However, a defect in the production of one particular type of mucin—Mucin 5AC—can result in diseases such as cystic fibrosis, chronic obstructive pulmonary disease and Crohn’s disease, so there is a clear need to understand the production of mucus in detail.
Before they are secreted, the mucins are packaged inside granules in the goblet cells. When a certain extracellular signal arrives at a goblet cell, these granules move through the cell, fuse with the cell membrane and release the mucins, which then expand their volume by a factor of up to a 1000. Calcium ions (Ca2+) have a critical role in the signal that leads to the secretion of mucins, but many details about the signalling and secretion processes are poorly understood.
Now, Mitrovic et al. have used genetic methods to study 7343 gene products in goblet cells derived from a human colon. They identified 16 new proteins that are involved in the secretion of Mucin 5AC, including a channel protein called TRPM5. This protein is activated when the concentration of Ca2+ inside the cell increases, and its activation allows sodium (Na+) ions to enter the cells. These intracellular Na+ ions are then exchanged for Ca2+ ions from outside the cell, and these Ca2+ ions then couple to the molecular machinery that is responsible for the secretion of the mucins.
By using electrophysiological and Ca2+ imaging approaches, Mitrovic et al. were able to visualize and measure TRPM5-mediated Na+ currents and the subsequent Ca2+ uptake by the cells, and confirmed that extracellular Ca2+ ions were responsible for stimulating the secretion of mucins. The next step is to determine how the other 15 genes are involved in mucin secretion and, in the longer term, explore how these insights might be translated into treatments for cystic fibrosis and other conditions associated with defective mucus secretion.
DOI: http://dx.doi.org/10.7554/eLife.00658.002
doi:10.7554/eLife.00658
PMCID: PMC3667631  PMID: 23741618
Mucin5AC; TRPM5; Secretion; Human
19.  Differential regulation of Streptococcus pneumoniae-induced human MUC5AC mucin expression through distinct MAPK pathways 
Human epithelial mucin, the major glycoprotein component of mucus, plays a critical role in host innate defense response against invading microbes by facilitating the mucociliary clearance. Excess mucin production, however, overwhelms the mucociliary clearance, resulting in not only defective mucosal defense but also conductive hearing loss in the middle ear and mucus obstruction in the airway. Indeed, mucus overproduction is a hall-mark of otitis media (OM) and chronic obstructive pulmonary diseases (COPD). Thus, tight regulation of mucin production plays an important role in maintaining an appropriate balance between beneficial and detrimental outcomes. We previously reported that Streptococcus pneumoniae (S. pneumoniae) up-regulates MUC5AC mucin expression via a positive MAPK ERK1/2 and a negative JNK1/2 signaling pathway. However, the signaling components including the up-stream activators and the down-stream transcription factors involved in these two path-ways remain largely unknown. In the present study, we showed that positive regulation of MUC5AC mucin expression by ERK1/2 is dependent on Ras-Raf-1 signaling pathway, whereas the negative regulation of MUC5AC expression by JNK1/2 is dependent on MEKK3. Moreover, transcriptional factor AP-1 acts as a key regulator for both of the positive and negative regulation of MUC5AC mucin expression as evidenced by mutagenesis analysis of two AP-1 sites in the promoter region of human MUC5AC mucin gene. Ras-Raf1-ERK1/2-dependent AP-1 activation positively regulates MUC5AC mucin induction by S. pneumoniae, whereas MEKK3-JNK1/2-dependent AP-1 activation negatively regulates it. Therefore, our data unveiled a novel signaling mechanism underlying the tight regulation of MUC5AC mucin induction by S. pneumoniae and may lead to the development of new therapeutic strategy for reducing mucus overproduction in both OM and COPD.
PMCID: PMC2776328  PMID: 19956440
MUC5AC mucin; streptococcus pneumonia; ERK; JNK; AP-1; otitis media; COPD
20.  Decreased Expression of Intelectin 1 in the Human Airway Epithelium of Smokers Compared to Nonsmokers* 
Summary
Lectins are innate immune defense proteins that recognize specific bacterial cell wall components. Based on the knowledge that cigarette smoking is associated with increased risk of bacterial infections, we hypothesized that cigarette smoking may modulate the expression of lectin genes in airway epithelium. Affymetrix microarrays were used to survey expression of lectin genes in large airway epithelium from 9 nonsmokers and 20 healthy smokers and in small airway epithelium from 13 nonsmokers and 20 healthy smokers. There were no changes (>2-fold change, p<0.05) in lectin gene expression among healthy smokers compared to nonsmokers except for a striking down regulation of intelectin 1, a lectin that binds to galactofuranosyl residues in the cell walls of bacteria (large airway epithelium, p<0.01; small airway epithelium, p<0.01). This was confirmed by TaqMan RT-PCR in both large (p<0.05) and small airway epithelium (p<0.02). Immunohistochemistry assessment of airway biopsies demonstrated that intelectin 1 was expressed in secretory cells, while Western analysis confirmed the decreased expression of intelectin 1 in airway epithelium of healthy smokers compared to healthy nonsmokers (p<0.02). Finally, compared to healthy nonsmokers, intelectin 1 expression was also decreased in small airway epithelium of smokers with lone emphysema with normal spirometry (n= 13, p<0.01) and smokers with established COPD (n= 14, p<0.01). In the context that intelectin 1 is an epithelial molecule that likely plays a role in defense against bacteria, its down regulation in response to cigarette smoking is another example of the immunomodulatory effects of smoking on the immune system and may contribute to the increase in susceptibility to infections observed in smokers, including those with COPD.
PMCID: PMC2651682  PMID: 18832735
21.  AGR2 Is Induced in Asthma and Promotes Allergen-Induced Mucin Overproduction 
Mucins are gel-forming proteins that are responsible for the characteristic viscoelastic properties of mucus. Mucin overproduction is a hallmark of asthma, but the cellular requirements for airway mucin production are poorly understood. The endoplasmic reticulum (ER) protein anterior gradient homolog 2 (AGR2) is required for production of the intestinal mucin MUC2, but its role in the production of the airway mucins MUC5AC and MUC5B is not established. Microarray data were analyzed to examine the relationship between AGR2 and MUC5AC expression in asthma. Immunofluorescence was used to localize AGR2 in airway cells. Coimmunoprecipitation was used to identify AGR2-immature MUC5AC complexes. Agr2−/− mice were used to determine the role of AGR2 in allergic airway disease. AGR2 localized to the ER of MUC5AC- and MUC5B-producing airway cells and formed a complex with immature MUC5AC. AGR2 expression increased together with MUC5AC expression in airway epithelium from “Th2-high” asthmatics. Allergen-challenged Agr2−/− mice had greater than 50% reductions in MUC5AC and MUC5B proteins compared with allergen-challenged wild-type mice. Impaired mucin production in Agr2−/− mice was accompanied by an increase in the proportion of mucins contained within the ER and by evidence of ER stress in airway epithelium. This study shows that AGR2 increases with mucin overproduction in individuals with asthma and in mouse models of allergic airway disease. AGR2 interacts with immature mucin in the ER and loss of AGR2 impairs allergen-induced MUC5AC and MUC5B overproduction.
doi:10.1165/rcmb.2011-0421OC
PMCID: PMC3423459  PMID: 22403803
asthma; airway epithelium; mucus; endoplasmic reticulum stress; protein disulfide isomerase
22.  Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia and airway mucus formation in vitro and in vivo 
Background
Airway mucus hypersecretion is a key pathophysiological feature in number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear.
Objectives
Characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus.
Methods
IL-13 and gamma-aminobutyric acid receptors (GABAARs) are implicated in airway mucus. We examined the role of IL-13 and GABAARs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells, and secondhand cigarette smoke and/or ovalbumin-induced mucus formation in vivo.
Results
Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABAAR antagonist picrotoxin (PIC). Airway epithelial cells express α7/α9/α10 nicotinic acetylcholine receptors (nAChRs) and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells and/or in mouse airways.
Conclusions
Nicotine-induced airway mucus formation is independent of IL-13 and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various pro-mucoid agents, including IL-13. In the absence of nicotine, acetylcholine may be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABAARα2 in the MUC5AC pathway. Acetylcholine and α-7-nAChRs may serve as therapeutic targets to control airway mucus.
doi:10.1016/j.jaci.2012.04.002
PMCID: PMC3419772  PMID: 22578901
cigarette smoke; nicotine; nicotinic acetylcholine receptors; gamma-aminobutyric acid receptors; acetylcholine; airway mucus
23.  Central Role of Muc5ac Expression in Mucous Metaplasia and Its Regulation by Conserved 5′ Elements 
Mucus hypersecretion contributes to morbidity and mortality in many obstructive lung diseases. Gel-forming mucins are the chief glycoprotein components of airway mucus, and elevated expression of these during mucous metaplasia precedes the hypersecretory phenotype. Five orthologous genes (MUC2, MUC5AC, MUC5B, MUC6, and MUC19) encode the mammalian gel-forming mucin family, and several have been implicated in asthma, cystic fibrosis, and chronic obstructive pulmonary disease pathologies. However, in the absence of a comprehensive analysis, their relative contributions remain unclear. Here, we assess the expression of the entire gel-forming mucin gene family in allergic mouse airways and show that Muc5ac is the predominant gel-forming mucin induced. We previously showed that the induction of mucous metaplasia in ovalbumin-sensitized and -challenged mouse lungs occurs within bronchial Clara cells. The temporal induction and localization of Muc5ac transcripts correlate with the induced expression and localization of mucin glycoproteins in bronchial airways. To better understand the tight regulation of Muc5ac expression, we analyzed all available 5′-flanking sequences of mammalian MUC5AC orthologs and identified evolutionarily conserved regions within domains proximal to the mRNA coding region. Analysis of luciferase reporter gene activity in a mouse transformed Clara cell line demonstrates that this region possesses strong promoter activity and harbors multiple conserved transcription factor–binding motifs. In particular, SMAD4 and HIF-1α bind to the promoter, and mutation of their recognition motifs abolishes promoter function. In conclusion, Muc5ac expression is the central event in antigen-induced mucous metaplasia, and phylogenetically conserved 5′ noncoding domains control its regulation.
doi:10.1165/rcmb.2005-0460OC
PMCID: PMC1994232  PMID: 17463395
mucin; metaplasia; airway; lung; epithelium
24.  Muc5b Is the Major Polymeric Mucin in Mucus from Thoroughbred Horses With and Without Airway Mucus Accumulation 
PLoS ONE  2011;6(5):e19678.
Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria.
doi:10.1371/journal.pone.0019678
PMCID: PMC3094342  PMID: 21602926
25.  H pylori colocalises with MUC5AC in the human stomach 
Gut  2000;46(5):601-607.
BACKGROUND—The bacterium Helicobacter pylori is able to adhere to and to colonise the human gastric epithelium, yet the primary gene product responsible as a receptor for its adherence has not been identified.
AIMS—To investigate the expression of the gastric mucins MUC5AC and MUC6 in the gastric epithelium in relation to H pylori colonisation in order to examine their possible roles in the binding of H pylori.
PATIENTS—Seventy two consecutive patients suspected of having H pylori infection.
METHODS—MUC5AC, MUC6, and H pylori were detected in single sections of antral biopsy specimens using immunohistochemical triple staining.
RESULTS—MUC5AC was expressed in the superficial epithelium and the upper part of the gastric pits. MUC6 expression was detected in the lower part of the gastric pits. The expression of both mucins in the epithelium was complementary. In each patient, there was a sharply delineated transition between MUC5AC and MUC6 producing cell populations. In all H pylori positive patients there was a striking colocalisation of H pylori and MUC5AC; more than 99% of the bacteria were associated with either extracellular MUC5AC or the apical domain of MUC5AC producing cells.
CONCLUSIONS—H pylori is very closely associated with extracellular MUC5AC and epithelial cells that produce MUC5AC. This indicates that MUC5AC, but not MUC6, plays a role in the adhesion of H pylori to the gastric mucosa.


Keywords: Helicobacter pylori; gastric mucin; MUC5AC; MUC6; stomach
doi:10.1136/gut.46.5.601
PMCID: PMC1727935  PMID: 10764701

Results 1-25 (1340146)