Search tips
Search criteria

Results 1-25 (1117360)

Clipboard (0)

Related Articles

1.  Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development 
PLoS Medicine  2013;10(11):e1001551.
TB filled in by Laureen
Please see later in the article for the Editors' Summary
Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development.
Methods and Findings
Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression.
HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies.
Please see later in the article for the Editors' Summary
Editors' Summary
Cancer, which is responsible for 13% of global deaths, can develop anywhere in the body, but all cancers are characterized by uncontrolled cell growth and reduced cellular differentiation (the process by which unspecialized cells such as “stem” cells become specialized during development, tissue repair, and normal cell turnover). Genetic alterations—changes in the sequence of nucleotides (DNA's building blocks) in specific genes—are required for this cellular transformation and subsequent cancer development (carcinogenesis). However, recent evidence suggests that epigenetic modifications—reversible, heritable changes in gene function that occur in the absence of nucleotide sequence changes—may also be involved in carcinogenesis. For example, the addition of methyl groups to a set of genes called stem cell polycomb group target genes (PCGTs; polycomb genes control the expression of their target genes by modifying their DNA or associated proteins) is one of the earliest molecular changes in human cancer development, and increasing evidence suggests that hypermethylation of PCGTs is an epigenetic hallmark of cancer.
Why Was This Study Done?
The methylation of PCGTs, which is triggered by age and by environmental factors that are associated with cancer development, reduces cellular differentiation and leads to the accumulation of undifferentiated cells that are susceptible to cancer development. It is unclear, however, whether epigenetic modifications have a causal role in carcinogenesis. Here, the researchers investigate the involvement of epigenetic factors in the development of endometrial (womb) cancer. The risk of endometrial cancer (which affects nearly 50,000 women annually in the United States) is largely determined by environmental and lifestyle factors. Specifically, the risk of this cancer is increased in women in whom estrogen (a hormone that drives cell proliferation in the endometrium) is functionally dominant over progesterone (a hormone that inhibits endometrial proliferation and causes cell differentiation); obese women and women who have taken estrogen-only hormone replacement therapies fall into this category. Thus, endometrial cancer is an ideal model in which to study whether epigenetic mechanisms underlie carcinogenesis.
What Did the Researchers Do and Find?
The researchers collected data on genome-wide DNA methylation at cytosine- and guanine-rich sites in endometrial cancers and normal endometrium and integrated this information with the human interactome and transcriptome (all the physical interactions between proteins and all the genes expressed, respectively, in a cell) using an algorithm called Functional Epigenetic Modules (FEM). This analysis identified HAND2 as the hub of the most highly ranked differential methylation hotspot in endometrial cancer. HAND2 is a progesterone-regulated stem cell PCGT. It encodes a transcription factor that is expressed in the endometrial stroma (the connective tissue that lies below the epithelial cells in which most endometrial cancers develop) and that suppresses the production of the growth factors that mediate the growth-inducing effects of estrogen on the endometrial epithelium. The researchers hypothesized, therefore, that epigenetic deregulation of HAND2 could be a key step in endometrial cancer development. In support of this hypothesis, the researchers report that HAND2 methylation was increased in premalignant endometrial lesions (cancer-prone, abnormal-looking tissue) compared to normal endometrium, and was associated with suppression of HAND2 expression. Moreover, a high level of endometrial HAND2 methylation in premalignant lesions predicted a poor response to progesterone treatment (which stops the growth of some endometrial cancers), and analysis of HAND2 methylation in endometrial secretions collected from women with postmenopausal bleeding (a symptom of endometrial cancer) accurately identified individuals with early stage endometrial cancer. Finally, mice in which the Hand2 gene was specifically deleted in the endometrium developed precancerous endometrial lesions with age.
What Do These Findings Mean?
These and other findings identify HAND2 methylation as a common, key molecular alteration in endometrial cancer. These findings need to be confirmed in more women, and studies are needed to determine the immediate molecular and cellular consequences of HAND2 silencing in endometrial stromal cells. Nevertheless, these results suggest that HAND2 methylation could potentially be used as a biomarker for the early detection of endometrial cancer and for predicting treatment response. More generally, these findings support the idea that methylation of HAND2 (and, by extension, the methylation of other PCGTs) is not a passive epigenetic feature of cancer but is functionally involved in cancer development, and provide a framework for identifying other genes that are epigenetically regulated and functionally important in carcinogenesis.
Additional Information
Please access these websites via the online version of this summary at
The US National Cancer Institute provides information on all aspects of cancer and has detailed information about endometrial cancer for patients and professionals (in English and Spanish)
The not-for-profit organization American Cancer Society provides information on cancer and how it develops and specific information on endometrial cancer (in several languages)
The UK National Health Service Choices website includes an introduction to cancer, a page on endometrial cancer, and a personal story about endometrial cancer
The not-for-profit organization Cancer Research UK provides general information about cancer and specific information about endometrial cancer
Wikipedia has a page on cancer epigenetics (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The Eve Appeal charity that supported this research provides useful information on gynecological cancers
PMCID: PMC3825654  PMID: 24265601
2.  Convergence of Mutation and Epigenetic Alterations Identifies Common Genes in Cancer That Predict for Poor Prognosis  
PLoS Medicine  2008;5(5):e114.
The identification and characterization of tumor suppressor genes has enhanced our understanding of the biology of cancer and enabled the development of new diagnostic and therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer genome has enabled the rapid identification of a large number of genes that are mutated in cancer. However, determining which of these many genes play key roles in cancer development has proven challenging. Specifically, recent sequencing of human breast and colon cancers has revealed a large number of somatic gene mutations, but virtually all are heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key tumor suppressor genes in cancer may be subject to mutation or hypermethylation.
Methods and Findings
Here, we show that combined genetic and epigenetic analysis of these genes reveals many with a higher putative tumor suppressor status than would otherwise be appreciated. At least 36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors show that 18 of these genes are hypermethylated strictly in primary cancers and often with an incidence that is much higher than for the mutations and which is not restricted to a single tumor-type. In the identical breast cancer cell lines in which the mutations were identified, hypermethylation is usually, but not always, mutually exclusive from genetic changes for a given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18 (89%) of these genes map to loci deleted in human cancers. Lastly, and most importantly, the reduced expression of a subset of these genes strongly correlates with poor clinical outcome.
Using an unbiased genome-wide approach, our analysis has enabled the discovery of a number of clinically significant genes targeted by multiple modes of inactivation in breast and colon cancer. Importantly, we demonstrate that a subset of these genes predict strongly for poor clinical outcome. Our data define a set of genes that are targeted by both genetic and epigenetic events, predict for clinical prognosis, and are likely fundamentally important for cancer initiation or progression.
Stephen Baylin and colleagues show that a combined genetic and epigenetic analysis of breast and colon cancers identifies a number of clinically significant genes targeted by multiple modes of inactivation.
Editors' Summary
Cancer is one of the developed world's biggest killers—over half a million Americans die of cancer each year, for instance. As a result, there is great interest in understanding the genetic and environmental causes of cancer in order to improve cancer prevention, diagnosis, and treatment.
Cancer begins when cells begin to multiply out of control. DNA is the sequence of coded instructions—genes—for how to build and maintain the body. Certain “tumor suppressor” genes, for instance, help to prevent cancer by preventing tumors from developing, but changes that alter the DNA code sequence—mutations—can profoundly affect how a gene works. Modern techniques of genetic analysis have identified genes such as tumor suppressors that, when mutated, are linked to the development of certain cancers.
Why Was This Study Done?
However, in recent years, it has become increasingly apparent that mutations are neither necessary nor sufficient to explain every case of cancer. This has led researchers to look at so-called epigenetic factors, which also alter how a gene works without altering its DNA sequence. An example of this is “methylation,” which prevents a gene from being expressed—deactivates it—by a chemical tag. Methylation of genes is part of the normal functioning of DNA, but abnormal methylation has been linked with cancer, aging, and some rare birth abnormalities.
Previous analysis of DNA from breast and colon cancer cells had revealed 189 “candidate cancer genes”—mutated genes that were linked to the development of breast and colon cancer. However, it was not clear how those mutations gave rise to cancer, and individual mutations were present in only 5% to 15% of specific tumors. The authors of this study wanted to know whether epigenetic factors such as methylation contributed to causing the cancers.
What Did the Researchers Do and Find?
The researchers first identified 56 of the 189 candidate cancer genes as likely tumor suppressors and then determined that 36 of these genes were methylated and deactivated, often in both breast and colon (laboratory-grown) cancer cells. In nearly all cases, the methylated genes were not active but could be reactivated by being demethylated. They further showed that, in normal colon and breast tissue samples, 18 of the 36 genes were unmethylated and functioned normally, but in cells taken from breast and colon cancer tumors they were methylated.
In contrast to the genetic mutations, the 18 genes were frequently methylated across a range of tumor types, and eight genes were methylated in both the breast and colon cancers. The authors found by reviewing the genetics and epigenetics of those 18 genes in breast and colon cancer that they were either mutated, methylated, or both. A literature review showed that at least six of the 18 genes were known to have tumor suppressor properties, and the authors determined that 16 were located in parts of DNA known to be missing from cells taken from a range of cancer tumors.
Finally, the researchers analyzed data on cancer cases to show that methylation of these 18 genes was correlated with reduced function of these genes in tumors and with a greater likelihood that a cancer will be terminal or spread to other parts of the body.
What Do These Findings Mean?
The researchers considered only the 189 candidate cancer genes found in one previous study and not other genes identified elsewhere. They also did not consider the biological effects of the individual mutations found in those genes. Despite this, they have demonstrated that methylation of specific genes is likely to play a role in the development of breast and/or colon cancer cells either together with mutations or independently, most likely by turning off their tumor suppression function.
More broadly, however, the study adds to the evidence that future analysis of the role of genes in cancer should include epigenetic as well as genetic factors. In addition, the authors have also shown that a number of these genes may be useful for predicting clinical outcomes for a range of tumor types.
Additional Information.
Please access these Web sites via the online version of this summary at
A December 2006 PLoS Medicine Perspective article reviews the value of examining methylation as a factor in common cancers and its use for early detection
The Web site of the American Cancer Society has a wealth of information and resources on a variety of cancers, including breast and colon cancer is a nonprofit organization providing information about breast cancer on the Web, including research news
Cancer Research UK provides information on cancer research
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins publishes background information on the authors' research on methylation, setting out its potential for earlier diagnosis and better treatment of cancer
PMCID: PMC2429944  PMID: 18507500
3.  Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy 
Scoliosis  2011;6:26.
Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-based medical therapy for AIS cannot be assessed at present, and must await new research derived from the evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis.
PMCID: PMC3293085  PMID: 22136338
4.  Federated ontology-based queries over cancer data 
BMC Bioinformatics  2012;13(Suppl 1):S9.
Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult.
Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included.
To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular, pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures.
PMCID: PMC3471355  PMID: 22373043
5.  Meiotically Stable Natural Epialleles of Sadhu, a Novel Arabidopsis Retroposon 
PLoS Genetics  2006;2(3):e36.
Epigenetic variation is a potential source of genomic and phenotypic variation among different individuals in a population, and among different varieties within a species. We used a two-tiered approach to identify naturally occurring epigenetic alleles in the flowering plant Arabidopsis: a primary screen for transcript level polymorphisms among three strains (Col, Cvi, Ler), followed by a secondary screen for epigenetic alleles. Here, we describe the identification of stable, meiotically transmissible epigenetic alleles that correspond to one member of a previously uncharacterized non-LTR retroposon family, which we have designated Sadhu. The pericentromeric At2g10410 element is highly expressed in strain Col, but silenced in Ler and 18 other strains surveyed. Transcription of this locus is inversely correlated with cytosine methylation and both the expression and DNA methylation states map in a Mendelian manner to stable cis-acting variation. The silent Ler allele can be converted by the epigenetic modifier mutation ddm1 to a meiotically stable expressing allele with an identical primary nucleotide sequence, demonstrating that the variation responsible for transcript level polymorphism among Arabidopsis strains is epigenetic. We extended our characterization of the Sadhu family members and show that different elements are subject to both genetic and epigenetic variation in natural populations. These findings support the view that an important component of natural variation in retroelements is epigenetic.
Differences among biological strains or individuals in a population can arise either from changes in DNA sequence (genetic) or in the packaging of DNA within the nucleus independent of DNA sequence (epigenetic). Both types of changes can alter gene activity, although epigenetic variation is often thought to be transient and unable to affect inherited differences among organisms. The authors compared the amount of RNA transcripts—a measure of gene activity—from a comprehensive set of genes among different strains of the flowering plant Arabidopsis. This approach led to the discovery of a novel family of DNA sequences, termed Sadhu, which show both genetic and epigenetic variation in gene activity. Alternative epigenetic states of one Sadhu element were created using mutants defective in epigenetic regulation. Both natural and induced epigenetic states were inherited. These results demonstrate that inherited differences among natural populations can be caused by epigenetic as well as genetic differences. Sadhu elements are a type of transposon, a class of DNA sequences that can move from one position in the genome to another. Epigenetic variation in gene activity of transposons modulates their movements within the genome and can influence genome diversification and evolution.
PMCID: PMC1401498  PMID: 16552445
6.  A role for epigenetics in hearing: Establishment and maintenance of auditory specific gene expression patterns 
Hearing research  2007;233(1-2):1-13.
Epigenetics is a large and diverse field encompassing a number of different mechanisms essential to development, DNA stability and gene expression. DNA methylation and histone modifications work individually and in conjunction with each other leading to phenotypic changes. An overwhelming amount of evidence exists demonstrating the essential nature of epigenetics to human biology and pathology. This field has spawned a vast array of knowledge, techniques and pharmaceuticals designed to investigate and manipulate epigenetic phenomena. Despite its centricity to molecular biology, little work has been conducted examining how epigenetics affects hearing. In this review, we discuss both the basic tenants of epigenetics and highlight the most recent advances in this field. We discuss its importance to human development, genomic stability, gene expression, epigenetic modifying agents as well as briefly introduce the expansive field of cancer epigenetics. We then examine the evidence of a role for epigenetics in hearing related processes and hearing loss. The article concludes with a discussion of areas of epigenetic research that could be applied to hearing research.
PMCID: PMC2994318  PMID: 17723285
Presbycusis; Hair Cells; Organ of Corti; DNA Methylation; Histone Modifications; Deafness
7.  Epigenetics meets endocrinology 
Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders.
PMCID: PMC4071959  PMID: 21322125
8.  Epigenetics of Host–Pathogen Interactions: The Road Ahead and the Road Behind 
PLoS Pathogens  2012;8(11):e1003007.
A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer). With the (partial) elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host–pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host–pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host–pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host–pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host–pathogen interactions.
PMCID: PMC3510240  PMID: 23209403
9.  Epigenetics and its implications for behavioral neuroendocrinology 
Frontiers in neuroendocrinology  2008;29(3):344-357.
Individuals vary in their sociosexual behaviors and reactivity. How the organism interacts with the environment to produce this variation has been a focus in psychology since its inception as a scientific discipline. There is now no question that cumulative experiences throughout life history interact with genetic predispositions to shape the individual’s behavior. Recent evidence suggests that events in past generations may also influence how an individual responds to events in their own life history. Epigenetics is the study of how the environment can affect the genome of the individual during its development as well as the development of its descendants, all without changing the DNA sequence. Several distinctions must be made if this research is to become a staple in behavioral neuroendocrinology. The first distinction concerns perspective, and the need to distinguish and appreciate, the differences between Molecular versus Molar epigenetics. Each has its own lineage of investigation, yet both appear to be unaware of one another. Second, it is important to distinguish the difference between Context-Dependent versus Germline-Dependent epigenetic modifications. In essence the difference is one of the mechanism of heritability or transmission within, as apposed to across, generations. This review illustrates these distinctions while describing several rodent models that have shown particular promise for unraveling the contribution of genetics and the environment on sociosexual behavior. The first focuses on genetically-modified mice and makes the point that the early litter environment alters subsequent brain activity and behavior. This work emphasizes the need to understand behavioral development when doing research with such animals. The second focuses on a new rat model in which the epigenome is permanently imprinted, an effect that crosses generations to impact the descendants without further exposure to the precipitating agent. This work raises the question of how events in generations past can have consequences at both the mechanistic, behavioral, and ultimately evolutionary levels.
PMCID: PMC2394853  PMID: 18358518
Development; Genetically-modified mice; Knockout; Imprinting; Molar epigenetics; Context-Dependent epigenetic modification; Germline-Dependent epigenetic modification; Neural network; Cytochrome oxidase
10.  From 'omics' to complex disease: a systems biology approach to gene-environment interactions in cancer 
Cancer is a complex disease that involves a sequence of gene-environment interactions in a progressive process that cannot occur without dysfunction in multiple systems, including DNA repair, apoptotic and immune functions. Epigenetic mechanisms, responding to numerous internal and external cues in a dynamic ongoing exchange, play a key role in mediating environmental influences on gene expression and tumor development.
The hypothesis put forth in this paper addresses the limited success of treatment outcomes in clinical oncology. It states that improvement in treatment efficacy requires a new paradigm that focuses on reversing systemic dysfunction and tailoring treatments to specific stages in the process. It requires moving from a reductionist framework of seeking to destroy aberrant cells and pathways to a transdisciplinary systems biology approach aimed at reversing multiple levels of dysfunction.
Because there are many biological pathways and multiple epigenetic influences working simultaneously in the expression of cancer phenotypes, studying individual components in isolation does not allow an adequate understanding of phenotypic expression. A systems biology approach using new modeling techniques and nonlinear mathematics is needed to investigate gene-environment interactions and improve treatment efficacy. A broader array of study designs will also be required, including prospective molecular epidemiology, immune competent animal models and in vitro/in vivo translational research that more accurately reflects the complex process of tumor initiation and progression.
PMCID: PMC2876152  PMID: 20420667
11.  Small RNA-Directed Epigenetic Natural Variation in Arabidopsis thaliana 
PLoS Genetics  2008;4(4):e1000056.
Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA) is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of ∼24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler) could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC), a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col) with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of ∼24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42) were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.
Author Summary
Phenotypic variation has been mainly attributed to their differences in genetic materials, i.e., the DNA sequence. The advances in Epigenetics in past decades has revealed it as a fundamental mechanism that could inheritably influence gene function without change in DNA sequence, but by modulating chemical modifications on DNA itself (methylation), or on histone proteins, which package the DNA further into nucleosome. Nevertheless, the roles of epigenetic regulation in natural variation were not explored much because of the limitation in high-throughput analytical tools. A recent study in model plant Arabidopsis showed that there are many DNA methylation polymorphisms between the two ecotypes. In plant, a subset of RNA named small interfering RNA (siRNA), is capable of triggering the epigenetic modifications on DNA or histone at their target region with complementary nucleotide sequences. Here, we took a view from the small RNA side and by applying molecular and bioinformatic approaches we showed that the same region could be led to a different epigenetic status because of the difference in their corresponding small RNA abundance and between the two closely related Arabidopsis ecotypes, suggesting that there could be small RNA-directed epigenetic differences among natural populations.
PMCID: PMC2289841  PMID: 18437202
12.  Whither the etiopathogenesis (and scoliogeny) of adolescent idiopathic scoliosis? Incorporating presentations on scoliogeny at the 2012 IRSSD and SRS meetings 
Scoliosis  2013;8:4.
This paper aims to integrate into current understanding of AIS causation, etiopathogenetic information presented at two Meetings during 2012 namely, the International Research Society of Spinal Deformities (IRSSD) and the Scoliosis Research Society (SRS). The ultimate hope is to prevent the occurrence or progression of the spinal deformity of AIS with non-invasive treatment, possibly medical. This might be attained by personalised polymechanistic preventive therapy targeting the appropriate etiology and/or etiopathogenetic pathways, to avoid fusion and maintain spinal mobility. Although considerable progress had been made in the past two decades in understanding the etiopathogenesis of adolescent idiopathic scoliosis (AIS), it still lacks an agreed theory of etiopathogenesis. One problem may be that AIS results not from one cause, but several that interact with various genetic predisposing factors. There is a view there are two other pathogenic processes for idiopathic scoliosis namely, initiating (or inducing), and those that cause curve progression. Twin studies and observations of family aggregation have revealed significant genetic contributions to idiopathic scoliosis, that place AIS among other common disease or complex traits with a high heritability interpreted by the genetic variant hypothesis of disease. We summarize etiopathogenetic knowledge of AIS as theories of pathogenesis including recent multiple concepts, and blood tests for AIS based on predictive biomarkers and genetic variants that signify disease risk. There is increasing evidence for the possibility of an underlying neurological disorder for AIS, research which holds promise. Like brain research, most AIS workers focus on their own corner and there is a need for greater integration of research effort. Epigenetics, a relatively recent field, evaluates factors concerned with gene expression in relation to environment, disease, normal development and aging, with a complex regulation across the genome during the first decade of life. Research on the role of environmental factors, epigenetics and chronic non-communicable diseases (NCDs) including adiposity, after a slow start, has exploded in the last decade. Not so for AIS research and the environment where, except for monozygotic twin studies, there are only sporadic reports to suggest that environmental factors are at work in etiology. Here, we examine epigenetic concepts as they may relate to human development, normal life history phases and AIS pathogenesis. Although AIS is not regarded as an NCD, like them, it is associated with whole organism metabolic phenomena, including lower body mass index, lower circulating leptin levels and other systemic disorders. Some epigenetic research applied to Silver-Russell syndrome and adiposity is examined, from which suggestions are made for consideration of AIS epigenetic research, cross-sectional and longitudinal. The word scoliogeny is suggested to include etiology, pathogenesis and pathomechanism.
PMCID: PMC3608974  PMID: 23448588
Scoliosis; Etiology; Pathogenesis; Scoliogeny; Epigenetics
13.  Epigenetics of discordant monozygotic twins: implications for disease 
Genome Medicine  2014;6(7):60.
Monozygotic (MZ) twins share nearly all of their genetic variants and many similar environments before and after birth. However, they can also show phenotypic discordance for a wide range of traits. Differences at the epigenetic level may account for such discordances. It is well established that epigenetic states can contribute to phenotypic variation, including disease. Epigenetic states are dynamic and potentially reversible marks involved in gene regulation, which can be influenced by genetics, environment, and stochastic events. Here, we review advances in epigenetic studies of discordant MZ twins, focusing on disease. The study of epigenetics and disease using discordant MZ twins offers the opportunity to control for many potential confounders encountered in general population studies, such as differences in genetic background, early-life environmental exposure, age, gender, and cohort effects. Recently, analysis of disease-discordant MZ twins has been successfully used to study epigenetic mechanisms in aging, cancer, autoimmune disease, psychiatric, neurological, and multiple other traits. Epigenetic aberrations have been found in a range of phenotypes, and challenges have been identified, including sampling time, tissue specificity, validation, and replication. The results have relevance for personalized medicine approaches, including the identification of prognostic, diagnostic, and therapeutic targets. The findings also help to identify epigenetic markers of environmental risk and molecular mechanisms involved in disease and disease progression, which have implications both for understanding disease and for future medical research.
PMCID: PMC4254430  PMID: 25484923
14.  Molecular Pathological Epidemiology of Epigenetics: Emerging Integrative Science to Analyze Environment, Host, and Disease 
Epigenetics acts as an interface between environmental / exogenous factors, cellular responses and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases, including non-neoplastic disorders (e.g., cardiovascular diseases, hypertension, diabetes mellitus, autoimmune diseases, and some infectious diseases) and neoplasms (e.g., leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc.) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. DNA methylation assays are widely applied to formalin-fixed paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiologic factors, cellular molecular characteristics, and disease evolution, the field of “Molecular Pathological Epidemiology (MPE)” has emerged as an interdisciplinary integration of “molecular pathology” and “epidemiology”, with a similar conceptual framework to systems biology and network medicine. In contrast to traditional epidemiologic research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle; that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macro-environment and tissue microenvironment. The widespread application of epigenomics (e.g., methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 hypomethylation, etc.), and host-disease interactions. MPE may represent a logical evolution of GWAS, termed “GWAS-MPE approach”. Though epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. This article will illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention.
PMCID: PMC3637979  PMID: 23307060
molecular pathologic epidemiology; genetics; omics; hypermethylation; hypomethylation; personalized therapy; unique tumor principle; CIMP; long interspersed nucleotide element
15.  Budget Impact Model: Epigenetic Assay Can Help Avoid Unnecessary Repeated Prostate Biopsies and Reduce Healthcare Spending 
The diagnosis of prostate cancer involves invasive, sometimes harmful, procedures that can entail negative quality-of-life implications to individuals and high additional costs to the US healthcare system when these procedures result in retesting and iatrogenic harms. It is estimated that $1.86 billion is spent annually on prostate-specific antigen (PSA) testing alone. An advanced epigenetic molecular diagnostic test that uses methylation-specific polymerase chain reaction to assess the DNA methylation status of GSTP1, APC, and RASSF1 genes associated with oncogenesis enables a higher degree of accuracy (previously unattainable through prostate biopsy procedures alone) and produces clinical, financial, and health benefits by reducing the number of medically unnecessary and costly repeated biopsies that are part of today's standard of care.
The purpose of this study is to quantify, using a budget impact model, the effect of a relatively new epigenetic assay on healthcare costs for commercial health plans that reimburse for the assay, by avoiding unnecessary repeated prostate biopsy procedures.
A budget impact model was developed to test the hypothesis that the epigenetic assay can produce cost-saving benefits to health plans, as well as clinical benefits to urologists and patients with prostate cancer, by providing guidance on how to offer patients more appropriate, and less costly, care. The budget impact model is presented from the perspective of a hypothetical commercial health plan, and direct costs are calculated over a 1-year time horizon, using 2013 Medicare fee-for-service rates. Using a plan of 1 million members, the model compares 1-year costs in a “reference scenario,” in which the epigenetic assay is not used for the screening and diagnosis of prostate cancer, to costs in a “new scenario,” in which the epigenetic assay is used to distinguish true-negative prostate biopsy results from false-negative biopsy results.
Based on this analysis, administering the epigenetic assay to patients with histopathologically negative biopsies would result in a reduction of 1106 unnecessary biopsies for a health plan with 1 million members. The total 1-year cost of repeated prostate cancer biopsies to the health plan was found to be $2,864,142 in the reference scenario and $2,333,341 in the new scenario. This translates to a total budget impact, or an annual savings, of $530,801 to the plan. The total diagnostic cost was calculated to be $2584 per patient in the new scenario (using the genetic assay) compared with $3172 per patient in the reference scenario (that did not use the assay), resulting in a savings of $588 per patient management.
This analysis shows that the net cost to a commercial health plan with 1 million members would be reduced by approximately $500,000 if patients with histopathologically negative biopsies were managed with the use of the epigenetic assay to differentiate patients who should undergo repeated biopsy and those who should not. Using this genetic-based assay can save costs to health plans and to the US healthcare and improve the clinical management of patients with elevated PSA levels.
PMCID: PMC4031702  PMID: 24991343
16.  Epigenetics Decouples Mutational from Environmental Robustness. Did It Also Facilitate Multicellularity? 
PLoS Computational Biology  2014;10(3):e1003450.
The evolution of ever increasing complex life forms has required innovations at the molecular level in order to overcome existing barriers. For example, evolving processes for cell differentiation, such as epigenetic mechanisms, facilitated the transition to multicellularity. At the same time, studies using gene regulatory network models, and corroborated in single-celled model organisms, have shown that mutational robustness and environmental robustness are correlated. Such correlation may constitute a barrier to the evolution of multicellularity since cell differentiation requires sensitivity to cues in the internal environment during development. To investigate how this barrier might be overcome, we used a gene regulatory network model which includes epigenetic control based on the mechanism of histone modification via Polycomb Group Proteins, which evolved in tandem with the transition to multicellularity. Incorporating the Polycomb mechanism allowed decoupling of mutational and environmental robustness, thus allowing the system to be simultaneously robust to mutations while increasing sensitivity to the environment. In turn, this decoupling facilitated cell differentiation which we tested by evaluating the capacity of the system for producing novel output states in response to altered initial conditions. In the absence of the Polycomb mechanism, the system was frequently incapable of adding new states, whereas with the Polycomb mechanism successful addition of new states was nearly certain. The Polycomb mechanism, which dynamically reshapes the network structure during development as a function of expression dynamics, decouples mutational and environmental robustness, thus providing a necessary step in the evolution of multicellularity.
Author Summary
Understanding the transition to multicellularity remains a key unanswered question in evolutionary biology. The transition required three essential cellular features to evolve: adhesion, signaling and differentiation. In particular, cell differentiation requires sensitivity to environmental cues to create distinct cell-specific transcription profiles. Previous work with model organisms and gene network models showed that biological systems evolve robustness to both mutational and environmental perturbations under stabilizing selection and that furthermore, mutational and environmental robustness are correlated. Increased robustness to environmental cues will therefore pose a barrier to the development of cell differentiation, and thus multicellularity. Because several important epigenetic developmental mechanisms, particularly Polycomb-mediated histone modification, appear to have evolved with multicellularity, we hypothesized that such a mechanism facilitated sensitivity to the environment and therefore cell differentiation. Using a computational model, we integrated Polycomb function with a regulatory model, revealing a clear decoupling between environmental and mutational robustness, allowing increased environmental sensitivity while mutational robustness remained intact. We also found that Polycomb greatly facilitated the ability for a single gene network to create several distinct transcription profiles - each representing a distinct differentiated cell type. Our work highlights the simple elegance through which the evolution of a key epigenetic mechanism can facilitate the transition to functional cell differentiation.
PMCID: PMC3945085  PMID: 24604070
17.  The Role of Redox Signaling in Epigenetics and Cardiovascular Disease 
Antioxidants & Redox Signaling  2013;18(15):1920-1936.
Significance: The term epigenetics refers to the changes in the phenotype and gene expression that occur without alterations in the DNA sequence. There is a rapidly growing body of evidence that epigenetic modifications are involved in the pathological mechanisms of many cardiovascular diseases (CVDs), which intersect with many of the pathways involved in oxidative stress. Recent Advances: Most studies relating epigenetics and human pathologies have focused on cancer. There has been a limited study of epigenetic mechanisms in CVDs. Although CVDs have multiple established genetic and environmental risk factors, these explain only a portion of the total CVD risk. The epigenetic perspective is beginning to shed new light on how the environment influences gene expression and disease susceptibility in CVDs. Known epigenetic changes contributing to CVD include hypomethylation in proliferating vascular smooth muscle cells in atherosclerosis, changes in estrogen receptor-α (ER-α) and ER-β methylation in vascular disease, decreased superoxide dismutase 2 expression in pulmonary hypertension (PH), as well as trimethylation of histones H3K4 and H3K9 in congestive heart failure. Critical Issues: In this review, we discuss the epigenetic modifications in CVDs, including atherosclerosis, congestive heart failure, hypertension, and PH, with a focus on altered redox signaling. Future Directions: As advances in both the methodology and technology accelerate the study of epigenetic modifications, the critical role they play in CVD is beginning to emerge. A fundamental question in the field of epigenetics is to understand the biochemical mechanisms underlying reactive oxygen species-dependent regulation of epigenetic modification. Antioxid. Redox Signal. 18, 1920–1936.
PMCID: PMC3624767  PMID: 23480168
18.  The epigenetic dimension of Alzheimer's disease: causal, consequence, or curiosity? 
Early-onset, familial Alzheimer's disease (AD) is rare and may be attributed to disease-causinq mutations. By contrast, late onset, sporadic (non-Mendelian) AD is far more prevalent and reflects the interaction of multiple genetic and environmental risk factors, together with the disruption of epigenetic mechanisms controlling gene expression. Accordingly, abnormal patterns of histone acetylation and methylation, as well as anomalies in global and promoter-specific DNA methylation, have been documented in AD patients, together with a deregulation of noncoding RNA. In transgenic mouse models for AD, epigenetic dysfunction is likewise apparent in cerebral tissue, and it has been directly linked to cognitive and behavioral deficits in functional studies. Importantly, epigenetic deregulation interfaces with core pathophysiological processes underlying AD: excess production of Aβ42, aberrant post-translational modification of tau, deficient neurotoxic protein clearance, axonal-synaptic dysfunction, mitochondrial-dependent apoptosis, and cell cycle re-entry. Reciprocally, DNA methylation, histone marks and the levels of diverse species of microRNA are modulated by Aβ42, oxidative stress and neuroinflammation. In conclusion, epigenetic mechanisms are broadly deregulated in AD mainly upstream, but also downstream, of key pathophysiological processes. While some epigenetic shifts oppose the evolution of AD, most appear to drive its progression. Epigenetic changes are of irrefutable importance for AD, but they await further elucidation from the perspectives of pathogenesis, biomarkers and potential treatment.
PMCID: PMC4214179  PMID: 25364287
acetylation; apoptosis; Bcl2; beta-amyloid methylation; cell cycle re-entry; HDAC; histone; inflammation; microRNA; microtubule; miR; miRNA; oxidative stress; phosphorylation; tau; secretase
19.  Twins for epigenetic studies of human aging and development 
Ageing research reviews  2012;12(1):182-187.
Most of the complex traits including aging phenotypes are caused by the interaction between genome and environmental conditions and the interface of epigenetics may be a central mechanism. Although modern technologies allow us high-throughput profiling of epigenetic patterns already at genome level, our understanding of genetic and environmental influences on the epigenetic processes remains limited. Twins are of special interest for genetic studies due to their genetic similarity and rearing-environment sharing. The classical twin design has made a great contribution in dissecting the genetic and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable sample of twins is helping to bridge the gap between gene activity and the environments through epigenetic mechanisms unlimited by DNA sequence variations. We propose toextend the classical twin design to studythe aging–related molecular epigenetic phenotypes and link them with environmental exposures especially early life events. Different study designs and application issues will be highlighted and novel approaches introduced with aim at making uses of twins in assessing the environmental impact on epigenetic changes during development and in the aging process.
PMCID: PMC3509237  PMID: 22750314
twins; aging; epigenetics; environments; genomics
20.  Heritable Epigenetic Variation among Maize Inbreds 
PLoS Genetics  2011;7(11):e1002372.
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation.
Author Summary
Heritable variation within a species provides the basis for natural and artificial selection. A substantial portion of heritable variation is based on alterations in DNA sequence among individuals and is termed genetic variation. There is also evidence for epigenetic variation, which refers to heritable differences that are not caused by DNA sequence changes. Methylation of cytosine residues provides one molecular mechanism for epigenetic variation in many eukaryotic species. The genome-wide distribution of DNA methylation was assessed in two different inbred genotypes of maize to identify differentially methylated regions that may contribute to epigenetic variation. There are hundreds of genomic regions that have differences in DNA methylation levels in these two different genotypes, including methylation differences in regions without genetic variation. By studying the inheritance of the differential methylation in near-isogenic progeny of the two inbred lines, it is possible to demonstrate relatively stable inheritance of epigenetic variation, even in the absence of DNA sequence changes. The epigenetic variation among individuals of the same species may provide important contributions to phenotypic variation within a species even in the absence of genetic differences.
PMCID: PMC3219600  PMID: 22125494
21.  Advances in Epigenetic Technology 
Epigenetics refers to the collective heritable changes in phenotype that arise independent of genotype. Two broad areas of epigenetics are DNA methylation and histone modifications and numerous techniques have been invented to analyze epigenetic processes not only at the level of specific genes, but also to analyze epigenetic changes that occur in defined regions of the genome as well as genome-wide. Advances have also been made in techniques devised to assess the enzymes that mediate epigenetic processes. These methods that are currently driving the field of epigenetics will greatly facilitate continued expansion of this exponentially growing discipline of genetics.
PMCID: PMC3227536  PMID: 21913067
Epigenetics; DNA methylation; chromatin; methods; histone; technique
22.  A High-Resolution Whole-Genome Map of Key Chromatin Modifications in the Adult Drosophila melanogaster 
PLoS Genetics  2011;7(12):e1002380.
Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP–Seq) and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a) and RNA polymerase II (polII). These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications.
Author Summary
Just as a genome sequence map is indispensible to genetic studies, an epigenome map is crucial for epigenetic research. This is especially true for a sophisticated genetic model such as Drosophila melanogaster, where the wealth of information on genetics and developmental biology awaits systematic epigenetic interpretation on a whole-genome scale. In this manuscript, we report a high-resolution map of key chromatin modifications in the Drosophila genome constructed by the ChIP–Seq approach. This map is derived from all cell types in the adult Drosophila weighted by their natural abundance. It contains key histone marks, HP1a and RNA polymerase II, mapped at 50-bp resolution throughout the genome and at 5-bp resolution for regulatory sequences of genes. It reveals striking features of chromatin modification and transcriptional regulation shared by major adult Drosophila cell types. We anticipate that this map and the salient chromatin modification landscapes revealed by this map should have broad utility to the fields of epigenetics, developmental biology, and stem cell biology.
PMCID: PMC3240582  PMID: 22194694
23.  Bench-to-bedside review: Future novel diagnostics for sepsis - a systems biology approach 
Critical Care  2013;17(5):231.
The early, accurate diagnosis and risk stratification of sepsis remains an important challenge in the critically ill. Since traditional biomarker strategies have not yielded a gold standard marker for sepsis, focus is shifting towards novel strategies that improve assessment capabilities. The combination of technological advancements and information generated through the human genome project positions systems biology at the forefront of biomarker discovery. While previously available, developments in the technologies focusing on DNA, gene expression, gene regulatory mechanisms, protein and metabolite discovery have made these tools more feasible to implement and less costly, and they have taken on an enhanced capacity such that they are ripe for utilization as tools to advance our knowledge and clinical research. Medicine is in a genome-level era that can leverage the assessment of thousands of molecular signals beyond simply measuring selected circulating proteins. Genomics is the study of the entire complement of genetic material of an individual. Epigenetics is the regulation of gene activity by reversible modifications of the DNA. Transcriptomics is the quantification of the relative levels of messenger RNA for a large number of genes in specific cells or tissues to measure differences in the expression levels of different genes, and the utilization of patterns of differential gene expression to characterize different biological states of a tissue. Proteomics is the large-scale study of proteins. Metabolomics is the study of the small molecule profiles that are the terminal downstream products of the genome and consists of the total complement of all low-molecular-weight molecules that cellular processes leave behind. Taken together, these individual fields of study may be linked during a systems biology approach. There remains a valuable opportunity to deploy these technologies further in human research. The techniques described in this paper not only have the potential to increase the spectrum of diagnostic and prognostic biomarkers in sepsis, but they may also enable the discovery of new disease pathways. This may in turn lead us to improved therapeutic targets. The objective of this paper is to provide an overview and basic framework for clinicians and clinical researchers to better understand the 'omics technologies' to enhance further use of these valuable tools.
PMCID: PMC4057467  PMID: 24093155
24.  Strategies To Modulate Heritable Epigenetic Defects in Cellular Machinery: Lessons from Nature 
Pharmaceuticals  2012;6(1):1-24.
Natural epigenetic processes precisely orchestrate the intricate gene network by expressing and suppressing genes at the right place and time, thereby playing an essential role in maintaining the cellular homeostasis. Environment-mediated alteration of this natural epigenomic pattern causes abnormal cell behavior and shifts the cell from the normal to a diseased state, leading to certain cancers and neurodegenerative disorders. Unlike heritable diseases that are caused by the irreversible mutations in DNA, epigenetic errors can be reversed. Inheritance of epigenetic memory is also a major concern in the clinical translation of the Nobel Prize-winning discovery of induced pluripotent stem cell technology. Consequently, there is an increasing interest in the development of novel epigenetic switch-based therapeutic strategies that could potentially restore the heritable changes in epigenetically inherited disorders. Here we give a comprehensive overview of epigenetic inheritance and suggest the prospects of therapeutic gene modulation using epigenetic-based drugs, in particular histone deacetylase inhibitors. This review suggests that there is a need to develop therapeutic strategies that effectively mimic the natural environment and include the ways to modulate the gene expression at both the genetic and epigenetic levels. The development of tailor-made small molecules that could epigenetically alter DNA in a sequence-specific manner is a promising approach for restoring defects in an altered epigenome and may offer a sustainable solution to some unresolved clinical issues.
PMCID: PMC3816674  PMID: 24275784
epigenetic inheritance; chemical mimics; HDAC inhibitors; regenerative medicine; cancer treatment; programmable genetic switches; histone code; epigenetic switch based therapy; future medicine.
25.  Impact of DNA methylation on trophoblast function 
Clinical Epigenetics  2011;3(1):7.
The influence of epigenetics is evident in many fields of medicine today. This is also true in placentology, where versatile epigenetic mechanisms that regulate expression of genes have shown to have important influence on trophoblast implantation and placentation. Such gene regulation can be established in different ways and on different molecular levels, the most common being the DNA methylation. DNA methylation has been shown today as an important predictive component in assessing clinical prognosis of certain malignant tumors; in addition, it opens up new possibilities for non-invasive prenatal diagnosis utilizing cell-free fetal DNA methods. By using a well known demethylating agent 5-azacytidine in pregnant rat model, we have been able to change gene expression and, consequently, the processes of trophoblast differentiation and placental development. In this review, we describe how changes in gene methylation effect trophoblast development and placentation and offer our perspective on use of trophoblast epigenetic research for better understanding of not only placenta development but cancer cell growth and invasion as well.
PMCID: PMC3303467  PMID: 22414254

Results 1-25 (1117360)