Search tips
Search criteria

Results 1-25 (614183)

Clipboard (0)

Related Articles

1.  Isolation, sequencing, and heterologous expression of the Paecilomyces variotii gene encoding S-hydroxymethylglutathione dehydrogenase (fldA) 
The filamentous fungus Paecilomyces variotii NBRC 109023 (teleomorph: Byssochlamys spectabilis NBRC 109023) degrades formaldehyde at concentrations as high as 2.4 % (w/v). In many prokaryotes and in all known eukaryotes, formaldehyde degradation is catalyzed by S-hydroxymethylglutathione (S-HMGSH) dehydrogenase. We report here the isolation and characterization of the gene encoding S-HMGSH dehydrogenase activity in P. variotii. The 1.6-kb fldA gene contained 5 introns and 6 exons, and the corresponding cDNA was 1143 bp, encoding a 40-kDa protein composed of 380 amino acids. FldA was predicted to have 74.3, 73.7, 68.5, and 67.4 % amino acid identity to the S-HMGSH dehydrogenases of Hansenula polymorpha, Candida boidinii, Saccharomyces cerevisiae, and Kluyveromyces lactis, respectively. The predicted protein also showed high amino acid similarity (84∼86 %) to the products of putative fldA genes from other filamentous fungi, including Aspergillus sp. and Penicillium sp. Notably, the P. variotii fldA gene was able to functionally complement a Saccharomyces cerevisiae strain (BY4741 ∆sfa1) lacking the gene for S-HMGSH dehydrogenase. The heterologous expression construct rendered BY4741 ∆sfa1 tolerant to exogenous formaldehyde. Although BY4741 (parental wild-type strain) was unable to degrade even low concentrations of formaldehyde, BY4741 ∆sfa1 harboring Paecilomyces fldA was able to degrade 4 mM formaldehyde within 30 h. The findings from this study confirm the essential role of S-HMGSH dehydrogenase in detoxifying formaldehyde.
Electronic supplementary material
The online version of this article (doi:10.1007/s00253-014-6203-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4322224  PMID: 25398285
Paecilomyces variotii; Formaldehyde degradation; S-hydroxymethylglutathione dehydrogenase; fldA; Heterologous expression
2.  Purification and characterization of cysteine protease from germinating cotyledons of horse gram 
BMC Biochemistry  2009;10:28.
Proteolytic enzymes play central role in the biochemical mechanism of germination and intricately involved in many aspects of plant physiology and development. To study the mechanism of protein mobilization, undertaken the task of purifying and characterizing proteases, which occur transiently in germinating seeds of horse gram.
Cysteine protease (CPRHG) was purified to homogeneity with 118 fold by four step procedure comprising Crude extract, (NH4)2SO4 fractionation, DEAE-Cellulose and CM-sephacel chromatography from the 2 day germinating cotyledons of horse gram (Macrotyloma uniflorum (Lam.) Verdc.). CPRHG is a monomer with molecular mass of 30 k Da, was determined by SDS-PAGE and gel filtration. The purified enzyme on IEF showed two isoforms having pI values of 5.85 and 6.1. CPRHG composed of high content of aspartic acid, glutamic acid and serine. The enzyme activity was completely inhibited by pCMB, iodoacetate and DEPC indicating cysteine and histidine residues at the active site. However, on addition of sulfhydryl reagents (cysteine, dithiothreitol, glutathione and beta-ME) reverse the strong inhibition by pCMB. The enzyme is fairly stable toward pH and temperature. Immunoblot analysis shows that the enzyme synthesized as zymogen (preproenzyme with 81 kDa) and processed to a 40 kDa proenzyme which was further degraded to give 30 kDa active enzyme.
It appears that the newly synthesized protease is inactive, and activation takes place during germination. CPRHG has a broad substrate specificity and stability in pH, temperature, etc. therefore, this protease may turn out to be an efficient choice for the pharmaceutical, medicinal, food, and biotechnology industry.
PMCID: PMC2784799  PMID: 19919695
3.  Draft Genome Sequence of the Formaldehyde-Resistant Fungus Byssochlamys spectabilis No. 5 (Anamorph Paecilomyces variotii No. 5) (NBRC109023) 
Genome Announcements  2014;2(1):e01162-13.
Byssochlamys spectabilis no. 5 (anamorph Paecilomyces variotii no. 5) (NBRC109023) was isolated from a soil sample in 2001 in Kumamoto Prefecture, Japan. This fungus is highly resistant to formaldehyde. Here, we report a draft genome sequence of P. variotii no. 5; this draft was produced with the intent of investigating the mechanism of formaldehyde resistance. This is the first report of the genome sequence of any Paecilomyces species.
PMCID: PMC3886963  PMID: 24407650
The Journal of Cell Biology  1974;60(1):221-235.
A biochemical and cytochemical study has been made of the distribution of ATPase in mature and differentiating phloem cells of Nicotiana tabacum and of the substrate specificity and effects of fixation on enzyme activity. Homogenates of unfixed leaf midveins and midveins fixed in formaldehyde-glutaraldehyde were assayed for enzyme activity by determining the amount of Pi, liberated per milligram of protein from various substrates in a 30 min period at pH 7.2. In fresh homogenates, hydrolysis of ATP was not significantly different from that of ITP, CTP, and UTP. Hydrolysis of GTP was slightly higher than that of ATP. ATP hydrolysis by fresh homogenates was 17% more extensive than that of ADP, 76% more extensive than that of 5'-AMP, and was inhibited by fluoride and p-chloromercuribenzoate (PCMB). There was little or no hydrolysis of the competitive inhibitors 2'- and 3'-AMP nor with the alternate substrates p-nitrophenylphosphate (PNP) or β-glycerophosphate (β-GP). In homogenates of material fixed in formaldehyde-glutaraldehyde for 1¼ h, ATPase activity was 13% preserved. Hydrolysis of ATP by fixed homogenates was not significantly different from that of ADP, 5'-AMP, ITP, CTP, and GTP. Hydrolysis of UTP was lower. Fluoride and PCMB inhibited fixed ATPase activity. The results of cytochemical localization experiments using a lead phosphate precipitation technique were in agreement with the biochemical results. Similar localization patterns were obtained with the nucleoside triphosphates ATP, CTP, GTP, ITP, and UTP. Activity was also localized with ADP and 5'-AMP but not with the competitive inhibitors 2'- and 3'-AMP, nor with PNP or β-GP. Little or no reaction product was deposited in other controls incubated without substrate or with substrate plus fluoride, PCMB, or N-ethylmaleimide. ATPase activity was demonstrated chiefly at the plasma membrane of mature and differentiating phloem cells and was associated with the P-protein of mature sieve elements. It is suggested that the phloem transport system derives its energy from the demonstrated nucleoside triphosphatase activity.
PMCID: PMC2109145  PMID: 4271979
5.  Purification and partial characterization of thermostable serine alkaline protease from a newly isolatedBacillus subtilis PE-11 
AAPS PharmSciTech  2003;4(4):440-448.
The purpose of the research was to study the purification and partial characterization of thermostable serine alkaline protease from a newly isolatedBacillus subtilis PE-11. The enzyme was purified in a 2-step procedure involving ammonium sulfate precipitation and Sephadex G-200 gel permeation chromatography. The enzyme was shown to have a relative low molecular weight of 15 kd by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and was purified 21-fold with a yield of 7.5%. It was most active at 60°C, pH 10, with casein as substrate. It was stable between pH 8 and 10. This enzyme was almost 100% stable at 60°C even after 350 minutes of incubation. It was strongly activated by metal ions such as Ca2+, Mg+2, and Mn+2. Enzyme activity was inhibited strongly by phenylmethyl sulphonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFP) but was not inhibited by ethylene diamine tetra acetic acid (EDTA), while a slight inhibition was observed with iodoacetate,p-chloromercuric benzoate (pCMB), and β-mercaptoethanol (β-ME). The compatibility of the enzyme was studied with commercial and local detergents in the presence of 10mM CaCl2 and 1M glycine. The addition of 10mM CaCl2 and 1M glycine, individually and in combination, was found to be very effective in improving the enzyme stability where it retained 52% activity even after 3 hours. This enzyme improved the cleansing power of various detergents. It removed blood stains completely when used with detergents in the presence of 10mM CaCl2 and 1M glycine.
PMCID: PMC2750649  PMID: 15198551
alkaline protease; Bacillus subtilis; PE-11; purification; characterization; compatibility
6.  Positive and Negative Transcriptional Regulators of Glutathione-Dependent Formaldehyde Metabolism 
Journal of Bacteriology  2004;186(23):7914-7925.
A glutathione (GSH)-dependent pathway is used for formaldehyde metabolism by a wide variety of prokaryotes and eukaryotes. In this pathway, S-hydroxymethylglutathione, produced by the reaction of formaldehyde with the thiolate moiety of glutathione, is the substrate for a GSH-dependent formaldehyde dehydrogenase (GSH-FDH). While expression of GSH-FDH often increases in the presence of metabolic or exogenous sources of formaldehyde, little is known about the factors that regulate this response. Here, we identify two signal transduction pathways that regulate expression of adhI, the gene encoding GSH-FDH, in Rhodobacter sphaeroides. The loss of the histidine kinase response regulator pair RfdRS or the histidine kinase RfdS increases adhI transcription in the absence of metabolic sources of formaldehyde. Cells lacking RfdRS further increase adhI expression in the presence of metabolic sources of formaldehyde (methanol), suggesting that this negative regulator of GSH-FDH expression does not respond to this compound. In contrast, mutants lacking the histidine kinase response regulator pair AfdRS or the histidine kinase AfdS cannot induce adhI expression in the presence of either formaldehyde or metabolic sources of this compound. AfdR stimulates activity of the adhI promoter in vitro, indicating that this protein is a direct activator of GSH-FDH expression. Activation by AfdR is detectable only after incubation of the protein with acetyl phosphate, suggesting that phosphorylation is necessary for transcription activation. Activation of adhI transcription by acetyl-phosphate-treated AfdR in vitro is inhibited by a truncated RfdR protein, suggesting that this protein is a direct repressor of GSH-FDH expression. Together, the data indicate that AfdRS and RfdRS positively and negatively regulate adhI transcription in response to different signals.
PMCID: PMC529062  PMID: 15547263
7.  Production, Purification of Exo-Polygalacturonase from Soil Isolate Paecilomyces variotii NFCCI 1769 and Its Application 
Indian Journal of Microbiology  2011;52(2):240-246.
The aim of the present study was to produce exo-polygalacturonase from potent soil isolate by submerged fermentation and its application for fruit juice treatment. Pectinase producing strains were selectively isolated from pectin industry waste. A selected isolate C2 was found to produce significant amount of exo-polygalacturonase. The isolate was identified as Paecilomyces variotii on the basis of morphological characteristics and 18S rRNA gene sequence analysis. The exo-polygalacturonase produced by the isolate was purified by ammonium sulphate precipitation, size exclusion chromatography and ion exchange chromatography. The purified enzyme had MW of 39.4 kD based on SDS PAGE. Under partially optimized conditions, purified exo-polygalacturonase showed specific activity of 98.49 U/mg protein at pH 6.0 and 30°C. The enzyme was comparatively stable from 10 to 30°C and the activity decreased with increasing temperature. Purified enzyme brought about considerable reduction in viscosity of fruit juice samples.
PMCID: PMC3386462  PMID: 23729888
Pectinase; Exo-polygalacturonase; Paecilomyces variotii NFCCI 1769
8.  The effects of para-chloromercuribenzoic acid and different oxidative and sulfhydryl agents on a novel, non-AT1, non-AT2 angiotensin binding site identified as neurolysin 
Regulatory peptides  2013;184:104-114.
A novel, non-AT1, non-AT2 brain binding site for angiotensin peptides that is unmasked by p-chloromercuribenzoate (PCMB) has been identified as a membrane associated variant of neurolysin. The ability of different organic and inorganic oxidative and sulfhydryl reactive agents to unmask or inhibit 125I-Sar1Ile8 angiotensin II (SI-Ang II) binding to this site was presently examined. In tissue membranes from homogenates of rat brain and testis incubated in assay buffer containing losartan (10 μM) and PD123319 (10 μM) plus 100 μM PCMB, 5 of the 39 compounds tested inhibited 125I-SI Ang II binding in brain and testis. Mersalyl acid, mercuric chloride (HgCl2) and silver nitrate (AgNO3) most potently inhibited 125I-SI Ang II binding with IC50’s ~1–20 μM This HgCl2 inhibition was independent of any interaction of HgCl2 with angiotensin II (Ang II) based on the lack of effect of HgCl2 on the dipsogenic effects of intracerebroventricularly administered Ang II and 125I-SI Ang II binding to AT1 receptors in the liver. Among sulfhydryl reagents, cysteamine and reduced glutathione (GSH), but not oxidized glutathione (GSSG) up to 1 mM, inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis. Thimerosal and 4-hydroxymercuribenzoate moderately inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis at 100 μM; however, they also unmasked non-AT1, non-AT2 binding independent of PCMB. 4-hydroxybenzoic acid did not promote 125 I-SI Ang II binding to this binding site indicating that only specific organomercurial compounds can unmask the binding site. The common denominator for all of these interacting substances is the ability to bind to protein cysteine sulfur. Comparison of cysteines between neurolysin and the closely related enzyme thimet oligopeptidase revealed an unconserved cysteine (cys650, based on the full length variant) in the proposed ligand binding channel (Brown et al., 2001) [1] near the active site of neurolysin. It is proposed that the mercuric ion in PCMB and closely related organomercurial compounds binds to cys650, while the acidic anion forms an ionic bond with a nearby arginine or lysine along the channel to effect a conformational change in neurolysin that promotes Ang II binding.
PMCID: PMC4152863  PMID: 23511333
Neurolysin; Angiotensin II; Radioligand binding; p-chloromercuribenzoate; organomercurial; cysteine sulfhydryl; brain; testis
9.  Isolation, Purification, and Characterization of Fungal Laccase from Pleurotus sp. 
Enzyme Research  2011;2011:248735.
Laccases are blue copper oxidases (E.C. benzenediol: oxygen oxidoreductase) that catalyze the one-electron oxidation of phenolics, aromatic amines, and other electron-rich substrates with the concomitant reduction of O2 to H2O. They are currently seen as highly interesting industrial enzymes because of their broad substrate specificity. A positive strain was isolated and characterized as nonspore forming Basidiomycetes Pleurotus sp. Laccase activity was determined using ABTS as substrate. Laccase was purified by ionexchange and gel filtration chromatography. The purified laccase was a monomer showed a molecular mass of 40 ± 1 kDa as estimated by SDS-PAGE and a 72-fold purification with a 22% yield. The optimal pH and temperature were 4.5 and 65°C, respectively. The Km and Vmax values are 250 (mM) and 0.33 (μmol/min), respectively, for ABTS as substrate. Metal ions like CuSO4, BaCl2, MgCl2, FeCl2, ZnCl2 have no effect on purified laccase whereas HgCl2 and MnCl2 moderately decrease enzyme activity. SDS and sodium azide inhibited enzyme activity, whereas Urea, PCMB, DTT, and mercaptoethanol have no effect on enzyme activity. The isolated laccase can be used in development of biosensor for detecting the phenolic compounds from the effluents of paper industries.
PMCID: PMC3184503  PMID: 21977312
10.  Purification and Characterization of α-l-Arabinopyranosidase and α-l-Arabinofuranosidase from Bifidobacterium breve K-110, a Human Intestinal Anaerobic Bacterium Metabolizing Ginsenoside Rb2 and Rc 
Applied and Environmental Microbiology  2003;69(12):7116-7123.
Two arabinosidases, α-l-arabinopyranosidase (no EC number) and α-l-arabinofuranosidase (EC, were purified from ginsenoside-metabolizing Bifidobacterium breve K-110, which was isolated from human intestinal microflora. α-l-Arabinopyranosidase was purified to apparent homogeneity, using a combination of ammonium sulfate fractionation, DEAE-cellulose, butyl Toyopearl, hydroxyapatite Ultrogel, QAE-cellulose, and Sephacryl S-300 HR column chromatography, with a final specific activity of 8.81 μmol/min/mg. α-l-Arabinofuranosidase was purified to apparent homogeneity, using a combination of ammonium sulfate fractionation, DEAE-cellulose, butyl Toyopearl, hydroxyapatite Ultrogel, Q-Sepharose, and Sephacryl S-300 column chromatography, with a final specific activity of 6.46 μmol/min/mg. The molecular mass of α-l-arabinopyranosidase was found to be 310 kDa by gel filtration, consisting of four identical subunits (77 kDa each, measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]), and that of α-l-arabinofuranosidase was found to be 60 kDa by gel filtration and SDS-PAGE. α-l-Arabinopyranosidase and α-l-arabinofuranosidase showed optimal activity at pH 5.5 to 6.0 and 40°C and pH 4.5 and 45°C, respectively. Both purified enzymes were potently inhibited by Cu2+ and p-chlormercuryphenylsulfonic acid. α-l-Arabinopyranosidase acted to the greatest extent on p-nitrophenyl-α-l-arabinopyranoside, followed by ginsenoside Rb2. α-l-Arabinofuranosidase acted to the greatest extent on p-nitrophenyl-α-l-arabinofuranoside, followed by ginsenoside Rc. Neither enzyme acted on p-nitrophenyl-β-galactopyranoside or p-nitrophenyl-β-d-fucopyranoside. These findings suggest that the biochemical properties and substrate specificities of these purified enzymes are different from those of previously purified α-l-arabinosidases. This is the first reported purification of α-l-arabinopyranosidase from an anaerobic Bifidobacterium sp.
PMCID: PMC309963  PMID: 14660356
11.  Characterization of a Novel, Antifungal, Chitin-Binding Protein from Streptomyces tendae Tü901 That Interferes with Growth Polarity 
Journal of Bacteriology  1999;181(24):7421-7429.
The afp1 gene, which encodes the antifungal protein AFP1, was cloned from nikkomycin-producing Streptomyces tendae Tü901, using a nikkomycin-negative mutant as a host and screening transformants for antifungal activity against Paecilomyces variotii in agar diffusion assays. The 384-bp afp1 gene has a low G+C content (63%) and a transcription termination structure with a poly(T) region, unusual attributes for Streptomyces genes. AFP1 was purified from culture filtrate of S. tendae carrying the afp1 gene on the multicopy plasmid pIJ699. The purified protein had a molecular mass of 9,862 Da and lacked a 42-residue N-terminal peptide deduced from the nucleotide sequence. AFP1 was stable at extreme pH values and high temperatures and toward commercial proteinases. AFP1 had limited similarity to cellulose-binding domains of microbial plant cell wall hydrolases and bound to crab shell chitin, chitosan, and cell walls of P. variotii but showed no enzyme activity. The biological activity of AFP1, which represents the first chitin-binding protein from bacteria exhibiting antifungal activity, was directed against specific ascomycetes, and synergistic interaction with the chitin synthetase inhibitor nikkomycin inhibited growth of Aspergillus species. Microscopy studies revealed that fluorescein-labeled AFP1 strongly bound to the surface of germinated conidia and to tips of growing hyphae, causing severe alterations in cell morphogenesis that gave rise to large spherical conidia and/or swollen hyphae and to atypical branching.
PMCID: PMC94197  PMID: 10601197
12.  Purification and properties of chorismate mutase-prephenate dehydratase and prephenate dehydrogenase from Alcaligenes eutrophus. 
Journal of Bacteriology  1976;126(2):712-722.
Chorismate mutase and prephenate dehydratase from Alcaligenes autophus H16 were purified 470-fold with a yield of 24%. During the course of purification, including chromatography on diethylaminoethyl (DEAE)-cellulose, phenylalanine-substituted Sepharose, Sephadex G-200 and hydrogyapatite, both enzymes appeared in association. The ratio of their specific activities remained almost constant. The molecular weight of chorismate mutase-prephenast dehydratase varied from 144,000 to 187,000 due to the three different determination methods used. Treatment of electrophoretically homogeneous mutase-dehydratase with sodium dodecyl sulfate dissociated the enzyme into a single component of molecular weight 47,000, indicating a tetramer of identical subunits. The isoelectric point of the bifunctional enzyme was 5.8. Prephenate dehydrogenase was not associated with other enzyme activities; it was separated from mutasedehydratase by DEAE-cellulose chromatgraphy. Chromatography on DEAE Sephadex, Sephadex G-200, and hydroxyapatite resulted in a 740-fold purification with a yield of 10%. The molecular weight of the enzyme was 55,000 as determined by sucrose gradient centrifugation and 65,000 as determined by gel filtration or electrophoresis. Its isoelectric point was pH 6.6. In the overall conversion of chorismate to phenylpyruvate, free prephenate was formed which accumulated in the reaction mixture. The dissociation of prephenate allowed prephenate dehydrogenase to compete with prephenate dehydratase for the substrate.
PMCID: PMC233205  PMID: 1262315
13.  Correlation of Biological Activity and Reactor Performance in Biofiltration of Toluene with the Fungus Paecilomyces variotii CBS115145 
A biofiltration system inoculated with the mold Paecilomyces variotii CBS115145 showed a toluene elimination capacity (EC) of around 250 g/m3 of biofilter/h, which was higher than the values usually reported for bacteria. P. variotii assimilated m- and p-cresols but not the o isomer. Initial toluene hydroxylation occurred both on the methyl group and through the p-cresol pathway. These results were corroborated by detecting benzyl alcohol, benzaldehyde, and p-cresol as volatile intermediates. In liquid cultures with toluene as a substrate, the activity of toluene oxygenase (TO) was 5.6 nmol of O2/min/mg of biomass, and that of benzyl alcohol dehydrogenase was 16.2 nmol of NADH/min/mg of protein. Toluene biodegradation determined from the TO activity in the biofilter depended on the biomass distribution and the substrate concentration. The specific enzymatic activity decreased from 6.3 to 1.9 nmol of O2/min/mg of biomass along the reactor. Good agreement was found between the EC calculated from the TO activity and the EC measured on the biofilter. The results were confirmed by short-time biofiltration experiments. Average EC measured in different biofiltration experiments and EC calculated from the TO activity showed a linear relation, suggesting that in the biofilters, EC was limited by biological reaction. As the enzymatic activities of P. variotii were similar to those reported for bacteria, the high performance of the fungal biofilters can possibly be explained by the increased transfer of the hydrophobic compounds, including oxygen, from the gas phase to the mycelia, overcoming the transfer problems associated with the flat bacterial biofilms.
PMCID: PMC1183337  PMID: 16085815
14.  Purification and characterization of a developmentally regulated carboxypeptidase from Mucor racemosus. 
Journal of Bacteriology  1992;174(2):447-455.
A developmentally regulated carboxypeptidase was purified from hyphae of the dimorphic fungus Mucor racemosus. The enzyme, designated carboxypeptidase 3 (CP3), has been purified greater than 900-fold to homogeneity and characterized. The carboxypeptidase migrated as a single electrophoretic band in isoelectric focusing polyacrylamide gel electrophoresis (PAGE), with an isoelectric point of pH 4.4. The apparent molecular mass of the native enzyme was estimated by gel filtration to be 52 kDa. Sodium dodecyl sulfate (SDS)-PAGE under nonreducing conditions revealed the presence of a single polypeptide of 51 kDa. SDS-PAGE of CP3 reacted with 2-mercaptoethanol revealed the presence of two polypeptides of 31 and 18 kDa, indicating a dimer structure (alpha 1 beta 1) of the enzyme with disulfide-linked subunits. By using [1,3-3H]diisopropylfluorophosphate as an active-site labeling reagent, it was determined that the catalytic site resides on the small subunit of the carboxypeptidase. With N-carboben zoxy-L-phenylalanyl-L-leucine (N-CBZ-Phe-Leu) as the substrate, the Km, kcat, and Vmax values were 1.7 x 10(-4) M, 490 s-1, and 588 mumol of Leu released per min per mg of protein, respectively. CP3 was determined to be a serine protease, since its catalytic activity was blocked by the serine protease inhibitors diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, and 3,4-dichloroi Socoumarin (DCI). The enzyme was strongly inhibited by the mercurial compound p-chloromercuribenzoate. The carboxypeptidase readily hydrolyzed peptides with aliphatic or aromatic side chains, whereas most of the peptides which contained glycine in the penultimate position did not serve as substrates for the enzyme. Although CP3 activity was undetectable in Mucor yeast cells, antisera revealed the presence of the enzyme in the yeast form of the fungus. The partial amino acid sequence of the carboxypeptidase was determined.
PMCID: PMC205736  PMID: 1729237
15.  Halomethane:Bisulfide/Halide Ion Methyltransferase, an Unusual Corrinoid Enzyme of Environmental Significance Isolated from an Aerobic Methylotroph Using Chloromethane as the Sole Carbon Source 
Applied and Environmental Microbiology  1999;65(10):4301-4312.
A novel dehalogenating/transhalogenating enzyme, halomethane:bisulfide/halide ion methyltransferase, has been isolated from the facultatively methylotrophic bacterium strain CC495, which uses chloromethane (CH3Cl) as the sole carbon source. Purification of the enzyme to homogeneity was achieved in high yield by anion-exchange chromatography and gel filtration. The methyltransferase was composed of a 67-kDa protein with a corrinoid-bound cobalt atom. The purified enzyme was inactive but was activated by preincubation with 5 mM dithiothreitol and 0.5 mM CH3Cl; then it catalyzed methyl transfer from CH3Cl, CH3Br, or CH3I to the following acceptor ions (in order of decreasing efficacy): I−, HS−, Cl−, Br−, NO2−, CN−, and SCN−. Spectral analysis indicated that cobalt in the native enzyme existed as cob(II)alamin, which upon activation was reduced to the cob(I)alamin state and then was oxidized to methyl cob(III)alamin. During catalysis, the enzyme shuttles between the methyl cob(III)alamin and cob(I)alamin states, being alternately demethylated by the acceptor ion and remethylated by halomethane. Mechanistically the methyltransferase shows features in common with cobalamin-dependent methionine synthase from Escherichia coli. However, the failure of specific inhibitors of methionine synthase such as propyl iodide, N2O, and Hg2+ to affect the methyltransferase suggests significant differences. During CH3Cl degradation by strain CC495, the physiological acceptor ion for the enzyme is probably HS−, a hypothesis supported by the detection in cell extracts of methanethiol oxidase and formaldehyde dehydrogenase activities which provide a metabolic route to formate. 16S rRNA sequence analysis indicated that strain CC495 clusters with Rhizobium spp. in the alpha subdivision of the Proteobacteria and is closely related to strain IMB-1, a recently isolated CH3Br-degrading bacterium (T. L. Connell Hancock, A. M. Costello, M. E. Lidstrom, and R. S. Oremland, Appl. Environ. Microbiol. 64:2899–2905, 1998). The presence of this methyltransferase in bacterial populations in soil and sediments, if widespread, has important environmental implications.
PMCID: PMC91570  PMID: 10508052
16.  Alcohol Dehydrogenase from Methylobacterium organophilum 
The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum.
PMCID: PMC243041  PMID: 80974
17.  Thermostable Aldolase from Thermus aquaticus 
Journal of Bacteriology  1970;101(2):541-550.
Data are presented on the purification and properties of the thermostable fructose-1,6-diphosphate aldolase of Thermus aquaticus, a nonsporulating, extreme thermophile. The enzyme shows little activity at temperatures below 60 C and optimal activity at about 95 C. The enzyme was purified 43-fold by diethylaminoethyl cellulose column chromatography and Sephadex G-200 gel filtration. The enzyme is activated by high concentrations of NH4+ and low concentrations of Fe2+ and Co2+ and is strongly inhibited by ethylenediaminetetraacetic acid (EDTA). The activation by Fe2+ and Co2+ and the inhibition by EDTA are both reversed by dialysis. The enzyme is greatly activated by cysteine and less so by other sulfhydryl compounds. Activation by cysteine is reversible by dialysis. The purified enzyme had a molecular weight as determined by Sephadex G-200 gel filtration of 140,000; after incubation of enzyme with cysteine, another molecular species was also found with a molecular weight of 70,000. The purified enzyme is stable at low protein concentrations to 97 C but is rapidly inactivated at 105 C. In cysteine the enzyme is more heat labile; heat inactivation in the presence of cysteine is prevented by substrate, although, in the absence of cysteine, substrate partially labilizes the enzyme to heat. The temperature optimum for enzyme activity is several degrees lower in the presence of cysteine than in its absence, and the Km is threefold lower. It is concluded that the T. aquaticus enzyme resembles some other aldolases of Rutter's class II, except for its extreme heat stability. The T. aquaticus enzyme is compared with that of Bacillus stearothermophilus, a moderate thermophile. Although the T. aquaticus enzyme is considerably more heat stable, the enzymes from the two thermophiles have many similarities. New data are presented which show that the B. stearothermophilus aldolase is metal ion-dependent, in disagreement with earlier reports.
PMCID: PMC284939  PMID: 4984076
18.  Purification and Properties of a Thermophilic Bacteriophage Lytic Enzyme 1 
Journal of Virology  1967;1(3):617-625.
A phage lytic enzyme was isolated from lysates of Bacillus stearothermophilus (NCA 1503-4R). The enzyme was purified 1,998-fold with a 27% recovery of enzyme activity. By use of polyacrylamide gel electrophoresis and sucrose gradient centrifugation the enzyme was judged free from protein contaminants. The lytic enzyme was active over a pH range of 6.0 to 7.0, with a maximum at 6.3, and it was stable between pH 7.0 and 8.0 and at 5.0 and unstable between pH 5.5 and 6.5. The temperature coefficient (Q10) was 2.27 between 35 and 45 C, 2.01 between 45 and 55 C, and 2.00 between 50 and 60 C. Lytic enzyme in 0.1 m sodium phosphate was not inactivated after a 1-hr exposure to temperatures below 65.5 C, whereas a 1% inactivation was observed at 70.6 C. A 2-hr exposure at 60.1, 65.5, and 70.6 C resulted in an inactivation of 1.2, 9.6, and 12.0%, respectively. A sodium phosphate concentration of at least 0.1 m was necessary for the prolonged exposure of lytic enzyme at 55 C (pH 6.3), whereas 0.005 m was required for maximal lytic activity. Lytic activity was stimulated 169, 165, and 160% by 10−4m Mg++, Ca++, and Mn++, respectively. Lytic activity was inhibited 75% by 10−4m ethylenediaminetetraacetic acid (EDTA). The EDTA inhibition could be reversed by the addition of excess Mg++, Ca++, or Mn++. Lytic activity was not affected by NaCl, KCl, or NH4Cl. Lytic activity was inhibited 100, 91, 25, 61, and 56% by 10−4m Hg++, Cu++, Zn++, p-chloromercuribenzoate, and p-hydroxymercuribenzoate, respectively. Cysteine or 2-mercaptoethanol did not stimulate lytic activity, nor were these sulfhydryl compounds required for maintenance of enzyme activity during handling or storage. Cell walls were rapidly solubilized when incubated with lytic enzyme. Lytic action was complete after 1.5 min, with a 70% reduction in optical density (OD). Cell walls without lytic enzyme showed no reduction in OD during this period. The solubilization of N-terminal amino groups paralleled the reduction in OD and reached a level of 0.3 μmole/mg of cell wall after 4 min of incubation. Cell walls with and without lytic enzyme treatment showed a 3- and a 1.3-fold increase, respectively, in N-terminal amino groups after 3 hr of incubation. There was no release of reducing power in either the untreated cell wall suspensions or those treated with lytic enzyme. Electron micrographs of treated and untreated cell walls showed that the enzyme partially degrades the cell wall with the release of small wall fragments.
PMCID: PMC375292  PMID: 4990043
19.  Identification of Paecilomyces variotii in Clinical Samples and Settings▿  
Journal of Clinical Microbiology  2010;48(8):2754-2761.
Paecilomyces variotii is a commonly occurring species in air and food, but it is also associated with many types of human infections and is among the emerging causative agents of opportunistic mycoses in immunocompromised hosts. Paecilomyces can cause hyalohyphomycosis, and two species, Paecilomyces lilacinus and P. variotii, are the most frequently encountered organisms. In the present study, a set of 34 clinical isolates morphologically identified as P. variotii or P. lilacinus were formally identified by sequencing intergenic transcribed spacer regions 1 and 2 (including 5.8S rDNA) and a part of the β-tubulin gene. Three isolates were identified as P. lilacinus, and five of the presumptive P. variotii isolates did not belong to the genus Paecilomyces but were identified as Talaromyces eburneus (anamorph, Geosmithia argillacea) or Hamigera avellanea (anamorph, Merimbla ingelheimense). Applying the most recent taxonomy, we found that the clinical P. variotii isolates could be identified as P. variotii sensu stricto (14 strains), P. formosus (11 strains), and P. dactylethromorphus (1 strain). These data indicate that P. formosus occurs in clinical samples as commonly as P. variotii. Susceptibility tests showed that the antifungal susceptibility profiles of P. variotii, P. formosus, and P. dactylethromorphus are similar and that all strains tested were susceptible to amphotericin B in vitro. P. lilanicus, T. eburneus, and H. avellanea had different susceptibility profiles; and flucytosine and voriconazole were the least active of the antifungal drugs tested against these species. Our results indicate that correct species identification is important to help guide appropriate antifungal therapy.
PMCID: PMC2916617  PMID: 20519470
20.  The Formation of S-[1-(N2-deoxyguanosinyl)methyl]glutathione between Glutathione and DNA Induced by Formaldehyde 
Formaldehyde is an essential metabolic intermediate in human cells and can also enter into the body through environmental exposures. It is classified as a human and animal carcinogen according to the International Agency for Research on Cancer (IARC). Previous research has demonstrated that formaldehyde is genotoxic, causing mutations in multiple genes. However, no exogenous formaldehyde-induced DNA adducts have been detected in animals after inhalation exposure, although formaldehyde can result in N6-deoxyadenosine, N2-deoxyguanosine and N4-deoxycytidine adducts in vitro. This can be partially attributed to the rapid metabolism of formaldehyde by glutathione (GSH)-dependent enzyme systems. Among the intermediates in the pathway of formaldehyde detoxication, S-hydroxymethylglutathione is a reactive species and has the potential to further conjugate with DNA bases. Here, we have demonstrated the formation of S-[1-(N2-deoxyguanosinyl)methyl]glutathione between glutathione and DNA in the presence of formaldehyde. This adduct is unique because of the involvement of S-hydroxymethylglutathione which is a key player during the detoxication of formaldehyde.
PMCID: PMC3277947  PMID: 19239220
21.  Separation of phenylalanine transport events by using selective inhibitors, and identification of a specific uncoupler activity in Yersinia pestis. 
Journal of Bacteriology  1975;122(3):1053-1061.
Phenylalanine transport in Yersinia pestis TJW was differentially inhibited by sulfhydryl blocking reagents, uncoupling agents, and respiratory inhibitors. Kinetic studies with potassium cyanide and sodium azide showed that these compounds have no immediate effect on the initial rate of phenylalanine transport, but have an immediate and severe inhibitory effect on the rate of oxygen uptake. Identical studies with p-chloromercuribenzoate (pCMB) and 2,4-dinitrophenol (DNP) showed that these compounds have an instantaneous and total inhibitory effect on phenylalanine transport. DNP stimulated oxygen uptake, and pCMB caused only a sluggish inhibiton of oxygen uptake. pCMB acted as a competitive inhibitor of phenylalanine transport, whereas DNP inhibitied noncompetitively. Arrenius plots of the initial rate of phenylalanine transport in pCMB- and DNP-treated cells showed that DNP alters the transition temperature of the phenylalanine transport system from 17 C for control cells to 12 C. DNP did not inhibit transport when cells were treated at temperatures of 2 to 10 C. PCMB did not alter the normal transition temperature and inhibited phenylalanine transport over a 2 to 30 C temperature range. Efflux induced by both pCMB and DNP were blocked by placing cells at low temperatures (2 to 20 C). Inhibition of adenosine 5'-triphosphate synthesis by DNP did not show any temperature sensitivity as did phenylalanine transport. These data indicate that: (i) respiration is not obligatory for active transport of phenylalanine in Y. pestis TJW; and (ii) pCMB inhibits transport activity by reacting with the sulfhydryl group(s) at the carrier binding site. The data show that the uncoupler, DNP, selectively alters a temperature-dependent property of phenylalanine transport, that is not related to uncoupling activity of DNP , and probably involves membrane lipid alterations.
PMCID: PMC246159  PMID: 1150617
22.  Dihydroxyacetone synthase from a methanol-utilizing carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803. 
Journal of Bacteriology  1997;179(19):6041-6047.
Acinetobacter sp. strain JC1 DSM 3803, a carboxydobacterium, grown on methanol was found to show dihydroxyacetone synthase, dihydroxyacetone kinase, and ribulose 1,5-bisphosphate carboxylase, but no hydroxypyruvate reductase and very low hexulose 6-phosphate synthase, activities. The dihydroxyacetone synthase was found to be expressed earlier than the ribulose 1,5-bisphosphate carboxylase. The dihydroxyacetone synthase was purified 19-fold in eight steps to homogeneity, with a yield of 9%. The final specific activity of the purified enzyme was 1.12 micromol of NADH oxidized per min per mg of protein. The molecular weight of the native enzyme was determined to be 140,000. Sodium dodecyl sulfate-gel electrophoresis revealed a subunit of molecular weight 73,000. The optimum temperature and pH were 30 degrees C and 7.0, respectively. The enzyme was inactivated very rapidly at 70 degrees C. The enzyme required Mg2+ and thiamine pyrophosphate for maximal activity. Xylulose 5-phosphate was found to be the best substrate when formaldehyde was used as a glycoaldehyde acceptor. Erythrose 4-phosphate, glycolaldehyde, and formaldehyde were found to act as excellent substrates when xylulose 5-phosphate was used as a glycoaldehyde donor. The Kms for formaldehyde and xylulose 5-phosphate were 1.86 mM and 33.3 microM, respectively. The enzyme produced dihydroxyacetone from formaldehyde and xylulose 5-phosphate. The enzyme was found to be expressed only in cells grown on methanol and shared no immunological properties with the yeast dihydroxyacetone synthase.
PMCID: PMC179506  PMID: 9324250
23.  Plasmid-mediated formaldehyde resistance in Escherichia coli: characterization of resistance gene. 
Antimicrobial Agents and Chemotherapy  1996;40(10):2276-2279.
The formaldehyde resistance mechanisms in the formaldehyde-resistant strain Escherichia coli VU3695 were investigated. A large (4.6-kb) plasmid DNA fragment encompassing the formaldehyde resistance gene was sequenced. A single 1,107-bp open reading frame encoding a glutathione- and NAD-dependent formaldehyde dehydrogenase was identified and sequenced, and the enzyme was expressed in an in vitro assay and purified. Amino acid sequence homology studies showed 62.4 to 63.2% identity with class III alcohol dehydrogenases isolated from horse, human, and rat livers. We demonstrated that the resistance mechanism in the formaldehyde-resistant strain E. coli VU3695 and in other formaldehyde-resistant members of the family Enterobacteriaceae is based on the enzymatic degradation of formaldehyde by a formaldehyde dehydrogenase.
PMCID: PMC163518  PMID: 8891129
24.  Methylenetetrahydrofolate Dehydrogenase of the Amethopterin-resistant Strain Streptococcus faecium var. durans Ak and Its Repressibility by Serine 
Journal of Bacteriology  1968;95(5):1779-1789.
The methylenetetrahydrofolate dehydrogenase of the amethopterin-resistant strain Streptococcus faecium var. durans Ak was purified 100-fold. Because it is extremely labile, this enzyme required protection by 1 mm nicotinamide adenine dinucleotide phosphate (NADP+) during purification; 0.01 mm EADP+ with 0.1% bovine plasma albumin stabilized the purified enzyme during storage at −20 C. Although the enzyme has properties of sulfhydryl enzymes, thiol compounds were not stabilizers. Oxidation of methylenetetrahydrofolate, catalyzed by the purified enzyme preparation, is NADP+-specific and yields methenyltetrahydrofolate and the reduced pyridine nucleotide. Km values for NADP+ and for 5,10-methylenetetrahydrofolate (prepared as the formaldehyde adduct of biologically synthesized l,l-tetrahydrofolate) were calculated to be 0.021 and 0.026 mm, respectively. Neither purine bases and their derivatives nor serine inhibited the reaction. In growing cultures, the differential rate of synthesis of the methylenetetrahydrofolate dehydrogenase was dependent upon the composition of the medium. A medium which contained acid-hydrolyzed casein, and thus an exogenous source of serine, was repressive for this enzyme. In a serine-free, completely defined medium, the amount of folate added (for serine synthesis de novo) affected the duration of the initial exponential growth phase. At the termination of this phase, which primarily reflected the onset of a decreased rate of serine biosynthesis, synthesis of the methylenetetrahydrofolate dehydrogenase was derepressed. Exogenous serine in the completely defined medium prevented the derepression. Furthermore, physiological concentrations of l-serine were repressive not only for the dehydrogenase but also for the methenyltetrahydrofolate cyclohydrolase and the serine hydroxymethyl-transferase. Concomitantly, the differential rate of synthesis of the formyltetrahydrofolate synthetase of S. faecium var. durans Ak was increased. Apparently, serine regulates the differential rates of syntheses of these enzymes.
PMCID: PMC252212  PMID: 4384970
25.  Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts. 
Methyl formate synthase, which catalyzes methyl formate formation during the growth of methylotrophic yeasts, was purified to homogeneity from methanol-grown Candida boidinii and Pichia methanolica cells. Both purified enzymes were tetrameric, with identical subunits with molecular masses of 42 to 45 kDa, containing two atoms of zinc per subunit. The enzymes catalyze NAD(+)-linked dehydrogenation of the hydroxyl group of the hemiacetal adduct [CH2(OH)OCH3] of methanol and formaldehyde, leading to the formation of a stoichiometric amount of methyl formate. Although neither methanol nor formaldehyde alone acted as a substrate for the enzymes, they showed simple NAD(+)-linked alcohol dehydrogenase activity toward aliphatic long-chain alcohols such as octanol, showing that they belong to the class III alcohol dehydrogenase family. The methyl formate synthase activity of C. boidinii was found in the mitochondrial fraction in subcellular fractionation experiments, suggesting that methyl formate synthase is a homolog of Saccharomyces cerevisiae Adh3p. These results indicate that formaldehyde could be oxidized in a glutathione-independent manner by methyl formate synthase in methylotrophic yeasts. The significance of methyl formate synthase in both formaldehyde resistance and energy metabolism is also discussed.
PMCID: PMC168467  PMID: 9143107

Results 1-25 (614183)