Search tips
Search criteria

Results 1-25 (409374)

Clipboard (0)

Related Articles

1.  Secretory Phosphatases Deficient Mutant of Mycobacterium tuberculosis Imparts Protection at the Primary Site of Infection in Guinea Pigs 
PLoS ONE  2013;8(10):e77930.
The failure of Mycobacterium bovis Bacille Calmette-Guérin to impart satisfactory protection against adult pulmonary tuberculosis has necessitated the development of more effective TB vaccines. The assumption that the vaccine strain should be antigenically as similar as possible to the disease causing pathogen has led to the evaluation of M.tuberculosis mutants as candidate tuberculosis vaccines.
Methods/Principal Findings
In this study, we have generated a mutant of M.tuberculosis (Mtb∆mms) by disrupting 3 virulence genes encoding a mycobacterial secretory acid phosphatase (sapM) and two phosphotyrosine protein phosphatases (mptpA and mptpB) and have evaluated its protective efficacy in guinea pigs. We observed that Mtb∆mms was highly attenuated in THP-1 macrophages. Moreover, no bacilli were recovered from the lungs and spleens of guinea pigs after 10 weeks of Mtb∆mms inoculation, although, initially, the mutant exhibited some growth in the spleens. Subsequently, when Mtb∆mms was evaluated for its protective efficacy, we observed that similar to BCG vaccination, Mtb∆mms exhibited a significantly reduced CFU in the lungs of guinea pigs when compared with the unvaccinated animals at 4 weeks after challenge. In addition, our observations at 12 weeks post challenge demonstrated that Mtb∆mms exhibited a more sustainable and superior protection in lungs as compared to BCG. However, the mutant failed to control the hematogenous spread as the splenic bacillary load between Mtb∆mms vaccinated and sham immunized animals was not significantly different. The gross pathological observations and histopathological observations corroborated the bacterial findings. Inspite of disruption of phosphatase genes in MtbΔmms, the lipid profiles of M.tuberculosis and MtbΔmms were identical indicating thereby that the phenotype of the mutant was ascribed to the loss of phosphatase genes and the influence was not related to any alteration in the lipid composition.
This study highlights the importance of M.tuberculosis mutants in imparting protection against pulmonary TB.
PMCID: PMC3799640  PMID: 24205032
2.  The fbpA/sapM Double Knock Out Strain of Mycobacterium tuberculosis Is Highly Attenuated and Immunogenic in Macrophages 
PLoS ONE  2012;7(5):e36198.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death due to bacterial infections in mankind, and BCG, an attenuated strain of Mycobacterium bovis, is an approved vaccine. BCG sequesters in immature phagosomes of antigen presenting cells (APCs), which do not fuse with lysosomes, leading to decreased antigen processing and reduced Th1 responses. However, an Mtb derived ΔfbpA attenuated mutant underwent limited phagosome maturation, enhanced immunogenicity and was as effective as BCG in protecting mice against TB. To facilitate phagosome maturation of ΔfbpA, we disrupted an additional gene sapM, which encodes for an acid phosphatase. Compared to the wild type Mtb, the ΔfbpAΔsapM (double knock out; DKO) strain was attenuated for growth in mouse macrophages and PMA activated human THP1 macrophages. Attenuation correlated with increased oxidants in macrophages in response to DKO infection and enhanced labeling of lysosomal markers (CD63 and rab7) on DKO phagosomes. An in vitro Antigen 85B peptide presentation assay was used to determine antigen presentation to T cells by APCs infected with DKO or other mycobacterial strains. This revealed that DKO infected APCs showed the strongest ability to present Ag85B to T cells (>2500 pgs/mL in 4 hrs) as compared to APCs infected with wild type Mtb or ΔfbpA or ΔsapM strain (<1000 pgs/mL in 4 hrs), indicating that DKO strain has enhanced immunogenicity than other strains. The ability of DKO to undergo lysosomal fusion and vacuolar acidification correlated with antigen presentation since bafilomycin, that inhibits acidification in APCs, reduced antigen presentation. Finally, the DKO vaccine elicited a better Th1 response in mice after subcutaneous vaccination than either ΔfbpA or ΔsapM. Since ΔfbpA has been used in mice as a candidate vaccine and the DKO (ΔfbpAΔsapM) mutant is more immunogenic than ΔfbpA, we propose the DKO is a potential anti-tuberculosis vaccine.
PMCID: PMC3344844  PMID: 22574140
3.  Immunogenicity and Protective Efficacy of Prime-Boost Regimens with Recombinant ΔureC hly+ Mycobacterium bovis BCG and Modified Vaccinia Virus Ankara Expressing M. tuberculosis Antigen 85A against Murine Tuberculosis▿  
Infection and Immunity  2008;77(2):622-631.
In the light of the recent emergence of multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis, the epidemic of tuberculosis (TB) in populations coinfected with human immunodeficiency virus, and the failure of Mycobacterium bovis bacillus Calmette-Guerin (BCG) to protect against disease, new vaccines against TB are urgently needed. Two promising new vaccine candidates are the recombinant ΔureC hly+ BCG (recBCG), which has been developed to replace the current BCG vaccine strain, and modified vaccinia virus Ankara (MVA) expressing M. tuberculosis antigen 85A (MVA85A), which is a leading candidate vaccine designed to boost the protective efficacy of BCG. In the present study, we examined the effect of MVA85A boosting on the protection afforded at 12 weeks postchallenge by BCG and recBCG by using bacterial CFU as an efficacy readout. recBCG-immunized mice were significantly better protected against aerosol challenge with M. tuberculosis than mice immunized with the parental strain of BCG. Intradermal boosting with MVA85A did not reduce the bacterial burden any further. In order to identify a marker for the development of a protective immune response against M. tuberculosis challenge, we analyzed splenocytes after priming or prime-boosting by using intracytoplasmic cytokine staining and assays for cytokine secretion. Boosting with MVA85A, but not priming with BCG or recBCG, greatly increased the antigen 85A-specific T-cell response, suggesting that the mechanism of protection may differ from that against BCG or recBCG. We show that the numbers of systemic multifunctional cytokine-producing cells did not correlate with protection against aerosol challenge in BALB/c mice. This emphasizes the need for new biomarkers for the evaluation of TB vaccine efficacy.
PMCID: PMC2632018  PMID: 19064635
4.  Identification of a Mycobacterium bovis BCG Auxotrophic Mutant That Protects Guinea Pigs against M. bovis and Hematogenous Spread of Mycobacterium tuberculosis without Sensitization to Tuberculin 
Infection and Immunity  2000;68(12):7094-7099.
Tuberculosis remains one of the most significant diseases of humans and animals. The only currently available vaccine against this disease is a live, attenuated vaccine, bacillus Calmette-Guérin (BCG), which was originally derived from Mycobacterium bovis and despite its variable efficacy is the most widely administered vaccine in the world. With the advent of the human immunodeficiency virus-AIDS pandemic concern has been raised over the safety of BCG. Moreover, since BCG sensitizes vaccinated individuals to the tuberculin test, vaccination with BCG prevents diagnosis of infection in vaccinated individuals. Recently, auxotrophic strains of BCG have been generated by insertional mutagenesis which have been shown to be safer than the parent BCG strain following administration to mice with severe combined immunodeficiency disease. These strains have also been shown to give comparable protection against intravenous and intratracheal challenge of BALB/c mice with M. tuberculosis relative to conventional BCG. Here we report that one of these mutants, a leucine auxotroph of BCG, conferred significant protection of the lungs and spleens of guinea pigs infected with M. bovis and protection of the spleens of guinea pigs infected with M. tuberculosis in the absence of a cutaneous hypersensitivity reaction to tuberculin. Therefore, protective immunity to tuberculosis may, at least in part, be achieved without sensitization to the tuberculin skin test. These results indicate that it may be possible to develop a new generation of vaccines based on BCG that are protective, are safe for use in the immunocompromised, and do not preclude the use of the tuberculin skin test in both humans and animals.
PMCID: PMC97820  PMID: 11083835
5.  Enhanced and Enduring Protection against Tuberculosis by Recombinant BCG-Ag85C and Its Association with Modulation of Cytokine Profile in Lung 
PLoS ONE  2008;3(12):e3869.
The variable efficacy (0–80%) of Mycobacterium bovis Bacille Calmette Guréin (BCG) vaccine against adult tuberculosis (TB) necessitates development of alternative vaccine candidates. Development of recombinant BCG (rBCG) over-expressing promising immunodominant antigens of M. tuberculosis represents one of the potential approaches for the development of vaccines against TB.
Methods/Principal Findings
A recombinant strain of BCG - rBCG85C, over expressing the antigen 85C, a secretory immuno-dominant protein of M. tuberculosis, was evaluated for its protective efficacy in guinea pigs against M. tuberculosis challenge by aerosol route. Immunization with rBCG85C resulted in a substantial reduction in the lung (1.87 log10, p<0.01) and spleen (2.36 log10, p<0.001) bacillary load with a commensurate reduction in pathological damage, when compared to the animals immunized with the parent BCG strain at 10 weeks post-infection. rBCG85C continued to provide superior protection over BCG even when post-challenge period was prolonged to 16 weeks. The cytokine profile of pulmonary granulomas revealed that the superior protection imparted by rBCG85C was associated with the reduced levels of pro-inflammatory cytokines - interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, moderate levels of anti-inflammatory cytokine - transforming growth factor (TGF)-β along with up-regulation of inducible nitric oxide synthase (iNOS). In addition, the rBCG85C vaccine induced modulation of the cytokine levels was found to be associated with reduced fibrosis and antigen load accompanied by the restoration of normal lung architecture.
These results clearly indicate the superiority of rBCG85C over BCG as a promising prophylactic vaccine against TB. The enduring protection observed in this study gives enough reason to postulate that if an open-ended study is carried out with low dose of infection, rBCG85C vaccine in all likelihood would show enhanced survival of guinea pigs.
PMCID: PMC2586085  PMID: 19052643
6.  Secreted Acid Phosphatase (SapM) of Mycobacterium tuberculosis Is Indispensable for Arresting Phagosomal Maturation and Growth of the Pathogen in Guinea Pig Tissues 
PLoS ONE  2013;8(7):e70514.
Tuberculosis (TB) is responsible for nearly 1.4 million deaths globally every year and continues to remain a serious threat to human health. The problem is further complicated by the growing incidence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), emphasizing the need for the development of new drugs against this disease. Phagosomal maturation arrest is an important strategy employed by Mycobacterium tuberculosis to evade the host immune system. Secretory acid phosphatase (SapM) of M.tuberculosis is known to dephosphorylate phosphotidylinositol 3-phosphate (PI3P) present on phagosomes. However, there have been divergent reports on the involvement of SapM in phagosomal maturation arrest in mycobacteria. This study was aimed at reascertaining the involvement of SapM in phagosomal maturation arrest in M.tuberculosis. Further, for the first time, we have also studied whether SapM is essential for the pathogenesis of M.tuberculosis. By deleting the sapM gene of M.tuberculosis, we demonstrate that MtbΔsapM is defective in the arrest of phagosomal maturation as well as for growth in human THP-1 macrophages. We further show that MtbΔsapM is severely attenuated for growth in the lungs and spleen of guinea pigs and has a significantly reduced ability to cause pathological damage in the host when compared with the parental strain. Also, the guinea pigs infected with MtbΔsapM exhibited a significantly enhanced survival when compared with M.tuberculosis infected animals. The importance of SapM in phagosomal maturation arrest as well as in the pathogenesis of M.tuberculosis establishes it as an attractive target for the development of new therapeutic molecules against tuberculosis.
PMCID: PMC3724783  PMID: 23923000
7.  Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin 
Journal of Clinical Investigation  2005;115(9):2472-2479.
The tuberculosis vaccine Mycobacterium bovis bacille Calmette-Guérin (BCG) was equipped with the membrane-perforating listeriolysin (Hly) of Listeria monocytogenes, which was shown to improve protection against Mycobacterium tuberculosis. Following aerosol challenge, the Hly-secreting recombinant BCG (hly+ rBCG) vaccine was shown to protect significantly better against aerosol infection with M. tuberculosis than did the parental BCG strain. The isogenic, urease C–deficient hly+ rBCG (ΔureC hly+ rBCG) vaccine, providing an intraphagosomal pH closer to the acidic pH optimum for Hly activity, exhibited still higher vaccine efficacy than parental BCG. ΔureC hly+ rBCG also induced profound protection against a member of the M. tuberculosis Beijing/W genotype family while parental BCG failed to do so consistently. Hly not only promoted antigen translocation into the cytoplasm but also apoptosis of infected macrophages. We concluded that superior vaccine efficacy of ΔureC hly+ rBCG as compared with parental BCG is primarily based on improved cross-priming, which causes enhanced T cell–mediated immunity.
PMCID: PMC1187936  PMID: 16110326
8.  Tuberculosis vaccine strain Mycobacterium bovis BCG Russia is a natural recA mutant 
BMC Microbiology  2008;8:120.
The current tuberculosis vaccine is a live vaccine derived from Mycobacterium bovis and attenuated by serial in vitro passaging. All vaccine substrains in use stem from one source, strain Bacille Calmette-Guérin. However, they differ in regions of genomic deletions, antigen expression levels, immunogenicity, and protective efficacy.
As a RecA phenotype increases genetic stability and may contribute restricting the ongoing evolution of the various BCG substrains while maintaining their protective efficacy, we aimed to inactivate recA by allelic replacement in BCG vaccine strains representing different phylogenetic lineages (Pasteur, Frappier, Denmark, Russia). Homologous gene replacement was achieved successfully in three out of four strains. However, only illegitimate recombination was observed in BCG substrain Russia. Sequence analyses of recA revealed that a single nucleotide insertion in the 5' part of recA led to a translational frameshift with an early stop codon making BCG Russia a natural recA mutant. At the protein level BCG Russia failed to express RecA.
According to phylogenetic analyses BCG Russia is an ancient vaccine strain most closely related to the parental M. bovis. We hypothesize that recA inactivation in BCG Russia occurred early and is in part responsible for its high degree of genomic stability, resulting in a substrain that has less genetic alterations than other vaccine substrains with respect to M. bovis AF2122/97 wild-type.
PMCID: PMC2483709  PMID: 18637199
9.  The Impact of Alcohol on BCG-Induced Immunity Against Mycobacterium tuberculosis 
Alcoholics are at heightened risk for developing active tuberculosis. This study evaluates chronic alcohol consumption in a murine model of vaccination with Mycobacterium bovis Bacille-Calmette Guèrin (BCG) and subsequent pulmonary infection with virulent Mycobacterium tuberculosis.
BALB/c mice were administered the Lieber-DeCarli liquid ethanol diet (LED) or pair-fed the liquid control diet (LCD) for three weeks either before or after subcutaneous vaccination with M. bovis BCG. At least three weeks after BCG vaccination, groups of mice on the above diets were challenged with intratracheal infection with M. tuberculosis H37Rv. Lung mycobacterial burden, and lung and lung-associated lymph node CD4+ lymphocyte production of TB-specific interferon (IFN)-γ were assayed. Popliteal lymph node lymphocytes from both dietary regimens undergoing BCG vaccination (in the absence of M. tuberculosis infection) were also evaluated for PPD-induced interferon (IFN)-γ production by ELISpot assay.
Mice begun on alcohol prior to vaccination with M. bovis BCG demonstrated impaired control of pulmonary challenge with virulent M. tuberculosis, as well as impaired lung CD4+ and popliteal lymph node T cell IFN-γ responses. If BCG vaccination was delivered prior to initiation of alcohol feeding, the mice remained protected against a subsequent challenge with M. tuberculosis, and BCG-induced immunity was not impaired in either the lung or the popliteal lymph nodes.
Alcohol consumption blunts the development of the adaptive immune response to M. bovis BCG vaccination, which impairs the control of a secondary challenge with M. tuberculosis, but only if the alcohol exposure is begun prior to BCG vaccination. These results provide insight into mechanisms by which alcohol consumption impairs antimycobacterial immunity, including in response to vaccination and subsequent pathogenic challenge.
PMCID: PMC3266991  PMID: 22014229
Alcohol; M. tuberculosis; BCG vaccination; CD4+ lymphocytes; IFN-γ
10.  Lysine Auxotrophy Combined with Deletion of the SecA2 Gene Results in a Safe and Highly Immunogenic Candidate Live Attenuated Vaccine for Tuberculosis 
PLoS ONE  2011;6(1):e15857.
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a major global health problem, despite the widespread use of the M. bovis Bacille Calmette-Guerin (BCG) vaccine and the availability of drug therapies. In recent years, the high incidence of coinfection of M. tuberculosis and HIV, as well as escalating problems associated with drug resistance, has raised ominous concerns with regard to TB control. Vaccination with BCG has not proven highly effective in controlling TB, and also has been associated with increasing concerns about the potential for the vaccine to cause disseminated mycobacterial infection in HIV infected hosts. Thus, the development of an efficacious and safe TB vaccine is generally viewed as a critical to achieving control of the ongoing global TB pandemic. In the current study, we have analyzed the vaccine efficacy of an attenuated M. tuberculosis strain that combines a mutation that enhances T cell priming (ΔsecA2) with a strongly attenuating lysine auxotrophy mutation (ΔlysA). The ΔsecA2 mutant was previously shown to be defective in the inhibition of apoptosis and markedly increased priming of antigen-specific CD8+ T cells in vivo. Similarly, the ΔsecA2ΔlysA strain retained enhanced apoptosis and augmented CD8+ T cell stimulatory effects, but with a noticeably improved safety profile in immunosuppressed mice. Thus, the M. tuberculosis ΔsecA2ΔlysA mutant represents a live attenuated TB vaccine strain with the potential to deliver increased protection and safety compared to standard BCG vaccination.
PMCID: PMC3018466  PMID: 21264335
11.  Surface Expression of MPT64 as a Fusion with the PE Domain of PE_PGRS33 Enhances Mycobacterium bovis BCG Protective Activity against Mycobacterium tuberculosis in Mice▿  
Infection and Immunity  2010;78(12):5202-5213.
To improve the current vaccine against tuberculosis, a recombinant strain of Mycobacterium bovis bacillus Calmette-Guérin (rBCG) expressing a Mycobacterium tuberculosis vaccine candidate antigen (MPT64) in strong association with the mycobacterial cell wall was developed. To deliver the candidate antigen on the surface, we fused the mpt64 gene to the sequence encoding the PE domain of the PE_PGRS33 protein of M. tuberculosis (to create strain HPE-ΔMPT64-BCG), which we have previously shown to transport proteins to the bacterial surface. In a series of protection experiments in the mouse model of tuberculosis, we showed that (i) immunization of mice with HPE-ΔMPT64-BCG provides levels of protection significantly higher than those afforded by the parental BCG strain, as assessed by bacterial colonization in lungs and spleens and by lung involvement (at both 28 and 70 days postchallenge), (ii) rBCG strains expressing MPT64 provide better protection than the parental BCG strain only when this antigen is surface expressed, and (iii) the HPE-ΔMPT64-BCG-induced MPT64-specific T cell repertoire when characterized by β chain variable region-β chain joining region (BV-BJ) spectratyping indicates that protection is correlated with the ability to recruit gamma interferon (IFN-γ)-secreting T cells carrying the BV8.3-BJ1.5 (172 bp) shared rearrangement. These results demonstrate that HPE-ΔMPT64-BCG is one of the most effective new vaccines tested so far in the mouse model of tuberculosis and underscore the impact of antigen cellular localization on the induction of the specific immune response induced by rBCG.
PMCID: PMC2981302  PMID: 20921146
12.  The Glycosylated Rv1860 Protein of Mycobacterium tuberculosis Inhibits Dendritic Cell Mediated TH1 and TH17 Polarization of T Cells and Abrogates Protective Immunity Conferred by BCG 
PLoS Pathogens  2014;10(6):e1004176.
We previously reported interferon gamma secretion by human CD4+ and CD8+ T cells in response to recombinant E. coli-expressed Rv1860 protein of Mycobacterium tuberculosis (MTB) as well as protection of guinea pigs against a challenge with virulent MTB following prime-boost immunization with DNA vaccine and poxvirus expressing Rv1860. In contrast, a Statens Serum Institute Mycobacterium bovis BCG (BCG-SSI) recombinant expressing MTB Rv1860 (BCG-TB1860) showed loss of protective ability compared to the parent BCG strain expressing the control GFP protein (BCG-GFP). Since Rv1860 is a secreted mannosylated protein of MTB and BCG, we investigated the effect of BCG-TB1860 on innate immunity. Relative to BCG-GFP, BCG-TB1860 effected a significant near total reduction both in secretion of cytokines IL-2, IL-12p40, IL-12p70, TNF-α, IL-6 and IL-10, and up regulation of co-stimulatory molecules MHC-II, CD40, CD54, CD80 and CD86 by infected bone marrow derived dendritic cells (BMDC), while leaving secreted levels of TGF-β unchanged. These effects were mimicked by BCG-TB1860His which carried a 6-Histidine tag at the C-terminus of Rv1860, killed sonicated preparations of BCG-TB1860 and purified H37Rv-derived Rv1860 glycoprotein added to BCG-GFP, but not by E. coli-expressed recombinant Rv1860. Most importantly, BMDC exposed to BCG-TB1860 failed to polarize allogeneic as well as syngeneic T cells to secrete IFN-γ and IL-17 relative to BCG-GFP. Splenocytes from mice infected with BCG-SSI showed significantly less proliferation and secretion of IL-2, IFN-γ and IL-17, but secreted higher levels of IL-10 in response to in vitro restimulation with BCG-TB1860 compared to BCG-GFP. Spleens from mice infected with BCG-TB1860 also harboured significantly fewer DC expressing MHC-II, IL-12, IL-2 and TNF-α compared to mice infected with BCG-GFP. Glycoproteins of MTB, through their deleterious effects on DC may thus contribute to suppress the generation of a TH1- and TH17-dominated adaptive immune response that is vital for protection against tuberculosis.
Author Summary
Tuberculosis (TB), although recognized as an infectious disease for centuries, is still the leading cause of human deaths, claiming a million lives annually. Successful control of TB, either through drugs or effective preventive vaccines has not been achieved despite decades of research. We have studied the role for mannosylated protein Rv1860 of MTB in interfering with the early response of dendritic cells, which belong to the host's innate immune arsenal, to this mycobacterium. We were able to show that incorporating the gene coding for Rv1860 of MTB into the safe vaccine strain BCG resulted in loss of BCG's protective ability in the guinea pig animal model. Using primary mouse bone marrow derived dendritic cells in vitro as well as spleen dendritic cells from infected mice, we show in this study that exposure to mannosylated Rv1860 leads to loss of dendritic cell functions such as cytokine secretion and T cell activation. This leads to defective downstream T cell responses to the mycobacteria. We suggest that altering or extinguishing the expression of such glycoproteins by mycobacteria may be a strategy for developing better vaccines against TB.
PMCID: PMC4055742  PMID: 24945624
13.  A Booster Vaccine Expressing a Latency-Associated Antigen Augments BCG Induced Immunity and Confers Enhanced Protection against Tuberculosis 
PLoS ONE  2011;6(8):e23360.
In spite of a consistent protection against tuberculosis (TB) in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG) fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB.
Methods/Principal Findings
In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin- a key latency antigen of M. tuberculosis to boost the BCG induced immunity. ‘BCG prime – DNA boost’ regimen (B/D) confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log10 and 1.96 log10 fewer bacilli in lungs and spleen, respectively; p<0.01). In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3+) simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and interleukin (IL)2.
These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.
PMCID: PMC3157374  PMID: 21858087
14.  Enhanced Protection against Bovine Tuberculosis after Coadministration of Mycobacterium bovis BCG with a Mycobacterial Protein Vaccine-Adjuvant Combination but Not after Coadministration of Adjuvant Alone▿  
Current efforts are aimed at optimizing the protective efficacy of Mycobacterium bovis BCG by the use of vaccine combinations. We have recently demonstrated that the protection afforded by BCG alone is enhanced by vaccinating cattle with a combination of vaccines comprising BCG and a protein tuberculosis vaccine, namely, culture filtrate proteins (CFPs) from M. bovis plus an adjuvant. In the current study, three different adjuvant systems were compared. The CFP was formulated with a depot adjuvant, dimethyldioctadecyl ammonium bromide (DDA), together with one of three different immunostimulants: monophosphoryl lipid A (MPL), a synthetic mycobacterial phosphatidylinositol mannoside-2 (PIM2), and a synthetic lipopeptide (Pam3Cys-SKKKK [Pam3CSK4]). Groups of cattle (n = 10/group) were vaccinated with BCG-CFP-DDA-PIM2, BCG-CFP-DDA-MPL, or BCG-CFP-DDA-Pam3CSK4. Two additional groups (n = 10) were vaccinated with BCG alone or BCG-adjuvant (DDA-MPL), and a control group was left unvaccinated. Protection was assessed by challenging the cattle intratracheally with M. bovis. Groups of cattle vaccinated with BCG-CFP-DDA-PIM2, BCG-CFP-DDA-MPL, BCG-CFP-DDA-Pam3CSK4, and BCG alone showed significant reductions in three, three, five, and three pathological and microbiological disease parameters, respectively, compared to the results for the nonvaccinated group. Vaccination with the combination of BCG and the DDA-MPL adjuvant alone abrogated the protection conferred by BCG alone. The profiling of cytokine gene expression following vaccination, prior to challenge, did not illuminate significant differences which could explain the latter result. Vaccination of cattle with a combination of BCG and protein tuberculosis vaccine enhances protection against tuberculosis.
PMCID: PMC2394838  PMID: 18337375
15.  Elevated ex vivo monocyte chemotactic protein-1 (CCL2) in pulmonary as compared with extra-pulmonary tuberculosis 
BMC Immunology  2005;6:14.
Tuberculosis causes 3 million deaths annually. The most common site of tuberculosis is pulmonary however; extra-pulmonary forms of the disease also remain prevalent. Restriction of Mycobacterium tuberculosis depends on effective recruitment and subsequent activation of T lymphocytes, mononuclear and polymorphonuclear cells to the site of infection. Tumor necrosis factor (TNF)-α is essential for granuloma formation and is a potent activator of monocyte chemotactic protein (MCP-1, CCL2). CCL2 is essential for recruitment of monocytes and T cells and has been shown to play a role in protection against tuberculosis. Interleukin -8 (CXCL8) is a potent activator of neutrophils. Increased levels of CCL2, CXCL8 and TNFα are reported in tuberculosis but their significance in different forms of tuberculosis is as yet unclear. We have used an ex vivo assay to investigate differences in immune parameters in patients with either pulmonary or extra-pulmonary tuberculosis.
Serum levels of CCL2, CXCL8 and TNFα were measured in patients with pulmonary tuberculosis (N = 12), extra-pulmonary tuberculosis (N = 8) and BCG-vaccinated healthy volunteers (N = 12). Whole blood cells were stimulated with non-pathogenic Mycobacterium bovis bacille-Calmette Guerin (BCG) vaccine strain or bacterial lipopolysaccharide (LPS) and cyto/chemokines were monitored in supernatants.
Circulating serum levels of CXCL8 and TNFα were raised in all tuberculosis patients, while CCL2 levels were not. There was no difference in spontaneous cytokine secretion from whole blood cells between patients and controls. M. bovis BCG-induced ex vivo CCL2 secretion was significantly greater in pulmonary as compared with both extra-pulmonary tuberculosis patients and endemic controls. In response to LPS stimulation, patients with pulmonary tuberculosis showed increased CCL2 and TNFα responses as compared with the extra-pulmonary group. BCG-, and LPS-induced CXCL8 secretion was comparable between patients and controls.
CCL2 is activated by TNFα and is essential for recruitment of monocytes and T cells to the site of mycobacterial infection. Increased CCL2 activation in pulmonary tuberculosis may result in a stronger cellular response as compared with extra-pulmonary tuberculosis patients, and this may contribute to the localization of infection to the pulmonary site.
PMCID: PMC1182368  PMID: 16001981
16.  Subcutaneous Administration of a 10-Fold-Lower Dose of a Commercial Human Tuberculosis Vaccine, Mycobacterium bovis Bacillus Calmette-Guérin Danish, Induced Levels of Protection against Bovine Tuberculosis and Responses in the Tuberculin Intradermal Test Similar to Those Induced by a Standard Cattle Dose 
Clinical and Vaccine Immunology : CVI  2013;20(10):1559-1562.
Vaccination of cattle with a commercial human tuberculosis (TB) vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG) Danish, at a dose equivalent to 5 human doses of BCG has protected these animals against TB in field and experimental trials. There is interest in determining whether a 10-fold-lower dose could still protect cattle but not induce a tuberculin intradermal test response. Two groups of calves (n = 9/group) were vaccinated subcutaneously with a lyophilized BCG Danish vaccine containing either 0.5 (1 × 105 to 4 × 105 CFU) or 5 (1 × 106 to 4 × 106 CFU) human doses of BCG Danish, with an additional group of 10 calves serving as nonvaccinated controls. Fifteen weeks after vaccination, these animals were challenged intratracheally with 5 × 103 CFU of virulent M. bovis and another 15 weeks later were slaughtered and examined for the presence of tuberculous lesions. Vaccination of the calves with either 0.5 or 5 equivalent human doses of BCG Danish induced similar levels of protection against challenge with M. bovis, with both groups showing significant reductions in the pathological and microbiological parameters compared to those for the the control group (P < 0.05). Vaccination with either of the two BCG doses induced similar numbers of animals responding to the tuberculin intradermal test at 11 weeks postvaccination. Vaccination with a 0.5 equivalent human dose of a commercial lyophilized BCG vaccine can protect cattle against challenge with M. bovis.
PMCID: PMC3807190  PMID: 23925885
17.  ELISPOT Refinement Using Spot Morphology for Assessing Host Responses to Tuberculosis 
Cells  2012;1(1):5-14.
Tuberculosis is a global health problem. The Mycobacterium bovis Bacille Calmette Guerin (BCG) vaccine has variable efficacy (0-80%) so there is a drive to develop novel vaccines. The cytokine, interferon gamma (IFNγ), is an essential component of the protective response to M. tuberculosis (M. tb) infection and is also produced in response to BCG vaccination. Induction of an IFNγ response is used as a biomarker of successful vaccination in the assessment of new tuberculosis (TB) vaccines. The IFNγ ELISPOT assay provides an important tool for TB research. It is used for both the diagnosis of infection (T.Spot assay), and for the evaluation of the immunogenicity of new TB vaccine candidates in human clinical trials, in the non-human primate (NHP) model of TB infection studies. The ELISPOT assay captures IFNγ produced by peripheral blood mononuclear cells (PBMCs) following specific stimulation, onto a membrane so individual cells can be enumerated and the frequency of responding cells determined. Hence spot forming units (SFU) per 106 cells provide the traditional measure for ELISPOT assays. The discriminatory power of SFU is limited. In some situations, the number of SFU in BCG vaccinated, and unvaccinated, subjects was found to be similar, although the spots were observed to be larger in vaccinated subjects. Spot size potentially provides a measure of the quantity of cytokine produced by individual cells. The AID ELISPOT plate reader software used to determine frequency of spots also has the capability to determine the size of each spot. Consideration of spot size in combination with spot forming units was investigated in our studies of BCG immunogenicity. This additional readout was found to enhance the discriminatory power of the ELISPOT assay, and provide more information on the immune response to BCG vaccination and infection with M.tb.
PMCID: PMC3972643  PMID: 24710359
ELISPOT; IFNγ; tuberculosis; BCG
18.  Vaccination of Cattle with a CpG Oligodeoxynucleotide-Formulated Mycobacterial Protein Vaccine and Mycobacterium bovis BCG Induces Levels of Protection against Bovine Tuberculosis Superior to Those Induced by Vaccination with BCG Alone  
Infection and Immunity  2005;73(6):3540-3546.
The development of a subunit protein vaccine for bovine tuberculosis which could be used either in combination with Mycobacterium bovis BCG (to improve the efficacy of that vaccine) or alone would offer significant advantages over currently available strategies. A study was conducted with cattle to determine the protective efficacy of a strategy based on concurrent immunization with an M. bovis culture filtrate (CFP) vaccine and BCG compared to vaccination with either vaccine alone. One group of calves (10 animals per group) was vaccinated subcutaneously with CFP formulated with Emulsigen and combined with a CpG oligodeoxynucleotide (ODN). A second group was vaccinated with both the CFP vaccine and BCG injected at adjacent sites (CFP-BCG). One further group was vaccinated subcutaneously with BCG, while another group served as nonvaccinated control animals. Vaccination with CFP-BCG induced levels of antigen-specific gamma interferon (IFN-γ) and interleukin-2 (IL-2) in whole-blood cultures that were higher than those induced by vaccination with BCG alone. The combination of CFP and BCG did not enhance the production of antibodies to M. bovis CFP compared to vaccination with CFP alone. Vaccination with CFP alone led to delayed antigen-specific IFN-γ and IL-2 responses. Vaccination with CFP-BCG induced a high level of protection against an intratracheal challenge with virulent M. bovis, based on a significant enhancement of six pathological and microbiological parameters of protection compared with the nonvaccinated group. In contrast, vaccination with BCG alone induced a significant enhancement of protection in only one parameter, while CFP alone induced no protection. These results suggest that a combination of a CpG ODN-formulated protein vaccine and BCG offers better protection against bovine tuberculosis than does BCG alone.
PMCID: PMC1111861  PMID: 15908383
19.  Formulation of a mmaA4 Gene Deletion Mutant of Mycobacterium bovis BCG in Cationic Liposomes Significantly Enhances Protection against Tuberculosis 
PLoS ONE  2012;7(3):e32959.
A new vaccination strategy is urgently needed for improved control of the global tuberculosis (TB) epidemic. Using a mouse aerosol Mycobacterium tuberculosis challenge model, we investigated the protective efficacy of a mmaA4 gene deletion mutant of Mycobacterium bovis BCG (ΔmmaA4BCG) formulated in dimethyl dioctadecyl ammonium bromide (DDA) – D(+) trehalose 6,6 dibenenate (TDB) (DDA/TDB) adjuvant. In previous studies, deletion of the mmaA4 gene was shown to reduce the suppression of IL-12 production often seen after mycobacterial infections. While the non-adjuvanted ΔmmaA4BCG strain did not protect mice substantially better than conventional BCG against a tuberculous challenge in four protection experiments, the protective responses induced by the ΔmmaA4BCG vaccine formulated in DDA/TDB adjuvant was consistently increased relative to nonadjuvanted BCG controls. Furthermore, the ΔmmaA4BCG-DDA/TDB vaccine induced significantly higher frequencies of multifunctional (MFT) CD4 T cells expressing both IFNγ and TNFα (double positive) or IFNγ, TNFα and IL-2 (triple positive) than CD4 T cells derived from mice vaccinated with BCG. These MFT cells were characterized by having higher IFNγ and TNFα median fluorescence intensity (MFI) values than monofunctional CD4 T cells. Interestingly, both BCG/adjuvant and ΔmmaA4BCG/adjuvant formulations induced significantly higher frequencies of CD4 T cells expressing TNFα and IL-2 than nonadjuvanted BCG or ΔmmaA4BCG vaccines indicating that BCG/adjuvant mixtures may be more effective at inducing central memory T cells. Importantly, when either conventional BCG or the mutant were formulated in adjuvant and administered to SCID mice or immunocompromised mice depleted of IFNγ, significantly lower vaccine-derived mycobacterial CFU were detected relative to immunodeficient mice injected with non-adjuvanted BCG. Overall, these data suggest that immunization with the ΔmmaA4BCG/adjuvant formulation may be an effective, safe, and relatively inexpensive alternative to vaccination with conventional BCG.
PMCID: PMC3307709  PMID: 22442674
20.  Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection 
BMC Genomics  2011;12:493.
Studies of Mycobacterium bovis BCG strains used in different countries and vaccination programs show clear variations in the genomes and immune protective properties of BCG strains. The aim of this study was to characterise the genomic and immune proteomic profile of the BCG 1931 strain used in Mexico.
BCG Mexico 1931 has a circular chromosome of 4,350,386 bp with a G+C content and numbers of genes and pseudogenes similar to those of BCG Tokyo and BCG Pasteur. BCG Mexico 1931 lacks Region of Difference 1 (RD1), RD2 and N-RD18 and one copy of IS6110, indicating that BCG Mexico 1931 belongs to DU2 group IV within the BCG vaccine genealogy. In addition, this strain contains three new RDs, which are 53 (RDMex01), 655 (RDMex02) and 2,847 bp (REDMex03) long, and 55 single-nucleotide polymorphisms representing non-synonymous mutations compared to BCG Pasteur and BCG Tokyo. In a comparative proteomic analysis, the BCG Mexico 1931, Danish, Phipps and Tokyo strains showed 812, 794, 791 and 701 protein spots, respectively. The same analysis showed that BCG Mexico 1931 shares 62% of its protein spots with the BCG Danish strain, 61% with the BCG Phipps strain and only 48% with the BCG Tokyo strain. Thirty-nine reactive spots were detected in BCG Mexico 1931 using sera from subjects with active tuberculosis infections and positive tuberculin skin tests.
BCG Mexico 1931 has a smaller genome than the BCG Pasteur and BCG Tokyo strains. Two specific deletions in BCG Mexico 1931 are described (RDMex02 and RDMex03). The loss of RDMex02 (fadD23) is associated with enhanced macrophage binding and RDMex03 contains genes that may be involved in regulatory pathways. We also describe new antigenic proteins for the first time.
PMCID: PMC3199284  PMID: 21981907
21.  Lactoferrin enhanced efficacy of the BCG vaccine to generate host protective responses against challenge with virulent Mycobacterium tuberculosis 
Vaccine  2007;25(37-38):6730-6743.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a disease with world wide consequences, affecting nearly a third of the world’s population. The established vaccine for TB, an attenuated strain of Mycobacterium bovis Calmette Guerin (BCG), has existed since 1921. Lactoferrin, an iron binding protein found in mucosal secretions and granules of neutrophils was hypothesized to be an ideal adjuvant to enhance the efficacy of the BCG vaccine, specifically because of previous reports of lactoferrin enhancement of IL-12 production from macrophages infected with BCG. Different vaccination protocols were investigated for generation of host protective responses against MTB infection using lactoferrin admixed to the BCG vaccine. Resulting effects demonstrate that BCG/lactoferrin increased host protection against MTB infection by decreasing organ bacterial load and reducing lung histopathology; significant reduction in tissue CFUs and pathology were observed post challenge compared to those seen with BCG alone. Addition of lactoferrin to the vaccine led to reduced pathological damage upon subsequent infection with virulent MTB, with positive results demonstrated when admixed in oil-based vehicle (incomplete Freund’s adjuvant; IFA) or when given with BCG in saline. The observed post-challenge results paralleled increasing production of IFN-γ and IL-6, but only limited changes to proinflammatory mediators TNF-α or IL-1β from BCG stimulated splenocytes. Overall, these studies indicate that lactoferrin is a useful and effective adjuvant to improve efficacy of the BCG vaccine, with potential to reduce related tissue damage and pulmonary histopathology.
PMCID: PMC2077858  PMID: 17698261
Lactoferrin; BCG; tuberculosis; vaccine adjuvant; immunization
22.  BCG Induces Protection against Mycobacterium tuberculosis Infection in the Wistar Rat Model 
PLoS ONE  2011;6(12):e28082.
Our understanding of the correlation of Mycobacterium bovis Bacille Calmette-Guerin (BCG)-mediated immune responses and protection against Mycobacterium tuberculosis (Mtb) infection is still limited. We have recently characterized a Wistar rat model of experimental tuberculosis (TB). In the present study, we evaluated the efficacy of BCG vaccination in this model. Upon Mtb challenge, BCG vaccinated rats controlled growth of the bacilli earlier than unvaccinated rats. Histopathology analysis of infected lungs demonstrated a reduced number of granulomatous lesions and lower parenchymal inflammation in vaccinated animals. Vaccine-mediated protection correlated with the rapid accumulation of antigen specific CD4+ and CD8+ T cells in the infected lungs. Immunohistochemistry further revealed higher number of CD8+ cells in the pulmonary granulomas of vaccinated animals. Evaluation of pulmonary immune responses in vaccinated and Mtb infected rats by real time PCR at day 15 post-challenge showed reduced expression of genes responsible for negative regulation of Th1 immune responses. Thus, early protection observed in BCG vaccinated rats correlated with a similarly timed shift of immunity towards the Th1 type response. Our data support the importance of (i) the Th1-Th2 balance in the control of mycobacterial infection and (ii) the value of the Wistar rats in understanding the biology of TB.
PMCID: PMC3230592  PMID: 22162757
23.  Proteomic profile of culture filtrate from the Brazilian vaccine strain Mycobacterium bovis BCG Moreau compared to M. bovis BCG Pasteur 
BMC Microbiology  2011;11:80.
Bacille Calmette-Guerin (BCG) is currently the only available vaccine against tuberculosis (TB) and comprises a heterogeneous family of sub-strains with genotypic and phenotypic differences. The World Health Organization (WHO) affirms that the characterization of BCG sub-strains, both on genomic and proteomic levels, is crucial for a better comprehension of the vaccine. In addition, these studies can contribute in the development of a more efficient vaccine against TB. Here, we combine two-dimensional electrophoresis (2DE) and mass spectrometry to analyse the proteomic profile of culture filtrate proteins (CFPs) from M. bovis BCG Moreau, the Brazilian vaccine strain, comparing it to that of BCG Pasteur. CFPs are considered of great importance given their dominant immunogenicity and role in pathogenesis, being available for interaction with host cells since early infection.
The 2DE proteomic map of M. bovis BCG Moreau CFPs in the pH range 3 - 8 allowed the identification of 158 spots corresponding to 101 different proteins, identified by MS/MS. Comparison to BCG Pasteur highlights the great similarity between these BCG strains. However, quantitative analysis shows a higher expression of immunogenic proteins such as Rv1860 (BCG1896, Apa), Rv1926c (BCG1965c, Mpb63) and Rv1886c (BCG1923c, Ag85B) in BCG Moreau when compared to BCG Pasteur, while some heat shock proteins, such as Rv0440 (BCG0479, GroEL2) and Rv0350 (BCG0389, DnaK), show the opposite pattern.
Here we report the detailed 2DE profile of CFPs from M. bovis BCG Moreau and its comparison to BCG Pasteur, identifying differences that may provide relevant information on vaccine efficacy. These findings contribute to the detailed characterization of the Brazilian vaccine strain against TB, revealing aspects that may lead to a better understanding of the factors leading to BCG's variable protective efficacy against TB.
PMCID: PMC3094199  PMID: 21507239
24.  Simultaneous Inhibition of T Helper 2 and T Regulatory Cell Differentiation by Small Molecules Enhances Bacillus Calmette-Guerin Vaccine Efficacy against Tuberculosis* 
The Journal of Biological Chemistry  2014;289(48):33404-33411.
Background: Immunological parameters induced by BCG and the requirement of immunologic responses for optimal vaccine efficacy is incompletely understood.
Results: Small-molecule inhibitors of Th2 and Treg cells promote BCG vaccine efficacy.
Conclusion: Immunomodulators enhance the capacity of the BCG vaccine to protect against tuberculosis.
Significance: Our studies reveal a simple and cost-effective approach to improve BCG vaccine efficacy.
Tuberculosis affects nine million individuals and kills almost two million people every year. The only vaccine available, Bacillus Calmette-Guerin (BCG), has been used since its inception in 1921. Although BCG induces host-protective T helper 1 (Th1) cell immune responses, which play a central role in host protection, its efficacy is unsatisfactory, suggesting that additional methods to enhance protective immune responses are needed. Recently we have shown that simultaneous inhibition of Th2 cells and Tregs by using the pharmacological inhibitors suplatast tosylate and D4476, respectively, dramatically enhances Mycobacterium tuberculosis clearance and induces superior Th1 responses. Here we show that treatment with these two drugs during BCG vaccination dramatically improves vaccine efficacy. Furthermore, we demonstrate that these drugs induce a shift in the development of T cell memory, favoring central memory T (Tcm) cell responses over effector memory T (Tem) cell responses. Collectively, our findings provide evidence that simultaneous inhibition of Th2 cells and Tregs during BCG vaccination promotes vaccine efficacy.
PMCID: PMC4246096  PMID: 25315774
Cytokine; Immunotherapy; Mycobacterium tuberculosis; T Helper Cells; Vaccine
25.  Tuberculosis vaccines: beyond bacille Calmette–Guérin 
Tuberculosis (TB) disease caused by Mycobacterium tuberculosis (M. tb) remains one of the leading infectious causes of death and disease throughout the world. The only licensed vaccine, Mycobacterium bovis bacille Calmette–Guérin (BCG) confers highly variable protection against pulmonary disease. An effective vaccination regimen would be the most efficient way to control the epidemic. However, BCG does confer consistent and reliable protection against disseminated disease in childhood, and most TB vaccine strategies being developed incorporate BCG to retain this protection. Cellular immunity is necessary for protection against TB and all the new vaccines in development are focused on inducing a strong and durable cellular immune response. There are two main strategies being pursued in TB vaccine development. The first is to replace BCG with an improved whole organism mycobacterial priming vaccine, which is either a recombinant BCG or an attenuated strain of M. tb. The second is to develop a subunit boosting vaccine, which is designed to be administered after BCG vaccination, and to enhance the protective efficacy of BCG. This article reviews the leading candidate vaccines in development and considers the current challenges in the field with regard to efficacy testing.
PMCID: PMC3146779  PMID: 21893541
tuberculosis; vaccine; bacille Calmette–Guérin; clinical trials; efficacy; immune correlates

Results 1-25 (409374)