Search tips
Search criteria

Results 1-25 (1263333)

Clipboard (0)

Related Articles

1.  The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? 
Biology Direct  2006;1:22.
Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes.
I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation.
The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution – numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis – subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views.
this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole.
PMCID: PMC1570339  PMID: 16907971
2.  Recurrent Loss of Specific Introns during Angiosperm Evolution 
PLoS Genetics  2014;10(12):e1004843.
Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss.
Author Summary
The spliceosomal introns are nucleotide sequences that interrupt coding regions of eukaryotic genes and are removed by RNA splicing after transcription. Recent studies have reported several examples of possible recurrent intron loss or gain, i.e., introns that are independently removed from or inserted into the identical sites more than once in an investigated phylogeny. However, the frequency, evolutionary patterns or other characteristics of recurrent intron turnover remain unknown. We provide results for the first comprehensive analysis of recurrent intron turnover within a plant family and show that recurrent intron loss represents a considerable portion of all intron losses identified and intron loss events far outnumber intron gain events. We also demonstrate that recurrent intron loss is non-random, affecting only a small number of introns that are repeatedly lost, and that different lineages show significantly different rates of intron loss. Our results suggest a possible role of DNA methylation in the process of intron loss. Moreover, this study provides strong support for the model of intron loss by reverse transcriptase mediated conversion of genes by their processed mRNA transcripts.
PMCID: PMC4256211  PMID: 25474210
3.  Extensive intron gain in the ancestor of placental mammals 
Biology Direct  2011;6:59.
Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of de novo intron gain in domesticated genes from an analysis of their exon/intron structures.
A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of de novo introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals.
This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The findings of this comprehensive study slightly challenge the current view on the evolutionary stasis in intron dynamics during the last 100 - 200 My. Domesticated genes could constitute an excellent system on which to analyse the mechanisms of intron gain in placental mammals.
Reviewers: this article was reviewed by Dan Graur, Eugene V. Koonin and Jürgen Brosius.
PMCID: PMC3257199  PMID: 22112745
4.  Exon definition as a potential negative force against intron losses in evolution 
Biology Direct  2008;3:46.
Previous studies have indicated that the wide variation in intron density (the number of introns per gene) among different eukaryotes largely reflects varying degrees of intron loss during evolution. The most popular model, which suggests that organisms lose introns through a mechanism in which reverse-transcribed cDNA recombines with the genomic DNA, concerns only one mutational force.
Using exons as the units of splicing-site recognition, exon definition constrains the length of exons. An intron-loss event results in fusion of flanking exons and thus a larger exon. The large size of the newborn exon may cause splicing errors, i.e., exon skipping, if the splicing of pre-mRNAs is initiated by exon definition. By contrast, if the splicing of pre-mRNAs is initiated by intron definition, intron loss does not matter. Exon definition may thus be a selective force against intron loss. An organism with a high frequency of exon definition is expected to experience a low rate of intron loss throughout evolution and have a high density of spliceosomal introns.
The majority of spliceosomal introns in vertebrates may be maintained during evolution not because of potential functions, but because of their splicing mechanism (i.e., exon definition). Further research is required to determine whether exon definition is a negative force in maintaining the high intron density of vertebrates.
This article was reviewed by Dr. Scott W. Roy (nominated by Dr. John Logsdon), Dr. Eugene V. Koonin, and Dr. Igor B. Rogozin (nominated by Dr. Mikhail Gelfand). For the full reviews, please go to the Reviewers' comments section.
PMCID: PMC2614967  PMID: 19014515
5.  Mechanisms of intron gain and loss in Drosophila 
It is widely accepted that orthologous genes have lost or gained introns throughout evolution. However, the specific mechanisms that generate these changes have proved elusive. Introns are known to affect nearly every level of gene expression. Therefore, understanding their mechanism of evolution after their initial fixation in eukaryotes is pertinent to understanding the means by which organisms develop greater regulation and complexity.
To investigate possible mechanisms of intron gain and loss, we identified 189 intron gain and 297 intron loss events among 11 Drosophila species. We then investigated these events for signatures of previously proposed mechanisms of intron gain and loss. This work constitutes the first comprehensive study into the specific mechanisms that may generate intron gains and losses in Drosophila. We report evidence of intron gain via transposon insertion; the first intron loss that may have occurred via non-homologous end joining; intron gains via the repair of a double strand break; evidence of intron sliding; and evidence that internal or 5' introns may not frequently be deleted via the self-priming of reverse transcription during mRNA-mediated intron loss. Our data also suggest that the transcription process may promote or result in intron gain.
Our findings support the occurrence of intron gain via transposon insertion, repair of double strand breaks, as well as intron loss via non-homologous end joining. Furthermore, our data suggest that intron gain may be enabled by or due to transcription, and we shed further light on the exact mechanism of mRNA-mediated intron loss.
PMCID: PMC3296678  PMID: 22182367
6.  Intron Evolution and Information processing in the DNA polymerase α gene in spirotrichous ciliates: A hypothesis for interconversion between DNA and RNA deletion 
Biology Direct  2007;2:6.
The somatic DNA molecules of spirotrichous ciliates are present as linear chromosomes containing mostly single-gene coding sequences with short 5' and 3' flanking regions. Only a few conserved motifs have been found in the flanking DNA. Motifs that may play roles in promoting and/or regulating transcription have not been consistently detected. Moreover, comparing subtelomeric regions of 1,356 end-sequenced somatic chromosomes failed to identify more putatively conserved motifs.
We sequenced and compared DNA and RNA versions of the DNA polymerase α (pol α) gene from nine diverged spirotrichous ciliates. We identified a G-C rich motif aaTACCGC(G/C/T) upstream from transcription start sites in all nine pol α orthologs. Furthermore, we consistently found likely polyadenylation signals, similar to the eukaryotic consensus AAUAAA, within 35 nt upstream of the polyadenylation sites. Numbers of introns differed among orthologs, suggesting independent gain or loss of some introns during the evolution of this gene. Finally, we discuss the occurrence of short direct repeats flanking some introns in the DNA pol α genes. These introns flanked by direct repeats resemble a class of DNA sequences called internal eliminated sequences (IES) that are deleted from ciliate chromosomes during development.
Our results suggest that conserved motifs are present at both 5' and 3' untranscribed regions of the DNA pol α genes in nine spirotrichous ciliates. We also show that several independent gains and losses of introns in the DNA pol α genes have occurred in the spirotrichous ciliate lineage. Finally, our statistical results suggest that proven introns might also function in an IES removal pathway. This could strengthen a recent hypothesis that introns evolve into IESs, explaining the scarcity of introns in spirotrichs. Alternatively, the analysis suggests that ciliates might occasionally use intron splicing to correct, at the RNA level, failures in IES excision during developmental DNA elimination.
This article was reviewed by Dr. Alexei Fedorov (referred by Dr. Manyuan Long), Dr. Martin A. Huynen and Dr. John M. Logsdon.
PMCID: PMC1805493  PMID: 17270054
7.  Origin and evolution of spliceosomal introns 
Biology Direct  2012;7:11.
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
PMCID: PMC3488318  PMID: 22507701
Intron sliding; Intron gain; Intron loss; Spliceosome; Splicing signals; Evolution of exon/intron structure; Alternative splicing; Phylogenetic trees; Mobile domains; Eukaryotic ancestor
8.  Patterns of intron gain and conservation in eukaryotic genes 
The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions.
We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs.
We obtained robust estimates of the contribution of parallel gain to the observed sharing of intron positions between eukaryotic species separated by different evolutionary distances. The results indicate that, although the contribution of parallel gains varies across the phylogenetic tree, the high level of intron position sharing is due, primarily, to evolutionary conservation. Accordingly, numerous introns appear to persist in the same position over hundreds of millions of years of evolution. This is compatible with recent observations of a negative correlation between the rate of intron gain and coding sequence evolution rate of a gene, suggesting that at least some of the introns are functionally relevant.
PMCID: PMC2151770  PMID: 17935625
9.  Multiple gains of spliceosomal introns in a superfamily of vertebrate protease inhibitor genes 
Intron gains reportedly are very rare during evolution of vertebrates, and the mechanisms underlying their creation are largely unknown. Previous investigations have shown that, during metazoan radiation, the exon-intron patterns of serpin superfamily genes were subject to massive changes, in contrast to many other genes.
Here we investigated intron dynamics in the serpin superfamily in lineages pre- and postdating the split of vertebrates. Multiple intron gains were detected in a group of ray-finned fishes, once the canonical groups of vertebrate serpins had been established. In two genes, co-occurrence of non-standard introns was observed, implying that intron gains in vertebrates may even happen concomitantly or in a rapidly consecutive manner. DNA breakage/repair processes associated with genome compaction are introduced as a novel factor potentially favoring intron gain, since all non-canonical introns were found in a lineage of ray-finned fishes that experienced genomic downsizing.
Multiple intron acquisitions were identified in serpin genes of a lineage of ray-finned fishes, but not in any other vertebrates, suggesting that insertion rates for introns may be episodically increased. The co-occurrence of non-standard introns within the same gene discloses the possibility that introns may be gained simultaneously. The sequences flanking the intron insertion points correspond to the proto-splice site consensus sequence MAG↑N, previously proposed to serve as intron insertion site. The association of intron gains in the serpin superfamily with a group of fishes that underwent genome compaction may indicate that DNA breakage/repair processes might foster intron birth.
PMCID: PMC2746811  PMID: 19698129
10.  Intron Evolution in Saccharomycetaceae 
Genome Biology and Evolution  2014;6(9):2543-2556.
Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoid yeast species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery.
PMCID: PMC4202332  PMID: 25364803
intron loss; yeast; fungi
11.  Intron Gains and Losses in the Evolution of Fusarium and Cryptococcus Fungi 
Genome Biology and Evolution  2012;4(11):1148-1161.
The presence of spliceosomal introns in eukaryotic genes poses a major puzzle for the study of genome evolution. Intron densities vary enormously among distant lineages. However, the mechanisms driving intron gains are poorly understood and very few intron gains and losses have been documented over short evolutionary time spans. Fungi emerged recently as excellent models to study intron evolution and “reverse splicing” was found to be a major driver of recent intron gains in a clade of ascomycete fungi. We screened a total of 38 genomes from two fungal clades important in medicine and agriculture to identify intron gains and losses both within and between species. We detected 86 and 198 variable intron positions in the Cryptococcus and Fusarium clades, respectively. Some genes underwent extensive changes in their exon–intron structure, with up to six variable intron positions per gene. We identified a very recently gained intron in a group of tomato-infecting strains belonging to the F. oxysporum species complex. In the human pathogen C. gattii, we found recent intron losses in subtypes of the species. The two studied fungal clades provided evidence for extensive changes in their exon–intron structure within and among closely related species. We show that both intronization of previously coding DNA and insertion of exogenous DNA are the major drivers of intron gains.
PMCID: PMC3514964  PMID: 23054310
spliceosomal introns; intron gains; Fusarium; Cryptococcus; population genomics
12.  Mechanisms of intron gain and loss in Cryptococcus 
Genome Biology  2008;9(1):R24.
Comparison of five relatively closely related yeast Cryptococcus genomes suggests that recombination causes internal intron loss and that DNA repeat expansion can create new introns in a population.
Genome comparisons across deep phylogenetic divergences have revealed that spliceosomal intron gain and loss are common evolutionary events. However, because of the deep divergences involved in these comparisons, little is understood about how these changes occur, particularly in the case of intron gain. To ascertain mechanisms of intron gain and loss, we compared five relatively closely related genomes from the yeast Cryptococcus.
We observe a predominance of intron loss over gain and identify a relatively slow intron loss rate in Cryptococcus. Some genes preferentially lose introns and a large proportion of intron losses occur in the middle of genes (so called internal intron loss). Finally, we identify a gene that displays a differential number of introns in a repetitive DNA region.
Based the observed patterns of intron loss and gain, population resequencing and population genetic analysis, it appears that recombination causes the widely observed but poorly understood phenomenon of internal intron loss and that DNA repeat expansion can create new introns in a population.
PMCID: PMC2395259  PMID: 18234113
13.  Prevalence of intron gain over intron loss in the evolution of paralogous gene families 
Nucleic Acids Research  2004;32(12):3724-3733.
The mechanisms and evolutionary dynamics of intron insertion and loss in eukaryotic genes remain poorly understood. Reconstruction of parsimonious scenarios of gene structure evolution in paralogous gene families in animals and plants revealed numerous gains and losses of introns. In all analyzed lineages, the number of acquired new introns was substantially greater than the number of lost ancestral introns. This trend held even for lineages in which vertical evolution of genes involved more intron losses than gains, suggesting that gene duplication boosts intron insertion. However, dating gene duplications and the associated intron gains and losses based on the molecular clock assumption showed that very few, if any, introns were gained during the last ∼100 million years of animal and plant evolution, in agreement with previous conclusions reached through analysis of orthologous gene sets. These results are generally compatible with the emerging notion of intensive insertion and loss of introns during transitional epochs in contrast to the relative quiet of the intervening evolutionary spans.
PMCID: PMC484173  PMID: 15254274
14.  The Agaricus bisporus cox1 Gene: The Longest Mitochondrial Gene and the Largest Reservoir of Mitochondrial Group I Introns 
PLoS ONE  2010;5(11):e14048.
In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a “Homing Endonuclease Gene” (heg) encoding a DNA endonuclease acting in transfer and site-specific integration (“homing”) and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote.
PMCID: PMC2987802  PMID: 21124976
15.  Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts 
Mobile DNA  2014;5:24.
CACTA elements are DNA transposons and are found in numerous organisms. Despite their low activity, several thousand copies can be identified in many genomes. CACTA elements transpose using a ‘cut-and-paste’ mechanism, which is facilitated by a DDE transposase. DDE transposases from CACTA elements contain, despite their conserved function, different exon numbers among various CACTA families. While earlier studies analyzed the ancestral history of the DDE transposases, no studies have examined exon loss and gain with a view of mechanisms that could drive the changes.
We analyzed 64 transposases from different CACTA families among monocotyledonous and eudicotyledonous host species. The annotation of the exon/intron boundaries showed a range from one to six exons. A robust multiple sequence alignment of the 64 transposases based on their protein sequences was created and used for phylogenetic analysis, which revealed eight different clades. We observed that the exon numbers in CACTA transposases are not specific for a host genome. We found that ancient CACTA lineages diverged before the divergence of monocotyledons and eudicotyledons. Most exon/intron boundaries were found in three distinct regions among all the transposases, grouping 63 conserved intron/exon boundaries.
We propose a model for the ancestral CACTA transposase gene, which consists of four exons, that predates the divergence of the monocotyledons and eudicotyledons. Based on this model, we propose pathways of intron loss or gain to explain the observed variation in exon numbers. While intron loss appears to have prevailed, a putative case of intron gain was nevertheless observed.
PMCID: PMC4158355  PMID: 25206928
Transposases; Intron loss; Molecular evolution; DNA transposons; Plants
16.  Complex Evolutionary Patterns of tRNAUAALeu Group I Introns in Cyanobacterial Radiation 
Journal of Bacteriology  1999;181(11):3445-3451.
Based on the findings that plastids and cyanobacteria have similar group I introns inserted into tRNAUAALeu genes, these introns have been suggested to be immobile and of ancient origin. In contrast, recent evidence suggests lateral transfer of cyanobacterial group I introns located in tRNAUAALeu genes. In light of these new findings, we have readdressed the evolution and lateral transfer of tRNAUAALeu group I introns in cyanobacteral radiation. We determined the presence of introns in 38 different strains, representing the major cyanobacterial lineages, and characterized the introns in 22 of the strains. Notably, two of these strains have two tRNAUAALeu genes, with each of these genes interrupted by introns, while three of the strains have both interrupted and uninterrupted genes. Two evolutionary distinct clusters of tRNA genes, with the genes interrupted by introns belonging to two distinct intron clusters, were identified. We also compared 16S rDNA and intron evolution for both closely and distantly related strains. The distribution of the introns in the clustered groups, as defined from 16S rDNA analysis, indicates relatively recent gain and/or loss of the introns in some of these lineages. The comparative analysis also suggests differences in the phylogenetic trees for 16S rDNA and the tRNAUAALeu group I introns. Taken together, our results show that the evolution of the intron is considerably more complex than previous studies found to be the case. We discuss, based on our results, evolutionary models involving lateral intron transfer and models involving differential loss of the intron.
PMCID: PMC93812  PMID: 10348857
17.  Nonsense-Mediated Decay Enables Intron Gain in Drosophila 
PLoS Genetics  2010;6(1):e1000819.
Intron number varies considerably among genomes, but despite their fundamental importance, the mutational mechanisms and evolutionary processes underlying the expansion of intron number remain unknown. Here we show that Drosophila, in contrast to most eukaryotic lineages, is still undergoing a dramatic rate of intron gain. These novel introns carry significantly weaker splice sites that may impede their identification by the spliceosome. Novel introns are more likely to encode a premature termination codon (PTC), indicating that nonsense-mediated decay (NMD) functions as a backup for weak splicing of new introns. Our data suggest that new introns originate when genomic insertions with weak splice sites are hidden from selection by NMD. This mechanism reduces the sequence requirement imposed on novel introns and implies that the capacity of the spliceosome to recognize weak splice sites was a prerequisite for intron gain during eukaryotic evolution.
Author Summary
The surprising observation 30 years ago that genes are interrupted by non-coding introns changed our view of gene architecture. Intron number varies dramatically among species; ranging from nine introns/gene in humans to less than one in some simple eukyarotes. Here we ask where new introns come from and how they are maintained in a population. We find that novel introns do not arise from pre-existing introns, although the mechanisms that generate novel introns remain unclear. We also show that novel introns carry only weak signals for their identification and removal, and therefore depend on nonsense-mediated decay (NMD). NMD maintains RNA quality control by degrading transcripts that have not been spliced properly. We propose that NMD shelters novel introns from natural selection. This increases the likelihood that a novel intron will rise in frequency and be maintained within a population, thus increasing the rate of intron gain.
PMCID: PMC2809761  PMID: 20107520
18.  Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses 
PLoS ONE  2011;6(5):e19673.
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that “resets” of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.
PMCID: PMC3096672  PMID: 21611157
19.  Mechanisms of Intron Loss and Gain in the Fission Yeast Schizosaccharomyces 
PLoS ONE  2013;8(4):e61683.
The fission yeast, Schizosaccharomyces pombe, is an important model species with a low intron density. Previous studies showed extensive intron losses during its evolution. To test the models of intron loss and gain in fission yeasts, we conducted a comparative genomic analysis in four Schizosaccharomyces species. Both intronization and de-intronization were observed, although both were at a low frequency. A de-intronization event was caused by a degenerative mutation in the branch site. Four cases of imprecise intron losses were identified, indicating that genomic deletion is not a negligible mechanism of intron loss. Most intron losses were precise deletions of introns, and were significantly biased to the 3′ sides of genes. Adjacent introns tended to be lost simultaneously. These observations indicated that the main force shaping the exon-intron structures of fission yeasts was precise intron losses mediated by reverse transcriptase. We found two cases of intron gains caused by tandem genomic duplication, but failed to identify the mechanisms for the majority of the intron gain events observed. In addition, we found that intron-lost and intron-gained genes had certain similar features, such as similar Gene Ontology categories and expression levels.
PMCID: PMC3629103  PMID: 23613904
20.  Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication 
Positions of spliceosomal introns are often conserved between remotely related genes. Introns that reside in non-conserved positions are either novel or remnants of frequent losses of introns in some evolutionary lineages. A recent gain of such introns is difficult to prove. However, introns verified as novel are needed to evaluate contemporary processes of intron gain.
We identified 25 unambiguous cases of novel intron positions in 31 Drosophila genes that exhibit near intron pairs (NIPs). Here, a NIP consists of an ancient and a novel intron position that are separated by less than 32 nt. Within a single gene, such closely-spaced introns are very unlikely to have coexisted. In most cases, therefore, the ancient intron position must have disappeared in favour of the novel one. A survey for NIPs among 12 Drosophila genomes identifies intron sliding (migration) as one of the more frequent causes of novel intron positions. Other novel introns seem to have been gained by regional tandem duplications of coding sequences containing a proto-splice site.
Recent intron gains sometimes appear to have arisen by duplication of exonic sequences and subsequent intronization of one of the copies. Intron migration and exon duplication together may account for a significant amount of novel intron positions in conserved coding sequences.
PMCID: PMC2891723  PMID: 20500887
21.  Newly evolved introns in human retrogenes provide novel insights into their evolutionary roles 
Retrogenes generally do not contain introns. However, in some instances, retrogenes may recruit internal exonic sequences as introns, which is known as intronization. A retrogene that undergoes intronization is a good model with which to investigate the origin of introns. Nevertheless, previously, only two cases in vertebrates have been reported.
In this study, we systematically screened the human (Homo sapiens) genome for retrogenes that evolved introns and analyzed their patterns in structure, expression and origin. In total, we identified nine intron-containing retrogenes. Alignment of pairs of retrogenes and their parents indicated that, in addition to intronization (five cases), retrogenes also may have gained introns by insertion of external sequences into the genes (one case) or reversal of the orientation of transcription (three cases). Interestingly, many intronizations were promoted not by base substitutions but by cryptic splice sites, which were silent in the parental genes but active in the retrogenes. We also observed that the majority of introns generated by intronization did not involve frameshifts.
Intron gains in retrogenes are not as rare as previously thought. Furthermore, diverse mechanisms may lead to intron creation in retrogenes. The activation of cryptic splice sites in the intronization of retrogenes may be triggered by the change of gene structure after retroposition. A high percentage of non-frameshift introns in retrogenes may be because non-frameshift introns do not dramatically affect host proteins. Introns generated by intronization in human retrogenes are generally young, which is consistent with previous findings for Caenorhabditis elegans. Our results provide novel insights into the evolutionary role of introns.
PMCID: PMC3565874  PMID: 22839428
22.  Characterization of Newly Gained Introns in Daphnia Populations 
Genome Biology and Evolution  2014;6(9):2218-2234.
As one of the few known species in an active phase of intron proliferation, the microcrustacean Daphnia pulex is an especially attractive system for interrogating the gain and loss of introns in natural populations. In this study, we used a comparative population-genomic approach to identify and characterize 90 recently gained introns in this species. Molecular clock analyses indicate that these introns arose between 3.9 × 105 and 1.45 × 104 years ago, with a spike in intron proliferation approximately 5.2 × 104 to 1.22 × 105 years ago. Parallel gains at homologous positions contribute to 47.8% (43/90) of discovered new introns. A disproportionally large number of new introns were found in historically isolated populations in Oregon. Nonetheless, derived, intron-bearing alleles were also identified in a wide range of geographic locations, suggesting intron gain and, to a lesser degree, intron loss are important sources of genetic variation in natural populations of Daphnia. A majority (55/90 or 61.1%) of the identified neointrons have associated internal direct repeats with lengths and compositions that are unlikely to occur by chance, suggesting repeated bouts of staggered double-strand breaks (DSBs) during their evolution. Accordingly, internal, staggered DSBs may contribute to a passive trend toward increased length and sequence diversity in nascent introns.
PMCID: PMC4202315  PMID: 25123113
new intron; age estimate; double-strand breaks; Daphnia
23.  Comparative genomic analysis of fungal genomes reveals intron-rich ancestors 
Genome Biology  2007;8(10):R223.
Analysis of intron gain and loss in fungal genomes provides support for an intron-rich fungus-animal ancestor.
Eukaryotic protein-coding genes are interrupted by spliceosomal introns, which are removed from transcripts before protein translation. Many facets of spliceosomal intron evolution, including age, mechanisms of origins, the role of natural selection, and the causes of the vast differences in intron number between eukaryotic species, remain debated. Genome sequencing and comparative analysis has made possible whole genome analysis of intron evolution to address these questions.
We analyzed intron positions in 1,161 sets of orthologous genes across 25 eukaryotic species. We find strong support for an intron-rich fungus-animal ancestor, with more than four introns per kilobase, comparable to the highest known modern intron densities. Indeed, the fungus-animal ancestor is estimated to have had more introns than any of the extant fungi in this study. Thus, subsequent fungal evolution has been characterized by widespread and recurrent intron loss occurring in all fungal clades. These results reconcile three previously proposed methods for estimation of ancestral intron number, which previously gave very different estimates of ancestral intron number for eight eukaryotic species, as well as a fourth more recent method. We do not find a clear inverse correspondence between rates of intron loss and gain, contrary to the predictions of selection-based proposals for interspecific differences in intron number.
Our results underscore the high intron density of eukaryotic ancestors and the widespread importance of intron loss through eukaryotic evolution.
PMCID: PMC2246297  PMID: 17949488
24.  Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior 
Nucleic Acids Research  2002;30(5):1091-1102.
Group II introns are novel genetic elements that have properties of both catalytic RNAs and retroelements. Initially identified in organellar genomes of plants and lower eukaryotes, group II introns are now being discovered in increasing numbers in bacterial genomes. Few of the newly sequenced bacterial introns are correctly identified or annotated by those who sequenced them. Here we have compiled and thoroughly analyzed group II introns and their fragments in bacterial DNA sequences reported to GenBank. Intron distribution in bacterial genomes differs markedly from the distribution in organellar genomes. Bacterial introns are not inserted into conserved genes, are often inserted outside of genes altogether and are frequently fragmented, suggesting a high rate of intron gain and loss. Some introns have multiple natural homing sites while others insert after transcriptional terminators. All bacterial group II introns identified to date encode reverse transcriptase open reading frames and are either active retroelements or derivatives of retroelements. Together, these observations suggest that group II introns in bacteria behave primarily as retroelements rather than as introns, and that the strategy for group II intron survival in bacteria is fundamentally different from intron survival in organelles.
PMCID: PMC101233  PMID: 11861899
25.  Intron gain and loss in segmentally duplicated genes in rice 
Genome Biology  2006;7(5):R41.
Analysis of over 3,000 co-linear paired genes in rice shows more intron loss than intron gain following segmental duplication.
Introns are under less selection pressure than exons, and consequently, intronic sequences have a higher rate of gain and loss than exons. In a number of plant species, a large portion of the genome has been segmentally duplicated, giving rise to a large set of duplicated genes. The recent completion of the rice genome in which segmental duplication has been documented has allowed us to investigate intron evolution within rice, a diploid monocotyledonous species.
Analysis of segmental duplication in rice revealed that 159 Mb of the 371 Mb genome and 21,570 of the 43,719 non-transposable element-related genes were contained within a duplicated region. In these duplicated regions, 3,101 collinear paired genes were present. Using this set of segmentally duplicated genes, we investigated intron evolution from full-length cDNA-supported non-transposable element-related gene models of rice. Using gene pairs that have an ortholog in the dicotyledonous model species Arabidopsis thaliana, we identified more intron loss (49 introns within 35 gene pairs) than intron gain (5 introns within 5 gene pairs) following segmental duplication. We were unable to demonstrate preferential intron loss at the 3' end of genes as previously reported in mammalian genomes. However, we did find that the four nucleotides of exons that flank lost introns had less frequently used 4-mers.
We observed that intron evolution within rice following segmental duplication is largely dominated by intron loss. In two of the five cases of intron gain within segmentally duplicated genes, the gained sequences were similar to transposable elements.
PMCID: PMC1779517  PMID: 16719932

Results 1-25 (1263333)