PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1522890)

Clipboard (0)
None

Related Articles

1.  Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease 
Brain  2010;133(12):3611-3624.
Past studies show beneficial as well as detrimental effects of subthalamic nucleus deep-brain stimulation on impulsive behaviour. We address this paradox by investigating individuals with Parkinson’s disease treated with subthalamic nucleus stimulation (n = 17) and healthy controls without Parkinson’s disease (n = 17) on performance in a Simon task. In this reaction time task, conflict between premature response impulses and goal-directed action selection is manipulated. We applied distributional analytic methods to separate the strength of the initial response impulse from the proficiency of inhibitory control engaged subsequently to suppress the impulse. Patients with Parkinson’s disease were tested when stimulation was either turned on or off. Mean conflict interference effects did not differ between controls and patients, or within patients when stimulation was on versus off. In contrast, distributional analyses revealed two dissociable effects of subthalamic nucleus stimulation. Fast response errors indicated that stimulation increased impulsive, premature responding in high conflict situations. Later in the reaction process, however, stimulation improved the proficiency with which inhibitory control was engaged to suppress these impulses selectively, thereby facilitating selection of the correct action. This temporal dissociation supports a conceptual framework for resolving past paradoxical findings and further highlights that dynamic aspects of impulse and inhibitory control underlying goal-directed behaviour rely in part on neural circuitry inclusive of the subthalamic nucleus.
doi:10.1093/brain/awq239
PMCID: PMC2995881  PMID: 20861152
Parkinson’s disease; deep-brain stimulation; response inhibition; impulsivity; subthalamic nucleus
2.  Impulsive and Compulsive Behaviors in Parkinson’s Disease 
Background: Impulsive and compulsive behaviors (ICBs) are a heterogeneous group of conditions that may be caused by long-term dopaminergic replacement therapy (DRT) of Parkinson’s disease (PD). The spectrum of ICBs includes dopamine dysregulation syndrome (DDS), punding, and impulse control disorders (ICDs).
Contents: We made a detailed review regarding the epidemiology, pathology, clinical characteristics, risk factors, diagnosis as well as treatment of ICBs.
Results: The prevalence of ICBs in PD patients is approximately 3–4% for DDS, 0.34–4.2% for punding, and 6–14% for ICDs, with higher prevalence in Western populations than in Asian. Those who take high dose of levodopa are more prone to have DDS, whereas, ICDs are markedly associated with dopamine agonists. Different subtypes of ICBs share many risk factors such as male gender, higher levodopa equivalent daily dose, younger age at PD onset, history of alcoholism, impulsive, or novelty-seeking personality. The Questionnaire for Impulsive–Compulsive Disorder in Parkinson’s Disease-Rating Scale seems to be a rather efficacious instrument to obtain relevant information from patients and caregivers. Treatment of ICBs is still a great challenge for clinicians. Readjustment of DRT remains the primary method. Atypical antipsychotics, antidepressants, amantadine, and psychosocial interventions are also prescribed in controlling episodes of psychosis caused by compulsive DRT, but attention should be drawn to balance ICBs symptoms and motor disorders. Moreover, deep brain stimulation of the subthalamic nucleus might be a potential method in controlling ICBs.
Conclusion: The exact pathophysiological mechanisms of ICBs in PD remains poorly understood. Further researches are needed not only to study the pathogenesis, prevalence, features, and risk factors of ICBs, but to find efficacious therapy for patients with these devastating consequences.
doi:10.3389/fnagi.2014.00318
PMCID: PMC4231987  PMID: 25452726
Parkinson disease; impulsive control disorders; dopamine dysregulation syndrome; review; dopaminergic replacement therapy
3.  Multiple Modes of Impulsivity in Parkinson's Disease 
PLoS ONE  2014;9(1):e85747.
Cognitive problems are a major factor determining quality of life of patients with Parkinson's disease. These include deficits in inhibitory control, ranging from subclinical alterations in decision-making to severe impulse control disorders. Based on preclinical studies, we proposed that Parkinson's disease does not cause a unified disorder of inhibitory control, but rather a set of impulsivity factors with distinct psychological profiles, anatomy and pharmacology. We assessed a broad set of measures of the cognitive, behavioural and temperamental/trait aspects of impulsivity. Sixty adults, including 30 idiopathic Parkinson's disease patients (Hoehn and Yahr stage I–III) and 30 healthy controls, completed a neuropsychological battery, objective behavioural measures and self-report questionnaires. Univariate analyses of variance confirmed group differences in nine out of eleven metrics. We then used factor analysis (principal components method) to identify the structure of impulsivity in Parkinson's disease. Four principal factors were identified, consistent with four different mechanisms of impulsivity, explaining 60% of variance. The factors were related to (1) tests of response conflict, interference and self assessment of impulsive behaviours on the Barrett Impulsivity Scale, (2) tests of motor inhibitory control, and the self-report behavioural approach system, (3) time estimation and delay aversion, and (4) reflection in hypothetical scenarios including temporal discounting. The different test profiles of these four factors were consistent with human and comparative studies of the pharmacology and functional anatomy of impulsivity. Relationships between each factor and clinical and demographic features were examined by regression against factor loadings. Levodopa dose equivalent was associated only with factors (2) and (3). The results confirm that impulsivity is common in Parkinson's disease, even in the absence of impulse control disorders, and that it is not a unitary phenomenon. A better understanding of the structure of impulsivity in Parkinson's disease will support more evidence-based and effective strategies to treat impulsivity.
doi:10.1371/journal.pone.0085747
PMCID: PMC3897514  PMID: 24465678
4.  Dopamine agonists and risk: impulse control disorders in Parkinson's; disease 
Brain  2011;134(5):1438-1446.
Impulse control disorders are common in Parkinson's; disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's; disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a ‘Sure’ choice and a ‘Gamble’ choice of moderate risk. To commence each trial, in the ‘Gain’ condition, individuals started at $0 and in the ‘Loss’ condition individuals started at −$50 below the ‘Sure’ amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk (‘Gamble Risk’). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's; disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the ‘Gain’ relative to the ‘Loss’ condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's; disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's; disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals.
doi:10.1093/brain/awr080
PMCID: PMC3097893  PMID: 21596771
Parkinson's; disease; dopamine; gambling; decision making; risk
5.  The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making 
Brain : a journal of neurology  2016;139(Pt 6):1830-1843.
Adaptive behaviour entails the capacity to select actions as a function of their energy cost and expected value and the disruption of this faculty is now viewed as a possible cause of the symptoms of Parkinson’s disease. Indirect evidence points to the involvement of the subthalamic nucleus—the most common target for deep brain stimulation in Parkinson’s disease—in cost-benefit computation. However, this putative function appears at odds with the current view that the subthalamic nucleus is important for adjusting behaviour to conflict. Here we tested these contrasting hypotheses by recording the neuronal activity of the subthalamic nucleus of patients with Parkinson’s disease during an effort-based decision task. Local field potentials were recorded from the subthalamic nucleus of 12 patients with advanced Parkinson’s disease (mean age 63.8 years ± 6.8; mean disease duration 9.4 years ± 2.5) both OFF and ON levodopa while they had to decide whether to engage in an effort task based on the level of effort required and the value of the reward promised in return. The data were analysed using generalized linear mixed models and cluster-based permutation methods. Behaviourally, the probability of trial acceptance increased with the reward value and decreased with the required effort level. Dopamine replacement therapy increased the rate of acceptance for efforts associated with low rewards. When recording the subthalamic nucleus activity, we found a clear neural response to both reward and effort cues in the 1–10 Hz range. In addition these responses were informative of the subjective value of reward and level of effort rather than their actual quantities, such that they were predictive of the participant’s decisions. OFF levodopa, this link with acceptance was weakened. Finally, we found that these responses did not index conflict, as they did not vary as a function of the distance from indifference in the acceptance decision. These findings show that low-frequency neuronal activity in the subthalamic nucleus may encode the information required to make cost-benefit comparisons, rather than signal conflict. The link between these neural responses and behaviour was stronger under dopamine replacement therapy. Our findings are consistent with the view that Parkinson’s disease symptoms may be caused by a disruption of the processes involved in balancing the value of actions with their associated effort cost.
doi:10.1093/brain/aww075
PMCID: PMC4937992  PMID: 27190012
Parkinson’s disease; subthalamic nucleus; reward; effort; decision-making
6.  Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease 
Brain  2014;137(4):1145-1155.
Impulsivity is common in Parkinson’s disease. In a double-blind, placebo-controlled study with multi-modal imaging, Ye et al. reveal improved response inhibition in some patients receiving the SSRI citalopram, including those with advanced disease. Improvements correlated with preserved frontostriatal structural connectivity and drug-induced prefrontal activity, highlighting the need for patient stratification in trials.
Impulsivity is common in Parkinson’s disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic ‘overdose’ and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson’s disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson’s disease (46–76 years old, 11 male, Hoehn and Yahr stage 1.5–3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54–74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson’s disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson’s Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson’s disease.
doi:10.1093/brain/awu032
PMCID: PMC3959561  PMID: 24578545
Parkinson’s disease; response inhibition; serotonin; citalopram; functional MRI
7.  Morphometric Correlation of Impulsivity in Medial Prefrontal Cortex 
Brain topography  2012;26(3):479-487.
Impulsivity is a complex behaviour composed of different domains encompassing behavioural disinhibition, risky decision-making and delay discounting abnormalities. To investigate regional brain correlates between levels of individual impulsivity and grey matter volume, we performed voxel-based morphometric correlation analysis in 34 young, healthy subjects using impulsivity scores measured with Barratt Impulsivity Scale-11 and computerized Kirby’s delay discounting task. The VBM analysis showed that impulsivity appears to be reliant on a network of cortical (medial prefrontal cortex and dorsolateral prefrontal cortex) and subcortical (ventral striatum) structures emphasizing the importance of brain networks associated with reward related decision-making in daily life as morphological biomarkers for impulsivity in a normal healthy population. While our results in healthy volunteers may not directly extend to pathological conditions, they provide an insight into the mechanisms of impulsive behaviour in patients with abnormalities in prefrontal/frontal-striatal connections, such as in drug abuse, pathological gambling, ADHD and Parkinson’s disease.
doi:10.1007/s10548-012-0270-x
PMCID: PMC4452220  PMID: 23274773 CAMSID: cams4594
Decision making; Impulsivity; Medial prefrontal cortex; Ventral striatum; Magnetic resonance imaging; Voxel based morphometry
8.  Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys 
eLife  null;5:e16443.
The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders.
DOI: http://dx.doi.org/10.7554/eLife.16443.001
eLife digest
The symptoms of Parkinson’s disease include tremor and slow movement, as well as loss of balance, depression and problems with sleep and memory. The death of neurons in a region of the brain called the substantia nigra pars compacta is one of the major hallmarks of Parkinson’s disease. These neurons produce a chemical called dopamine, and their death reduces dopamine levels in another area of the brain called the striatum. This structure is one of five brain regions known collectively as the basal ganglia, which form a circuit that helps to control movement.
The most effective treatment currently available for advanced Parkinson’s disease entails lowering electrodes deep into the brain in order to shut down the activity of part of the basal ganglia. However, the target is not the striatum; instead it is a structure called the subthalamic nucleus. The striatum and the subthalamic nucleus are the two input regions of the basal ganglia: each sends signals to the other three structures downstream. So why does targeting the subthalamic nucleus, but not the striatum, reduce the symptoms of Parkinson’s disease?
To shed some light on this issue, Deffains et al. recorded the activity of neurons in the basal ganglia before and after injecting two monkeys with a drug called MPTP. Related to heroin, MPTP produces symptoms in animals that resemble those of Parkinson’s disease. Before the injections, spontaneous fluctuations in the activity of the subthalamic nucleus produced matching changes in the activity of the three downstream basal ganglia structures. Fluctuations in the activity of the striatum, by contrast, had no such effect. Moreover, injecting the monkeys with MPTP caused the basal ganglia to fire in an abnormal highly synchronized rhythm, similar to that seen in Parkinson’s disease. Crucially, the subthalamic nucleus contributed to this abnormal rhythm, whereas the striatum did not.
The results presented by Deffains et al. provide a concrete explanation for why inactivating the subthalamic nucleus, but not the striatum, reduces the symptoms of Parkinson’s disease. Further research is now needed to explore how the striatum controls the activity of downstream regions of the basal ganglia, both in healthy people and in those with Parkinson's disease.
DOI: http://dx.doi.org/10.7554/eLife.16443.002
doi:10.7554/eLife.16443
PMCID: PMC5030093  PMID: 27552049
African vervet green monkey; Basal ganglia; Electrophysiology; Parkinson-s disease; Other
9.  Ventral Striatal Dopamine Synthesis Capacity Predicts Financial Extravagance in Parkinson’s Disease 
Impulse control disorders (ICDs), including disordered gambling, can occur in a significant number of patients with Parkinson’s disease (PD) receiving dopaminergic therapy. The neurobiology underlying susceptibility to such problems is unclear, but risk likely results from an interaction between dopaminergic medication and a pre-existing trait vulnerability. Impulse control and addictive disorders form part of a broader psychopathological spectrum of disorders, which share a common underlying genetic vulnerability, referred to as externalizing. The broad externalizing risk factor is a continuously varying trait reflecting vulnerability to various impulse control problems, manifested at the overt level by disinhibitory symptoms and at the personality level by antecedent traits such as impulsivity and novelty/sensation seeking. Trait “disinhibition” is thus a core endophenotype of ICDs, and a key target for neurobiological investigation. The ventral striatal dopamine system has been hypothesized to underlie individual variation in behavioral disinhibition. Here, we examined whether individual differences in ventral striatal dopamine synthesis capacity predicted individual variation in disinhibitory temperament traits in individuals with PD. Eighteen early-stage male PD patients underwent 6-[18F]Fluoro-l-DOPA (FDOPA) positron emission tomography scanning to measure striatal dopamine synthesis capacity, and completed a measure of disinhibited personality. Consistent with our predictions, we found that levels of ventral, but not dorsal, striatal dopamine synthesis capacity predicted disinhibited personality, particularly a propensity for financial extravagance. Our results are consistent with recent preclinical models of vulnerability to behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of potential vulnerability to impulse control problems in PD and other disorders.
doi:10.3389/fpsyg.2013.00090
PMCID: PMC3583186  PMID: 23450713
dopa decarboxylase; dopamine; disordered gambling; externalizing; impulse control disorders; impulsivity; reward; ventral striatum
10.  Impulse control disorders in Parkinson’s disease: recent advances 
Current opinion in neurology  2011;24(4):324-330.
Purpose of review
To review the recent advances in the epidemiology and pathophysiology of impulse control disorders (ICD) in Parkinson’s disease (PD).
Recent findings
Large cross-sectional and case-control multicentre studies show that ICDs in PD are common with a frequency of 13.6%. These behaviours are associated with impaired functioning and with depressive, anxiety and obsessive symptoms, novelty seeking and impulsivity. Behavioural subtypes demonstrate differences in novelty seeking and impulsivity suggesting pathophysiological differences. Observational and neurophysiological studies point towards a potential mechanistic overlap between the behavioural (ICDs) and motor (dyskinesias) dopaminergic sequelae. Converging data suggest dopamine agonists in ICDs appear to enhance learning from rewarding outcomes and impulsive choice. ICD patients also have enhanced risk preference and impaired working memory. Neuroimaging data points towards enhanced bottom-up ventral striatal dopamine release to incentive cues, gambling tasks and reward prediction, and possibly inhibition of top-down orbitofrontal influences. Dopamine agonist-related ventral striatal hypoactivity to risk is consistent with impaired risk evaluation.
Summary
Recent large scale studies and converging findings are beginning to provide an understanding of mechanisms underlying ICDs in PD which can guide prevention of these behaviours and optimize therapeutic approaches.
doi:10.1097/WCO.0b013e3283489687
PMCID: PMC3154756  PMID: 21725242
Impulse control disorders; Parkinson’s disease; dopamine agonists; pathological gambling; impulsivity
11.  Dopamine-Agonists and Impulsivity in Parkinson’s Disease: Impulsive Choices vs. Impulsive Actions 
Human brain mapping  2013;35(6):2499-2506.
The control of impulse behavior is a multidimensional concept subdivided into separate subcomponents, which are thought to represent different underlying mechanisms due to either disinhibitory processes or poor decision-making. In patients with Parkinson’s disease (PD), dopamine-agonist (DA) therapy has been associated with increased impulsive behavior. However, the relationship among these different components in the disease and the role of DA is not well understood. In this imaging study, we investigated in PD patients the effects of DA medication on patterns of brain activation during tasks testing impulsive choices and actions. Following overnight withdrawal of antiparkinsonian medication, PD patients were studied with a H2 (15)O PET before and after administration of DA (1 mg of pramipexole), while they were performing the delay discounting task (DDT) and the GoNoGo Task (GNG). We observed that pramipexole augmented impulsivity during DDT, depending on reward magnitude and activated the medial prefrontal cortex and posterior cingulate cortex and deactivated ventral striatum. In contrast, the effect of pramipexole during the GNG task was not significant on behavioral performance and involved different areas (i.e., lateral prefrontal cortex). A voxel-based correlation analysis revealed a significant negative correlation between the discounting value (k) and the activation of medial prefrontal cortex and posterior cingulate suggesting that more impulsive patients had less activation in those cortical areas. Here we report how these different subcomponents of inhibition/impulsivity are differentially sensitive to DA treatment with pramipexole influencing mainly the neural network underlying impulsive choices but not impulsive action.
doi:10.1002/hbm.22344
PMCID: PMC4452224  PMID: 24038587 CAMSID: cams4599
Parkinson’s disease; impulsivity; dopamine agonists
12.  Dopamine agonists rather than deep brain stimulation cause reflection impulsivity in Parkinson’s disease 
Journal of Parkinson's disease  2013;3(2):139-144.
Objectives
To assess the role of dopamine agonist therapy and deep brain stimulation on reflection impulsivity in non-demented patients with Parkinson’s disease (PD).
Methods
We recruited 61 PD patients, 20 treated with L-dopa in combination with a dopamine agonist, 14 taking L-dopa monotherapy, a further 16 PD patients with bilateral subthalamic nucleus deep brain stimulation treated with L-dopa in combination with a dopamine agonist, and 11 PD patients with bilateral subthalamic nucleus deep brain stimulation taking L-dopa but not a dopamine agonist. Results were compared with 18 healthy controls. Patients who had evidence of impulsive compulsive behaviour were excluded.
Reflection impulsivity was assessed with the beads task, which is a validated information sampling task.
Results
All patients treated with a dopamine agonist gathered significantly less information and made more irrational decisions than all other groups regardless of whether they had surgical treatment.
Conclusions
Our results imply that dopamine agonist therapy but not deep brain stimulation lead to “reflection impulsivity“ in PD.
doi:10.3233/JPD-130178
PMCID: PMC4205962  PMID: 23938343
Parkinson’s disease [165]; deep brain stimulation [292]; neuropsychology [199]
13.  Investigation of impulsivity in patients on dopamine agonist therapy for hyperprolactinemia: a pilot study 
Pituitary  2014;17(2):150-156.
The use of dopamine agonists (DAs) has been associated with increased impulsivity and impulse control disorders in several diseases, including Parkinson’s disease. Such an effect of DAs on impulsivity has not been clearly characterized in hyperprolactinemic patients, where DAs are the mainstay of therapy. We studied the effects of DAs on impulsivity in hyperprolactinemic patients treated at a tertiary pituitary center, using validated psychometric tests. Cross—sectional study. Impulsivity was evaluated in 30 subjects, 10 hyperprolactinemic patients on DAs compared to two control groups; one comprising untreated hyperprolactinemic patients (n = 10) and a second group consisting of normoprolactinemic controls with pituitary lesions (n = 10). Measures of impulsivity included both self-report questionnaires as well as laboratory-based tasks. Hyperprolactinemic patients on DAs had a higher score (mean ± SD) in one self-report measure of impulsivity, the attention subscale of the Barratt Impulsiveness Scale (16.2 ± 2.7), as compared to the hyperprolactinemic control group (12.3 ± 2.5) and the normoprolactinemic group (14.7 ± 4.4) (p = 0.04). No statistically significant difference was found between groups with regards to the other impulsivity scales. In the DA-treated group, a correlation was observed between increased impulsivity (as assessed in the Experiential Discounting Task) and higher weekly cabergoline dose (r2 = 0.49, p = 0.04). The use of DAs in hyperprolactinemic patients is associated with an increase in one aspect of impulsivity. This effect should be further characterized in larger, longitudinal studies.
doi:10.1007/s11102-013-0480-6
PMCID: PMC4109390  PMID: 23504371
Cabergoline; Dopamine agonist; Hyperprolactinemia; Impulsivity; Pituitary adenoma
14.  Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson’s disease 
Scientific Reports  2016;6:32509.
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.
doi:10.1038/srep32509
PMCID: PMC5021944  PMID: 27624437
15.  Stimulation of the Subthalamic Nucleus and Impulsivity 
Annals of neurology  2009;66(6):817-824.
Objective
In Parkinson disease (PD) patients, deep brain stimulation (DBS) of the subthalamic nucleus (STN) may contribute to certain impulsive behavior during high-conflict decisions. A neurocomputational model of the basal ganglia has recently been proposed that suggests this behavioral aspect may be related to the role played by the STN in relaying a “hold your horses” signal intended to allow more time to settle on the best option. The aim of the present study was 2-fold: 1) to extend these observations by providing evidence that the STN may influence and prevent the execution of any response even during low-conflict decisions; and 2) to identify the neural correlates of this effect.
Methods
We measured regional cerebral blood flow during a Go/NoGo and a control (Go) task to study the motor improvement and response inhibition deficits associated with STN-DBS in patients with PD.
Results
Although it improved Unified Parkinson Disease Rating Scale motor ratings and induced a global decrease in reaction time during task performance, STN-DBS impaired response inhibition, as revealed by an increase in commission errors in NoGo trials. These behavioral effects were accompanied by changes in synaptic activity consisting of a reduced activation in the cortical networks responsible for reactive and proactive response inhibition.
Interpretation
The present results suggest that although it improves motor functions in PD patients, modulation of STN hyperactivity with DBS may tend at the same time to favor the appearance of impulsive behavior by acting on the gating mechanism involved in response initiation.
doi:10.1002/ana.21795
PMCID: PMC2972250  PMID: 20035509 CAMSID: cams1535
16.  Electrode Position and Current Amplitude Modulate Impulsivity after Subthalamic Stimulation in Parkinsons Disease—A Computational Study 
Background: Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) is highly effective in alleviating motor symptoms of Parkinson's disease (PD) which are not optimally controlled by dopamine replacement therapy. Clinical studies and reports suggest that STN-DBS may result in increased impulsivity and de novo impulse control disorders (ICD).
Objective/Hypothesis: We aimed to compare performance on a decision making task, the Iowa Gambling Task (IGT), in healthy conditions (HC), untreated and medically-treated PD conditions with and without STN stimulation. We hypothesized that the position of electrode and stimulation current modulate impulsivity after STN-DBS.
Methods: We built a computational spiking network model of basal ganglia (BG) and compared the model's STN output with STN activity in PD. Reinforcement learning methodology was applied to simulate IGT performance under various conditions of dopaminergic and STN stimulation where IGT total and bin scores were compared among various conditions.
Results: The computational model reproduced neural activity observed in normal and PD conditions. Untreated and medically-treated PD conditions had lower total IGT scores (higher impulsivity) compared to HC (P < 0.0001). The electrode position that happens to selectively stimulate the part of the STN corresponding to an advantageous panel on IGT resulted in de-selection of that panel and worsening of performance (P < 0.0001). Supratherapeutic stimulation amplitudes also worsened IGT performance (P < 0.001).
Conclusion(s): In our computational model, STN stimulation led to impulsive decision making in IGT in PD condition. Electrode position and stimulation current influenced impulsivity which may explain the variable effects of STN-DBS reported in patients.
doi:10.3389/fphys.2016.00585
PMCID: PMC5126055  PMID: 27965590
impulsivity; sub thalamic stimulation; Parkinson's disease; Iowa gambling task; reinforcement learning
17.  Stroop test performance in impulsive and non impulsive patients with Parkinson’s disease 
Parkinsonism & related disorders  2011;17(3):212-214.
Impulsive personalities are considered to have a general impairment in cognitive flexibility and cortical inhibition. To examine this hypothesis we used a trial by trial Stroop task in impulsive and non impulsive patients with Parkinson’s disease (PD) and recorded errors and reaction times (RT). We tested 28 impulsive PD (PD+ICB) and 24 non impulsive PD (PD-ICB) patients prior to and after dopaminergic medication. These results were compared with 24 age matched normal controls. We found an increased error rate in all PD patients prior to their usual medication which resolved after medication. Furthermore patients on medication showed enhanced cognitive flexibility and shorter RT. There was no difference between non impulsive and impulsive PD patients. This suggests that the impulsive behaviours may not affect response inhibition tasks and the response inhibition required in the Stroop test does not engage the same processes that differentiate impulsive and non-impulsive PD patients, which likely involve mesolimbic dopamine.
doi:10.1016/j.parkreldis.2010.12.014
PMCID: PMC3042030  PMID: 21247790
18.  Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making 
Brain  2012;135(12):3721-3734.
Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus–response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the ‘normalization term’ in Bayes’ theorem). Here, we test these theories by investigating 22 patients with Parkinson’s disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions—information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined.
doi:10.1093/brain/aws273
PMCID: PMC3525052  PMID: 23114368
decision making; Parkinson’s disease; mathematical modelling; reasoning; memory
19.  Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease 
Brain  2015;139(1):161-173.
Both progressive supranuclear palsy and Parkinson’s disease cause impulsivity and impair executive function. Using a saccadic Go/No-Go paradigm and hierarchical Bayesian models, Zhang et al. show differential decision-making deficits in the two disorders, and that model parameters are better than common behavioural measures for single-patient classification of the diseases.
Both progressive supranuclear palsy and Parkinson’s disease cause impulsivity and impair executive function. Using a saccadic Go/No-Go paradigm and hierarchical Bayesian models, Zhang et al. show differential decision-making deficits in the two disorders, and that model parameters are better than common behavioural measures for single-patient classification of the diseases.
Progressive supranuclear palsy and Parkinson’s disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson’s syndrome), 24 patients with clinically diagnosed Parkinson’s disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift–diffusion model to individual participants’ single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson’s patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants’ poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.
doi:10.1093/brain/awv331
PMCID: PMC4949391  PMID: 26582559
progressive supranuclear palsy; Parkinson’s disease; saccadic inhibition; drift-diffusion model; Bayesian hierarchical model
20.  Diagnosis and treatment of impulse control disorders in patients with movement disorders 
Impulse control disorders are a psychiatric condition characterized by the failure to resist an impulsive act or behavior that may be harmful to self or others. In movement disorders, impulse control disorders are associated with dopaminergic treatment, notably dopamine agonists (DAs). Impulse control disorders have been studied extensively in Parkinson’s disease, but are also recognized in restless leg syndrome and atypical Parkinsonian syndromes. Epidemiological studies suggest younger age, male sex, greater novelty seeking, impulsivity, depression and premorbid impulse control disorders as the most consistent risk factors. Such patients may warrant special monitoring after starting treatment with a DA. Various individual screening tools are available for people without Parkinson’s disease. The Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease has been developed specifically for Parkinson’s disease. The best treatment for impulse control disorders is prevention. However, after the development of impulse control disorders, the mainstay intervention is to reduce or discontinue the offending anti-Parkinsonian medication. In refractory cases, other pharmacological interventions are available, including neuroleptics, antiepileptics, amantadine, antiandrogens, lithium and opioid antagonists. Unfortunately, their use is only supported by case reports, small case series or open-label clinical studies. Prospective, controlled studies are warranted. Ongoing investigations include naltrexone and nicotine.
doi:10.1177/1756285613476127
PMCID: PMC3625015  PMID: 23634190
Impulse control disorders; Parkinson’s disease; restless leg syndrome; parkinsonism; dopamine agonist; non-motor complication; neurobehavioural
21.  Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies 
Clinical psychology review  2006;26(4):379-395.
Impulsivity, broadly defined as action without foresight, is a component of numerous psychiatric illnesses including attention deficit/hyperactivity disorder (ADHD), mania and substance abuse. In order to investigate the mechanisms underpinning impulsive behavior, the nature of impulsivity itself needs to be defined in operational terms that can be used as the basis for empirical investigation. Due to the range of behaviors that the term impulsivity describes, it has been suggested that impulsivity is not a unitary construct, but encompasses a variety of related phenomena that may differ in their biological basis. Through fractionating impulsivity into these component parts, it has proved possible to devise different behavioral paradigms to measure various aspects of impulsivity in both humans and laboratory animals. This review describes and evaluates some of the current behavioral models of impulsivity developed for use with rodents based on human neuropsychological tests, focusing on the five-choice serial reaction time task, the stop-signal reaction time task and delay-discounting paradigms. Furthermore, the contributions made by preclinical studies using such methodology to improve our understanding of the neural and neurochemical basis of impulsivity and ADHD are discussed, with particular reference to the involvement of both the serotonergic and dopaminergic systems, and frontostriatal circuitry.
doi:10.1016/j.cpr.2006.01.001
PMCID: PMC1892795  PMID: 16504359
ADHD; Impulsivity; Frontal cortex; Inhibition; Serotonin; Dopamine
22.  Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies 
Clinical Psychology Review  2006;26(4):379-395.
Impulsivity, broadly defined as action without foresight, is a component of numerous psychiatric illnesses including attention deficit/hyperactivity disorder (ADHD), mania and substance abuse. In order to investigate the mechanisms underpinning impulsive behavior, the nature of impulsivity itself needs to be defined in operational terms that can be used as the basis for empirical investigation. Due to the range of behaviors that the term impulsivity describes, it has been suggested that impulsivity is not a unitary construct, but encompasses a variety of related phenomena that may differ in their biological basis. Through fractionating impulsivity into these component parts, it has proved possible to devise different behavioral paradigms to measure various aspects of impulsivity in both humans and laboratory animals. This review describes and evaluates some of the current behavioral models of impulsivity developed for use with rodents based on human neuropsychological tests, focusing on the five-choice serial reaction time task, the stop-signal reaction time task and delay-discounting paradigms. Furthermore, the contributions made by preclinical studies using such methodology to improve our understanding of the neural and neurochemical basis of impulsivity and ADHD are discussed, with particular reference to the involvement of both the serotonergic and dopaminergic systems, and frontostriatal circuitry.
doi:10.1016/j.cpr.2006.01.001
PMCID: PMC1892795  PMID: 16504359
ADHD; Impulsivity; Frontal cortex; Inhibition; Serotonin; Dopamine
23.  Unidirectional relationship between heroin self-administration and impulsive decision-making in rats 
Psychopharmacology  2011;219(2):443-452.
Rationale
There is growing clinical evidence for a strong relationship between drug addiction and impulsivity. However, it is not fully clear whether impulsivity is a pre-existing trait or a consequence of drug abuse. Recent observations in the animal models show that pre-existing levels of impulsivity predict cocaine and nicotine seeking. Whether such relationships also exist with respect to non-stimulant drugs is largely unknown.
Objective
We studied the relationship between impulsive choice and vulnerability to heroin taking and seeking.
Materials and methods
Rats were selected in the delayed reward task based on individual differences in impulsive choice. Subsequently, heroin intravenous self-administration behaviour was analysed, including acquisition of heroin intake, motivation, extinction and drug- and cue-induced reinstatement. Throughout the entire experiment, changes in impulsive choice were monitored weekly.
Results and discussion
High impulsivity did not predict measures of heroin taking. Moreover, high impulsive rats did not differ from low impulsive rats in extinction rates or heroin- and cue-induced reinstatement. However, both groups became more impulsive as heroin self-administration continued. During abstinence, impulsivity levels returned towards baseline (pre-heroin) levels. Our results indicate that, in contrast to psychostimulants, impulsive choice does not predict vulnerability to heroin seeking and taking.
Conclusion
These data implicate that different neural mechanisms may underlie the vulnerability to opiate and psychostimulant dependence. Moreover, our data suggest that elevated impulsivity levels as observed in heroin-dependent subjects are a consequence of heroin intake rather than a pre-existing vulnerability trait.
doi:10.1007/s00213-011-2444-8
PMCID: PMC3249213  PMID: 21887498
Impulsivity; Heroin; Opiate; Addiction; Delayed reward task; Self-administration
24.  Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review 
Neuropsychopharmacology  2009;35(3):591-604.
Failures in cortical control of fronto-striatal neural circuits may underpin impulsive and compulsive acts. In this narrative review, we explore these behaviors from the perspective of neural processes and consider how these behaviors and neural processes contribute to mental disorders such as obsessive–compulsive disorder (OCD), obsessive–compulsive personality disorder, and impulse-control disorders such as trichotillomania and pathological gambling. We present findings from a broad range of data, comprising translational and human endophenotypes research and clinical treatment trials, focussing on the parallel, functionally segregated, cortico-striatal neural projections, from orbitofrontal cortex (OFC) to medial striatum (caudate nucleus), proposed to drive compulsive activity, and from the anterior cingulate/ventromedial prefrontal cortex to the ventral striatum (nucleus accumbens shell), proposed to drive impulsive activity, and the interaction between them. We suggest that impulsivity and compulsivity each seem to be multidimensional. Impulsive or compulsive behaviors are mediated by overlapping as well as distinct neural substrates. Trichotillomania may stand apart as a disorder of motor-impulse control, whereas pathological gambling involves abnormal ventral reward circuitry that identifies it more closely with substance addiction. OCD shows motor impulsivity and compulsivity, probably mediated through disruption of OFC-caudate circuitry, as well as other frontal, cingulate, and parietal connections. Serotonin and dopamine interact across these circuits to modulate aspects of both impulsive and compulsive responding and as yet unidentified brain-based systems may also have important functions. Targeted application of neurocognitive tasks, receptor-specific neurochemical probes, and brain systems neuroimaging techniques have potential for future research in this field.
doi:10.1038/npp.2009.185
PMCID: PMC3055606  PMID: 19940844
impulsive; compulsive; endophenotypes; serotonin; dopamine; Cognition; Psychiatry & Behavioral Sciences; Animal models; Biological Psychiatry; OCD; impulsivity; compulsivity; translational
25.  Impulsivity and apathy in Parkinson’s disease 
Journal of neuropsychology  2013;7(2):10.1111/jnp.12013.
Impulse control disorders (ICDs) and apathy are recognized as two important neuropsychiatric syndromes associated with Parkinson’s disease (PD), but as yet we understand very little about the cognitive mechanisms underlying them. Here, we review emerging findings, from both human and animal studies, that suggest that impulsivity and apathy are opposite extremes of a dopamine-dependent spectrum of motivated decision making. We first argue that there is strong support for a hypodopaminergic state in PD patients with apathy, as well as for an association between dopamine therapy and development of ICDs. However, there is little evidence for a clear dose-response relationship, and great heterogeneity of findings. We argue that dopaminergic state on its own is an insufficient explanation, and suggest instead that there is now substantial evidence that both apathy and impulsivity are in fact multi-dimensional syndromes, with separate, dissociable mechanisms underlying their ‘surface’ manifestations. Some of these mechanisms might be dopamine-dependent. According to this view, individuals diagnosed as impulsive or apathetic may have very different mechanisms underlying their clinical states. We propose that impulsivity and apathy can arise from dissociable deficits in option generation, option selection, action initiation or inhibition and learning. Review of the behavioural and neurobiological evidence leads us to a new conceptual framework that might help understand the variety of functional deficits seen in PD.
doi:10.1111/jnp.12013
PMCID: PMC3836240  PMID: 23621377

Results 1-25 (1522890)