Search tips
Search criteria

Results 1-25 (1283461)

Clipboard (0)

Related Articles

1.  Head-neck domain of Arabidopsis myosin XI, MYA2, fused with GFP produces F-actin patterns that coincide with fast organelle streaming in different plant cells 
BMC Plant Biology  2008;8:74.
The cytoskeletal mechanisms that underlie organelle transport in plants are intimately linked to acto-myosin function. This function is mediated by the attachment of myosin heads to F-actin and the binding of cargo to the tails. Acto-myosin also powers vigorous cytoplasmic streaming in plant cells. Class XI myosins exhibit strikingly fast velocities and may have extraordinary roles in cellular motility. Studies of the structural basis of organelle transport have focused on the cargo-binding tails of myosin XI, revealing a close relationship with the transport of peroxisomes, mitochondria, and Golgi-vesicles. Links between myosin heads and F-actin-based motility have been less investigated. To address this function, we performed localization studies using the head-neck domain of AtMYA2, a myosin XI from Arabidopsis.
We expressed the GFP-fused head-neck domain of MYA2 in epidermal cells of various plant species and found that it associated with F-actin. By comparison to other markers such as fimbrin and talin, we revealed that the myosin-labeled F-actin was of a lower quality and absent from the fine microfilament arrays at the cell cortex. However, it colocalized with cytoplasmic (transvacuolar) F-actin in areas coinciding with the tracks of fast organelles. This observation correlates well with the proposed function of myosin XI in organelle trafficking. The fact that organelle streaming was reduced in cells expressing the GFP-MYA2-head6IQ indicated that the functionless motor protein inhibits endogenous myosins. Furthermore, co-expression of the GFP-MYA2-head6IQ with other F-actin markers disrupted its attachment to F-actin. In nuclei, the GFP-myosin associated with short bundles of F-actin.
The localization of the head of MYA2 in living plant cells, as investigated here for the first time, suggests a close linkage between this myosin XI and cytoplasmic microfilaments that support the rapid streaming of organelles such as peroxisomes. Potential roles of MYA2 may also exist in the cell nucleus. Whether the low quality of the F-actin-labeling by MYA2-head6IQ compared to other F-actin-binding proteins (ABPs) signifies a weak association of the myosin with actin filaments remains to be proven by other means than in vivo. Clues for the mode of contact between the myosin molecules and F-actin so far cannot be drawn from sequence-related data.
PMCID: PMC2504477  PMID: 18598361
2.  Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles 
BMC Plant Biology  2007;7:6.
Myosins are molecular motors that carry cargo on actin filaments in eukaryotic cells. Seventeen myosin genes have been identified in the nuclear genome of Arabidopsis. The myosin genes can be divided into two plant-specific subfamilies, class VIII with four members and class XI with 13 members. Class XI myosins are related to animal and fungal myosin class V that are responsible for movement of particular vesicles and organelles. Organelle localization of only one of the 13 Arabidopsis myosin XI (myosin XI-6; At MYA2), which is found on peroxisomes, has so far been reported. Little information is available concerning the remaining 12 class XI myosins.
We investigated 6 of the 13 class XI Arabidopsis myosins. cDNAs corresponding to the tail region of 6 myosin genes were generated and incorporated into a vector to encode YFP-myosin tail fusion proteins lacking the motor domain. Chimeric genes incorporating tail regions of myosin XI-5 (At MYA1), myosin XI-6 (At MYA2), myosin XI-8 (At XI-B), myosin XI-15 (At XI-I), myosin XI-16 (At XI-J) and myosin XI-17 (At XI-K) were expressed transiently. All YFP-myosin-tail fusion proteins were targeted to small organelles ranging in size from 0.5 to 3.0 μm. Despite the absence of a motor domain, the fluorescently-labeled organelles were motile in most cells. Tail cropping experiments demonstrated that the coiled-coil region was required for specific localization and shorter tail regions were inadequate for targeting. Myosin XI-6 (At MYA2), previously reported to localize to peroxisomes by immunofluorescence, labeled both peroxisomes and vesicles when expressed as a YFP-tail fusion. None of the 6 YFP-myosin tail fusions interacted with chloroplasts, and only one YFP-tail fusion appeared to sometimes co-localize with fluorescent proteins targeted to Golgi and mitochondria.
6 myosin XI tails, extending from the coiled-coil region to the C-terminus, label specific vesicles and/or organelles when transiently expressed as YFP fusions in plant cells. Although comparable constructs lacking the motor domain result in a dominant negative effect on organelle motility in animal systems, the plant organelles remained motile. YFP-myosin tail fusions provide specific labeling for vesicles of unknown composition, whose identity can be investigated in future studies.
PMCID: PMC1802837  PMID: 17288617
3.  Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells 
Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP) and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the “PAL” sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi.
PMCID: PMC3807578  PMID: 24187546
yeast myo2p; myosin V; transient expression; Golgi; mitochondria; vacuole; confocal microscopy; Nicotiana benthamiana
4.  A Myo6 Mutation Destroys Coordination between the Myosin Heads, Revealing New Functions of Myosin VI in the Stereocilia of Mammalian Inner Ear Hair Cells 
PLoS Genetics  2008;4(10):e1000207.
Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or ‘gating’ in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI–impaired hair cells, and ultimately leading to deafness.
Author Summary
Human deafness is extremely heterogeneous, with mutations in over 50 genes known to be associated with this common form of sensory loss. Among them, mutations in five myosins are associated with human hereditary hearing impairment, demonstrating that this family of proteins is essential for the proper function of the inner ear. Myosins, motor proteins found in eukaryotic cells, are responsible for actin-based motility. Composed of a motor domain and a tail, the former binds filamentous actin and uses ATP hydrolysis to generate force and move along the filaments, while the latter binds to cargos in the cell. Myosin VI is unique among myosins due to its movement along actin towards the minus or pointed end, rather than the positive or barbed end. Mutations in this myosin are associated with human deafness. Much of our information regarding myosin VI comes from studies in cell culture or mouse mutants with mutations leading to deafness. Here, we describe a deaf mouse mutant, Tailchaser, with a mutation in myosin VI. Our data describe new functions for myosin VI in the hair cells of the inner ear, showing how alterations in this motor can lead to a human sensory disorder.
PMCID: PMC2543112  PMID: 18833301
5.  Analysis of Organelle Targeting by DIL Domains of the Arabidopsis Myosin XI Family 
The Arabidopsis thaliana genome encodes 13 myosin XI motor proteins. Previous insertional mutant analysis has implicated substantial redundancy of function of plant myosin XIs in transport of intracellular organelles. Considerable information is available about the interaction of cargo with the myosin XI-homologous yeast myosin V protein myo2p. We identified a region in each of 12 myosin XI sequences that correspond to the yeast myo2p secretory-vesicle binding domain (the “DIL” domain). Structural modeling of the myosin DIL domain region of plant myosin XIs revealed significant similarity to the yeast myo2p and myo4p DIL domains. Transient expression of YFP fusions with the Arabidopsis myosin XI DIL domain resulted in fluorescent labeling of a variety of organelles, including the endoplasmic reticulum, peroxisomes, Golgi, and nuclear envelope. With the exception of the YFP::MYA1 DIL fusion, expression of the DIL–YFP fusions resulted in loss of motility of labeled organelles, consistent with a dominant-negative effect. Certain fusions resulted in localization to the cytoplasm, plasma membrane, or to unidentified vesicles. The same YFP-domain fusion sometimes labeled more than one organelle. Expression of a YFP fusion to a yeast myo2p DIL domain resulted in labeling of plant peroxisomes. Fusions with some of the myosin XI domains resulted in labeling of known cargoes of the particular myosin XI; however, certain myosin XI YFP fusions labeled organelles that had not previously been found to be detectably affected by mutations nor by expression of dominant-negative constructs.
PMCID: PMC3355782  PMID: 22645548
Arabidopsis; myosin XI; yeast; myo2p; DIL domain; dominant-negative; fluorescent protein; vesicles
6.  Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development 
PLoS ONE  2015;10(10):e0139331.
Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6–1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.
PMCID: PMC4591342  PMID: 26426395
7.  Different subcellular localizations and functions of Arabidopsis myosin VIII 
BMC Plant Biology  2008;8:3.
Myosins are actin-activated ATPases that use energy to generate force and move along actin filaments, dragging with their tails different cargos. Plant myosins belong to the group of unconventional myosins and Arabidopsis myosin VIII gene family contains four members: ATM1, ATM2, myosin VIIIA and myosin VIIIB.
In transgenic plants expressing GFP fusions with ATM1 (IQ-tail truncation, lacking the head domain), fluorescence was differentially distributed: while in epidermis cells at the root cap GFP-ATM1 equally distributed all over the cell, in epidermal cells right above this region it accumulated in dots. Further up, in cells of the elongation zone, GFP-ATM1 was preferentially positioned at the sides of transversal cell walls. Interestingly, the punctate pattern was insensitive to brefeldin A (BFA) while in some cells closer to the root cap, ATM1 was found in BFA bodies. With the use of different markers and transient expression in Nicotiana benthamiana leaves, it was found that myosin VIII co-localized to the plasmodesmata and ER, colocalized with internalized FM4-64, and partially overlapped with the endosomal markers ARA6, and rarely with ARA7 and FYVE. Motility of ARA6 labeled organelles was inhibited whenever associated with truncated ATM1 but motility of FYVE labeled organelles was inhibited only when associated with large excess of ATM1. Furthermore, GFP-ATM1 and RFP-ATM2 (IQ-tail domain) co-localized to the same spots on the plasma membrane, indicating a specific composition at these sites for myosin binding.
Taken together, our data suggest that myosin VIII functions differently in different root cells and can be involved in different steps of endocytosis, BFA-sensitive and insensitive pathways, ER tethering and plasmodesmatal activity.
PMCID: PMC2275265  PMID: 18179725
8.  Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence 
Genome Biology  2001;2(7):research0024.1-research0024.17.
Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants.
Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication.
Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.
PMCID: PMC55321  PMID: 11516337
9.  Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis 
BMC Plant Biology  2012;12:81.
The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport.
Simultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils.
We conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes.
PMCID: PMC3424107  PMID: 22672737
10.  Role of myosin VIIa and Rab27a in the motility and localization of RPE melanosomes 
Journal of cell science  2004;117(Pt 26):6473-6483.
Myosin VIIa functions in the outer retina, and loss of this function causes human blindness in Usher syndrome type 1B (USH1B). In mice with mutant Myo7a, melanosomes in the retinal pigmented epithelium (RPE) are distributed abnormally. In this investigation we detected many proteins in RPE cells that could potentially participate in melanosome transport, but of those tested, only myosin VIIa and Rab27a were found to be required for normal distribution. Two other expressed proteins, melanophilin and myosin Va, both of which are required for normal melanosome distribution in melanocytes, were not required in RPE, despite the association of myosin Va with the RPE melanosome fraction. Both myosin VIIa and myosin Va were immunodetected broadly in sections of the RPE, overlapping with a region of apical filamentous actin. Some 70–80% of the myosin VIIa in RPE cells was detected on melanosome membranes by both subcellular fractionation of RPE cells and quantitative immunoelectron microscopy, consistent with a role for myosin VIIa in melanosome motility. Time-lapse microscopy of melanosomes in primary cultures of mouse RPE cells demonstrated that the melanosomes move in a saltatory manner, interrupting slow movements with short bursts of rapid movement (>1 µm/second). In RPE cells from Myo7a-null mice, both the slow and rapid movements still occurred, except that more melanosomes underwent rapid movements, and each movement extended approximately five times longer (and further). Hence, our studies demonstrate the presence of many potential effectors of melanosome motility and localization in the RPE, with a specific requirement for Rab27a and myosin VIIa, which function by transporting and constraining melanosomes within a region of filamentous actin. The presence of two distinct melanosome velocities in both control and Myo7a-null RPE cells suggests the involvement of at least two motors other than myosin VIIa in melanosome motility, most probably, a microtubule motor and myosin Va.
PMCID: PMC2942070  PMID: 15572405
Myosin VIIa; Myosin Va; Rab27a; Melanosome; Usher syndrome; Organelle motility
11.  Myosin-Va and Dynamic Actin Oppose Microtubules to Drive Long-Range Organelle Transport 
Current Biology  2014;24(15):1743-1750.
In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively [1–8]. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the “highways and local roads” model for transport along microtubule and actin tracks [2]. The “cooperative capture” model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering [5, 9]. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning [10, 11].
Graphical Abstract
•Microtubules are essential for centripetal, but not centrifugal, melanosome transport•Myosin-Va and a dynamic actin pool drive long-range centrifugal melanosome transport•Myosin-Va is a processive plus-end-directed motor, and not a tether, in melanocytes•Opposing myosin-Va/actin and microtubule forces regulate melanosome distribution
In animal cells, microtubules and actin are thought to regulate long- and short-range transport, respectively. Here, Evans et al. test the contribution of these systems to organelle transport using melanocyte pigment granules as a model. Surprisingly, they find that myosin-Va and dynamic actin drive long-range transport to the membrane.
PMCID: PMC4131108  PMID: 25065759
12.  Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein 
The Journal of Cell Biology  1993;120(1):117-127.
In the intestinal brush border, the mechanoenzyme myosin-I links the microvillus core actin filaments with the plasma membrane. Previous immunolocalization shows that myosin-I is associated with vesicles in mature enterocytes (Drenckhahn, D., and R. Dermietzel. 1988. J. Cell Biol. 107:1037-1048) suggesting a potential role mediating vesicle motility. We now report that myosin-I is associated with Golgi-derived vesicles isolated from cells that are rapidly assembling brush borders in intestinal crypts. Crypt cells were isolated in hyperosmotic buffer, homogenized, and fractionated using differential- and equilibrium- density centrifugation. Fractions containing 50-100-nm vesicles, a similar size to those observed in situ, were identified by EM and were shown to contain myosin-I as demonstrated by immunoblotting and immunolabel negative staining. Galactosyltransferase, a marker enzyme for trans-Golgi membranes was present in these fractions, as was alkaline phosphatase, which is an apical membrane targeted enzyme. Galactosyltransferase was also present in vesicles immuno-purified with antibodies to myosin-I. Villin, a marker for potential contamination from fragmented microvilli, was absent. Myosin-I was found to reside on the vesicle "outer" or cytoplasmic surface for it was accessible to exogenous proteases and intact vesicles could be immunolabeled with myosin-I antibodies in solution. The bound myosin-I could be extracted from the vesicles using NaCl, KI and Na2CO3, suggesting that it is a vesicle peripheral membrane protein. These vesicles were shown to bundle actin filaments in an ATP-dependent manner. These results are consistent with a role for myosin-I as an apically targeted motor for vesicle translocation in epithelial cells.
PMCID: PMC2119486  PMID: 8416982
13.  Myosins VIII and XI Play Distinct Roles in Reproduction and Transport of Tobacco Mosaic Virus 
PLoS Pathogens  2014;10(10):e1004448.
Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.
Author Summary
Viruses are parasites that require the host cell machinery for their propagation within and between cells. Myosins are molecular motors involved in the trafficking of cargos along actin filaments. Plant viruses have evolved to borrow this transport mechanism to aid their infection and spread within the plant. However, little is known about which of the many plant myosins are essential and at which specific steps they act to support virus infection. Here we investigated the role of different N. benthamiana myosins during the infection by Tobacco mosaic virus (TMV). Our results show that class XI myosins play specific roles in the reproduction and intracellular movement of TMV in association with the dynamic endoplasmic reticulum network, whereas class VIII myosins support the specific targeting of the viral movement protein to plasmodesmata and thus the cell-to-cell movement of the virus. Together these results indicate that TMV interacts with distinct myosins during specific infection steps.
PMCID: PMC4199776  PMID: 25329993
14.  Myosin VA Movements in Normal and Dilute-Lethal Axons Provide Support for a Dual Filament Motor Complex 
The Journal of Cell Biology  1999;146(5):1045-1060.
To investigate the role that myosin Va plays in axonal transport of organelles, myosin Va–associated organelle movements were monitored in living neurons using microinjected fluorescently labeled antibodies to myosin Va or expression of a green fluorescent protein–myosin Va tail construct. Myosin Va–associated organelles made rapid bi-directional movements in both normal and dilute-lethal (myosin Va null) neurites. In normal neurons, depolymerization of microtubules by nocodazole slowed, but did not stop movement. In contrast, depolymerization of microtubules in dilute-lethal neurons stopped movement. Myosin Va or synaptic vesicle protein 2 (SV2), which partially colocalizes with myosin Va on organelles, did not accumulate in dilute-lethal neuronal cell bodies because of an anterograde bias associated with organelle transport. However, SV2 showed peripheral accumulations in axon regions of dilute-lethal neurons rich in tyrosinated tubulin. This suggests that myosin Va–associated organelles become stranded in regions rich in dynamic microtubule endings. Consistent with these observations, presynaptic terminals of cerebellar granule cells in dilute-lethal mice showed increased cross-sectional area, and had greater numbers of both synaptic and larger SV2 positive vesicles. Together, these results indicate that myosin Va binds to organelles that are transported in axons along microtubules. This is consistent with both actin- and microtubule-based motors being present on these organelles. Although myosin V activity is not necessary for long-range transport in axons, myosin Va activity is necessary for local movement or processing of organelles in regions, such as presynaptic terminals that lack microtubules.
PMCID: PMC2169472  PMID: 10477758
myosin Va; actin; microtubules; organelles; dilute-lethal
15.  Plasma membrane association of Acanthamoeba myosin I 
The Journal of Cell Biology  1989;109(4):1519-1528.
Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F- actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI- extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP- sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin- binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.
PMCID: PMC2115813  PMID: 2793931
16.  Identification of an organelle-specific myosin V receptor 
The Journal of Cell Biology  2003;160(6):887-897.
Class V myosins are widely distributed among diverse organisms and move cargo along actin filaments. Some myosin Vs move multiple types of cargo, where the timing of movement and the destinations of selected cargoes are unique. Here, we report the discovery of an organelle-specific myosin V receptor. Vac17p, a novel protein, is a component of the vacuole-specific receptor for Myo2p, a Saccharomyces cerevisiae myosin V. Vac17p interacts with the Myo2p cargo-binding domain, but not with vacuole inheritance-defective myo2 mutants that have single amino acid changes within this region. Moreover, a region of the Myo2p tail required specifically for secretory vesicle transport is neither required for vacuole inheritance nor for Vac17p–Myo2p interactions. Vac17p is localized on the vacuole membrane, and vacuole-associated Myo2p increases in proportion with an increase in Vac17p. Furthermore, Vac17p is not required for movement of other cargo moved by Myo2p. These findings demonstrate that Vac17p is a component of a vacuole-specific receptor for Myo2p. Organelle-specific receptors such as Vac17p provide a mechanism whereby a single type of myosin V can move diverse cargoes to distinct destinations at different times.
PMCID: PMC2173761  PMID: 12642614
membrane transport; Myo2p; Vac17p; yeast; vacuole
17.  Rapid Glucose Depletion Immobilizes Active Myosin-V on Stabilized Actin Cables 
Current biology : CB  2014;24(20):2471-2479.
Polarization of eukaryotic cells requires organelles and protein complexes to be transported to their proper destinations along the cytoskeleton [1]. When nutrients are abundant, budding yeast grows rapidly transporting secretory vesicles for localized growth and actively segregating organelles [2, 3]. This is mediated by myosin-Vs transporting cargos along F-actin bundles known as actin cables [4]. Actin cables are dynamic structures regulated by assembly, stabilization and disassembly [5]. Polarized growth and actin filament dynamics consume energy. For most organisms, glucose is the preferred energy source and generally represses alternative carbon source usage [6]. Thus upon abrupt glucose depletion, yeast shuts down pathways consuming large amounts of energy, including the vacuolar-ATPase [7, 8], translation [9] and phosphoinositide metabolism [10]. Here we show that glucose withdrawal rapidly (<1 min) depletes ATP levels and the yeast myosin V, Myo2, responds by relocalizing to actin cables, making it the fastest response documented. Myo2 immobilized on cables releases its secretory cargo, defining a new rigor-like state of a myosin-V in vivo. Only actively transporting Myo2 can be converted to the rigor-like state. Glucose depletion has differential effects on the actin cytoskeleton resulting in disassembly of actin patches with concomitant inhibition of endocytosis, and strong stabilization of actin cables, thereby revealing a selective and previously unappreciated ATP requirement for actin cable disassembly. A similar response is seen in HeLa cells to ATP depletion. These findings reveal a new fast-acting energy conservation strategy halting growth by immobilizing myosin-V in a newly described state on selectively stabilized actin cables.
PMCID: PMC4254340  PMID: 25308080
18.  Structural and Functional Insights on the Myosin Superfamily 
The myosin superfamily is a versatile group of molecular motors involved in the transport of specific biomolecules, vesicles and organelles in eukaryotic cells. The processivity of myosins along an actin filament and transport of intracellular ‘cargo’ are achieved by generating physical force from chemical energy of ATP followed by appropriate conformational changes. The typical myosin has a head domain, which harbors an ATP binding site, an actin binding site, and a light-chain bound ‘lever arm’, followed often by a coiled coil domain and a cargo binding domain. Evolution of myosins started at the point of evolution of eukaryotes, S. cerevisiae being the simplest one known to contain these molecular motors. The coiled coil domain of the myosin classes II, V and VI in whole genomes of several model organisms display differences in the length and the strength of interactions at the coiled coil interface. Myosin II sequences have long-length coiled coil regions that are predicted to have a highly stable dimeric interface. These are interrupted, however, by regions that are predicted to be unstable, indicating possibilities of alternate conformations, associations to make thick filaments, and interactions with other molecules. Myosin V sequences retain intermittent regions of strong and weak interactions, whereas myosin VI sequences are relatively devoid of strong coiled coil motifs. Structural deviations at coiled coil regions could be important for carrying out normal biological function of these proteins.
PMCID: PMC3290112  PMID: 22399849
myosin structure; myosin domain architecture; coiled coil
19.  Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells 
The Journal of Cell Biology  1994;126(3):661-675.
Microtubules (MT) are required for the efficient transport of membranes from the trans-Golgi and for transcytosis of vesicles from the basolateral membrane to the apical cytoplasm in polarized epithelia. MTs in these cells are primarily oriented with their plus ends basally near the Golgi and their minus-ends in the apical cytoplasm. Here we report that isolated Golgi and Golgi-enriched membranes from intestinal epithelial cells possess the actin based motor myosin-I, the MT minus- end-directed motor cytoplasmic dynein and its in vitro motility activator dynactin (p150/Glued). The Golgi can be separated into stacks, possessing features of the Golgi cisternae, and small membranes enriched in the trans-Golgi network marker TGN 38/41. Whereas myosin-I is present on all membranes in the Golgi fraction, dynein is present only on the small membrane fraction. Dynein, like myosin-I, is associated with membranes as a cytoplasmic peripheral membrane protein. Dynein and myosin-I coassociate with membranes that bind to MTs and cross-link actin filaments and MTs in a nucleotide-dependent manner. We propose that cytoplasmic dynein moves Golgi membranes along MTs to the cell cortex where myosin-I provides local delivery through the actin- rich cytoskeleton to the apical membrane.
PMCID: PMC2120148  PMID: 8045931
20.  Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays) 
Journal of Experimental Botany  2013;65(4):923-938.
The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses.
PMCID: PMC3935558  PMID: 24363426
Alternative splicing; evolution; expression pattern; headless myosin; maize; myosin.
21.  Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains 
BMC Genomics  2006;7:183.
Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks.
The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins.
The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree.
Dictyostelium contains thirteen myosins together with 6–8 MLCs (myosin light chain) to assist in a variety of actin-based processes in the cell. Although they are homologous to myosins of higher eukaryotes, the myosins of Dictyostelium should be considered with care as models for specific functions of vertebrate myosins.
PMCID: PMC1634994  PMID: 16857047
22.  Differential localization of Acanthamoeba myosin I isoforms 
The Journal of Cell Biology  1992;119(5):1193-1203.
Acanthamoeba myosins IA and IB were localized by immunofluorescence and immunoelectron microscopy in vegetative and phagocytosing cells and the total cell contents of myosins IA, IB, and IC were quantified by immunoprecipitation. The quantitative distributions of the three myosin I isoforms were then calculated from these data and the previously determined localization of myosin IC. Myosin IA occurs almost exclusively in the cytoplasm, where it accounts for approximately 50% of the total myosin I, in the cortex beneath phagocytic cups and in association with small cytoplasmic vesicles. Myosin IB is the predominant isoform associated with the plasma membrane, large vacuole membranes and phagocytic membranes and accounts for almost half of the total myosin I in the cytoplasm. Myosin IC accounts for a significant fraction of the total myosin I associated with the plasma membrane and large vacuole membranes and is the only myosin I isoform associated with the contractile vacuole membrane. These data suggest that myosin IA may function in cytoplasmic vesicle transport and myosin I-mediated cortical contraction, myosin IB in pseudopod extension and phagocytosis, and myosin IC in contractile vacuole function. In addition, endogenous and exogenously added myosins IA and IB appeared to be associated with the cytoplasmic surface of different subpopulations of purified plasma membranes implying that the different myosin I isoforms are targeted to specific membrane domains through a mechanism that involves more than the affinity of the myosins for anionic phospholipids.
PMCID: PMC2289716  PMID: 1447297
23.  Myosin XIK of Arabidopsis thaliana Accumulates at the Root Hair Tip and Is Required for Fast Root Hair Growth 
PLoS ONE  2013;8(10):e76745.
Myosin motor proteins are thought to carry out important functions in the establishment and maintenance of cell polarity by moving cellular components such as organelles, vesicles, or protein complexes along the actin cytoskeleton. In Arabidopsis thaliana, disruption of the myosin XIK gene leads to reduced elongation of the highly polar root hairs, suggesting that the encoded motor protein is involved in this cell growth. Detailed live-cell observations in this study revealed that xik root hairs elongated more slowly and stopped growth sooner than those in wild type. Overall cellular organization including the actin cytoskeleton appeared normal, but actin filament dynamics were reduced in the mutant. Accumulation of RabA4b-containing vesicles, on the other hand, was not significantly different from wild type. A functional YFP-XIK fusion protein that could complement the mutant phenotype accumulated at the tip of growing root hairs in an actin-dependent manner. The distribution of YFP-XIK at the tip, however, did not match that of the ER or several tip-enriched markers including CFP-RabA4b. We conclude that the myosin XIK is required for normal actin dynamics and plays a role in the subapical region of growing root hairs to facilitate optimal growth.
PMCID: PMC3792037  PMID: 24116145
24.  The Class V Myosin Myo2p Is Required for Fus2p Transport and Actin Polarization during the Yeast Mating Response 
Molecular Biology of the Cell  2009;20(12):2909-2919.
Mating yeast cells remove their cell walls and fuse their plasma membranes in a spatially restricted cell contact region. Cell wall removal is dependent on Fus2p, an amphiphysin-associated Rho-GEF homolog. As mating cells polarize, Fus2p-GFP localizes to the tip of the mating projection, where cell fusion will occur, and to cytoplasmic puncta, which show rapid movement toward the tip. Movement requires polymerized actin, whereas tip localization is dependent on both actin and a membrane protein, Fus1p. Here, we show that Fus2p-GFP movement is specifically dependent on Myo2p, a type V myosin, and not on Myo4p, another type V myosin, or Myo3p and Myo5p, type I myosins. Fus2p-GFP tip localization and actin polarization in shmoos are also dependent on Myo2p. A temperature-sensitive tropomyosin mutation and Myo2p alleles that specifically disrupt vesicle binding caused rapid loss of actin patch organization, indicating that transport is required to maintain actin polarity. Mutant shmoos lost actin polarity more rapidly than mitotic cells, suggesting that the maintenance of cell polarity in shmoos is more sensitive to perturbation. The different velocities, differential sensitivity to mutation and lack of colocalization suggest that Fus2p and Sec4p, another Myo2p cargo associated with exocytotic vesicles, reside predominantly on different cellular organelles.
PMCID: PMC2695798  PMID: 19403698
25.  Myosin-V is activated by binding secretory cargo and released in coordination with Rab/exocyst function 
Developmental cell  2012;23(4):769-781.
Cell organization requires motor-dependent transport of specific cargos along cytoskeletal elements. How the delivery cycle is coordinated with other events is poorly understood. Here we define the in vivo delivery cycle of myosin-V in its essential function of secretory vesicle transport along actin cables in yeast. We show myosin-V is activated by binding a secretory vesicle, and myosin-V mutations that compromise vesicle binding render the motor constitutively active. About 10 motors associate with each secretory vesicle for rapid transport to sites of cell growth. Once transported, the motors remain associated with the secretory vesicles until they undergo exocytosis. Motor release is temporally regulated by vesicle-bound Rab-GTP hydrolysis and requires vesicle tethering by the exocyst complex, but does not require vesicle fusion with the plasma membrane. All components of this transport cycle are conserved in vertebrates, so these results should be generally applicable to other myosin-V delivery cycles.
PMCID: PMC3725570  PMID: 23079598

Results 1-25 (1283461)