Search tips
Search criteria

Results 1-25 (1339557)

Clipboard (0)

Related Articles

1.  Identification of a Novel Clone, ST736, among Enterococcus faecium Clinical Isolates and Its Association with Daptomycin Nonsusceptibility 
Resistance to daptomycin in enterococcal clinical isolates remains rare but is being increasingly reported in the United States and worldwide. There are limited data on the genetic relatedness and microbiological and clinical characteristics of daptomycin-nonsusceptible enterococcal clinical isolates. In this study, we assessed the population genetics of daptomycin-nonsusceptible Enterococcus faecium (DNSE) clinical isolates by multilocus sequence typing (MLST) and whole-genome sequencing analysis. Forty-two nonduplicate DNSE isolates and 43 randomly selected daptomycin-susceptible E. faecium isolates were included in the analysis. All E. faecium isolates were recovered from patients at a tertiary care medical center in suburban New York City from May 2009 through December 2013. The daptomycin MICs of the DNSE isolates ranged from 6 to >256 μg/ml. Three major clones of E. faecium (ST18, ST412, and ST736) were identified among these clinical isolates by MLST and whole-genome sequence-based analysis. A newly recognized clone, ST736, was seen in 32 of 42 (76.2%) DNSE isolates and in only 14 of 43 (32.6%) daptomycin-susceptible E. faecium isolates (P < 0.0001). This report provides evidence of the association between E. faecium clone ST736 and daptomycin nonsusceptibility. The identification and potential spread of this novel E. faecium clone and its association with daptomycin nonsusceptibility constitute a challenge for patient management and infection control at our medical center.
PMCID: PMC4136069  PMID: 24913170
2.  Case-Control Study Comparing De Novo and Daptomycin-Exposed Daptomycin-Nonsusceptible Enterococcus Infections 
Understanding factors associated with de novo daptomycin-nonsusceptible Enterococcus (DNSE) infections will aid in better understanding the mechanisms of daptomycin nonsusceptibility. We conducted a case-control study to compare patients with DNSE infections who were daptomycin treatment naïve (n = 9) and those with DNSE infections who had exposure to daptomycin (n = 13). Less frequent exposure to antimicrobials, increased susceptibility to nitrofurantoin and gentamicin, and shorter duration of hospitalization were associated with de novo DNSE infection, suggesting a potential community reservoir.
PMCID: PMC3318388  PMID: 22252808
3.  Multicenter Study of High-Dose Daptomycin for Treatment of Enterococcal Infections 
Enterococci are among the leading pathogens isolated in hospital-acquired infections. Current antimicrobial options for vancomycin-resistant enterococci (VRE) are limited. Prior data suggest that daptomycin at >6 mg/kg of body weight/day may be used to treat enterococcal infections. We retrospectively evaluated the effectiveness and safety of high-dose daptomycin (HD-daptomycin) therapy (>6 mg/kg) in a multicenter cohort of adult patients with enterococcal infections to describe the characteristics and outcomes. Two hundred forty-five patients were evaluated. Enterococcus faecium was identified in 175 (71%), followed by Enterococcus faecalis in 49 (20%) and Enterococcus spp. in 21 (9%); overall, 204 (83%) isolates were VRE. Enterococcal infections included bacteremia (173, 71%) and intra-abdominal (35, 14%) and bone and joint (25, 10%) infections. The median dosage and duration of HD-daptomycin were 8.2 mg/kg/day (interquartile range [IQR], 7.7 to 9.7) and 10 days (IQR, 6 to 15), respectively. The overall clinical success rate was 89% (193/218), and microbiological eradication was observed in 93% (177/191) of patients. The median time to clearance of blood cultures on HD-daptomycin was 3 days (IQR, 2 to 5). The 30-day all-cause mortality rate was 27%, and 5 (2%) patients developed daptomycin-nonsusceptible enterococcal strains while on HD-daptomycin. Seven patients (3%) had creatine phosphokinase (CPK) elevation, yet no HD-daptomycin regimen was discontinued due to an elevated CPK and all patients were asymptomatic. Overall, there was a high frequency of clinical success and microbiological eradication in patients treated with HD-daptomycin for enterococcal infections, even in patients with complicated and difficult-to-treat infections. No adverse event-related discontinuation of HD-daptomycin was noted. HD-daptomycin may be an option for the treatment of enterococcal infections.
PMCID: PMC3754344  PMID: 23774437
4.  Genetic Basis for Daptomycin Resistance in Enterococci ▿ † ‡ 
The emergence of multidrug-resistant enterococci as a leading cause of hospital-acquired infection is an important public health concern. Little is known about the genetic mechanisms by which enterococci adapt to strong selective pressures, including the use of antibiotics. The lipopeptide antibiotic daptomycin is approved to treat Gram-positive bacterial infections, including those caused by enterococci. Since its introduction, resistance to daptomycin by strains of Enterococcus faecalis and Enterococcus faecium has been reported but is still rare. We evolved daptomycin-resistant strains of the multidrug-resistant E. faecalis strain V583. Based on the availability of a fully closed genome sequence for V583, we used whole-genome resequencing to identify the mutations that became fixed over short time scales (∼2 weeks) upon serial passage in the presence of daptomycin. By comparison of the genome sequences of the three adapted strains to that of parental V583, we identified seven candidate daptomycin resistance genes and three different mutational paths to daptomycin resistance in E. faecalis. Mutations in one of the seven candidate genes (EF0631), encoding a putative cardiolipin synthase, were found in each of the adapted E. faecalis V583 strains as well as in daptomycin-resistant E. faecalis and E. faecium clinical isolates. Alleles of EF0631 from daptomycin-resistant strains are dominant in trans and confer daptomycin resistance upon a susceptible host. These results demonstrate a mechanism of enterococcal daptomycin resistance that is genetically distinct from that occurring in staphylococci and indicate that enterococci possessing alternate EF0631 alleles are selected for during daptomycin therapy. However, our analysis of E. faecalis clinical isolates indicates that resistance pathways independent from mutant forms of EF0631 also exist.
PMCID: PMC3122436  PMID: 21502617
5.  Analysis of Daptomycin Efficacy and Breakpoint Standards in a Murine Model of Enterococcus faecalis and Enterococcus faecium Renal Infection 
Antimicrobial Agents and Chemotherapy  2003;47(11):3561-3566.
Daptomycin efficacy against clinical isolates of Enterococcus faecalis, Enterococcus faecium, and a lab-derived daptomycin-resistant isolate of E. faecalis was investigated in a mouse model of renal infection. The daptomycin MICs against these enterococci ranged from 0.5 to 50 μg/ml. The objective of this study was to determine the relationship between the MICs of drugs against E. faecalis and E. faecium and the level of daptomycin exposure needed to evaluate the drug's efficacy. Correlating the required therapeutic exposures of mice with the exposures achieved clinically allowed us to project enterococcal breakpoint values. Mice pretreated with carrageenan were infected intravenously with 3 × 108 to 4 × 108 CFU of E. faecalis or E. faecium. Daptomycin (5 to 50 mg of drug/kg of body weight) or saline control was administered 4 h postinfection and continued once daily for 2 days (three total doses). On day 4, infected kidneys were harvested, homogenized, and dilution plated. Efficacy was defined as a ≥2-log10 (99%) reduction in bacterial burden in infected kidneys. At clinically relevant dosages and exposures (area under the curve, 400 to 600 μg · hr/ml), daptomycin demonstrated similar and marked efficacy against all clinical enterococcal isolates tested. Daptomycin achieved efficacy with comparable doses against both vancomycin-sensitive (MIC, ≤4 μg/ml) and -resistant enterococcal strains tested. Efficacy was also established against the lab-derived daptomycin-resistant E. faecalis isolate. In this murine renal infection model, clinically relevant exposures of daptomycin were effective against E. faecalis and E. faecium strains for which MICs were ≤8 μg/ml. These murine efficacy data for daptomycin, along with surveillance data and human pharmacokinetic exposures achieved, suggest a breakpoint concentration value of ≤8 μg/ml (susceptible) and ≥16 μg/ml (resistant) for daptomycin against E. faecium and E. faecalis.
PMCID: PMC253759  PMID: 14576118
6.  Evaluation of Standard- and High-Dose Daptomycin versus Linezolid against Vancomycin-Resistant Enterococcus Isolates in an In Vitro Pharmacokinetic/Pharmacodynamic Model with Simulated Endocardial Vegetations 
Daptomycin MICs for enterococci are typically 1- to 2-fold higher than those for Staphylococcus aureus, and there is an imminent need to establish the optimal dose for appropriate treatment of enterococcal infections. We investigated the bactericidal activity of daptomycin at various dose exposures compared to that of linezolid against vancomycin-resistant enterococcus (VRE) in an in vitro pharmacokinetic/pharmacodynamic model utilizing simulated endocardial vegetations over 96 h. Daptomycin at doses of 6, 8, 10, and 12 mg/kg of body weight/day and linezolid at a dose of 600 mg every 12 h were evaluated against two clinical vancomycin-resistant Enterococcus faecium strains (EFm11499 and 09-184D1051), one of which was linezolid resistant (09-184D1051), and one clinical vancomycin-resistant Enterococcus faecalis strain (EFs11496). Daptomycin MICs were 4, 2, and 0.5 μg/ml for EFm11499, 09-184D1051, and EFs11496, respectively. Bactericidal activity, defined as a ≥3 log10 CFU/g reduction from the initial colony count, was demonstrated against all three isolates with all doses of daptomycin; however, bactericidal activity was not sustained with the daptomycin 6- and 8-mg/kg/day regimens. Linezolid was bacteriostatic against EFm11499 and displayed no appreciable activity against 09-184D1051 or EFs11496. Concentration-dependent killing was displayed with more sustained reduction in colony count (3.58 to 6.46 and 5.89 to 6.56 log10 CFU/g) at 96 h for the simulated regimen of daptomycin at doses of 10 and 12 mg/kg/day, respectively (P ≤ 0.012). No E. faecium mutants with reduced susceptibility were recovered at any dosage regimen; however, the E. faecalis strain developed reduced daptomycin susceptibility with daptomycin at 6, 8, and 10 but not at 12 mg/kg/day. Daptomycin displayed a dose-dependent response against three VRE isolates, with high-dose daptomycin producing sustained bactericidal activity. Further research is warranted.
PMCID: PMC3370794  PMID: 22470111
7.  Addition of Ceftaroline to Daptomycin after Emergence of Daptomycin-Nonsusceptible Staphylococcus aureus during Therapy Improves Antibacterial Activity 
Antimicrobial Agents and Chemotherapy  2012;56(10):5296-5302.
Antistaphylococcal beta-lactams enhance daptomycin activity and have been used successfully in combination for refractory methicillin-resistant Staphylococcus aureus (MRSA) infections. Ceftaroline possesses MRSA activity, but it is unknown if it improves the daptomycin potency comparably to other beta-lactams. We report a complex patient case of endocarditis who was treated with daptomycin in combination with ceftaroline, which resulted in clearance of a daptomycin-nonsusceptible strain. An in vitro pharmacokinetic/pharmacodynamic model of renal failure was used to simulate the development of daptomycin resistance and evaluate the microbiologic effects of daptomycin plus ceftaroline treatment. Combination therapy with daptomycin and ceftaroline restored daptomycin sensitivity in vivo and resulted in clearance of persistent blood cultures. Daptomycin susceptibility in vitro was increased in the presence of either ceftaroline or oxacillin. Daptomycin at 6 mg/kg of body weight every 48 h was bactericidal in the model but resulted in regrowth and daptomycin resistance (MIC, 2 to 4 μg/ml) with continued monotherapy. The addition of ceftaroline at 200 mg every 12 h after the emergence of daptomycin resistance enhanced bacterial killing. Importantly, daptomycin plus ceftaroline as the initial combination therapy produced rapid and sustained bactericidal activity and prevented daptomycin resistance. Both in vivo- and in vitro-derived daptomycin resistance resulted in bacteria with more fluid cell membranes. After ceftaroline was added in the model, fluidity was restored to the level of the initial in vivo isolate. Daptomycin-resistant isolates required high daptomycin exposures (at least 10 mg/kg) to optimize cell membrane damage with daptomycin alone. Ceftaroline combined with daptomycin was effective in eliminating daptomycin-resistant MRSA, and these results further justify the potential use of daptomycin plus beta-lactam therapy for these refractory infections.
PMCID: PMC3457349  PMID: 22869564
8.  Use of daptomycin in the treatment of vancomycin-resistant enterococcal urinary tract infections: a short case series 
BMC Urology  2013;13:33.
Vancomycin-resistant enterococci are a leading cause of hospital-acquired urinary tract infection and a growing concern for the clinician. The aim of this study was to evaluate the effectiveness of daptomycin in the treatment of patients with vancomycin-resistant enterococcal urinary tract infection treated in our 200-bed community-based institution.
Patients with confirmed symptomatic vancomycin-resistant enterococcal urinary tract infection identified by infectious disease consultation between January 1, 2007, and December 8, 2009, vancomycin-resistant enterococci–positive urine culture, and urinary symptoms and/or pyuria on urinalysis, and treated with daptomycin, were included in this case series. Daptomycin was generally administered at a planned dosage regimen of ≥5 mg/kg every 24 hours in patients with normal to moderately impaired kidney function or every 48 hours in patients with severe kidney disease. Microbiologic cure was defined as eradication of vancomycin-resistant enterococci in urine cultures taken after the completion of daptomycin treatment. Clinical cure was defined by symptom resolution, as assessed by the infectious disease clinician caring for the patient.
Included in this case series are 10 patients who received daptomycin for confirmed vancomycin-resistant enterococcal urinary tract infection. Patients had a history of extensive hospital stays. Chart review revealed that all levels of kidney function (3, 2, 3, and 2 patients with kidney disease classified as normal, mild, moderate, and severe/kidney failure, respectively) were represented in the sample and that patients with (n = 5) or without (n = 5) previous urinary tract infection and with (n = 3) or without (n = 7) Foley catheters were included. Treatment with daptomycin achieved clinical cure and vancomycin-resistant enterococcal eradication in all cases in this series.
Treatment with daptomycin was well tolerated and effective in all patients in this series, regardless of renal function, history of urinary tract infection, or Foley catheter use. This study adds to emerging clinical evidence that daptomycin is a valuable treatment for vancomycin-resistant enterococcal urinary tract infection.
PMCID: PMC3728100  PMID: 23866912
Daptomycin; Enterococcus faecalis; Enterococcus faecium; Urinary tract infection; Vancomycin-resistant enterococci
9.  Ampicillin Enhances Daptomycin- and Cationic Host Defense Peptide-Mediated Killing of Ampicillin- and Vancomycin-Resistant Enterococcus faecium 
We studied an ampicillin- and vancomycin-resistant Enterococcus faecium (VRE) isolate from a patient with endocarditis and bacteremia refractory to treatment with daptomycin (6 mg/kg of body weight) plus linezolid. Blood cultures cleared within 24 h of changing therapy to daptomycin (12 mg/kg) plus ampicillin. We examined the effects of ampicillin on daptomycin-induced growth inhibition and killing, surface charge, and susceptibility to several prototypical host defense cationic antimicrobial peptides. MICs and time-kill curves with daptomycin were assessed in the presence and absence of ampicillin. The impact of ampicillin on surface charge was assessed by flow cytometry and a poly-l-lysine binding assay. The effects of ampicillin preexposures upon VRE killing by five distinct cationic peptides of different structure, charge, origin, and mechanism of action were analyzed using the epidermal cathelicidin LL-37, thrombin-induced platelet microbicidal proteins (tPMPs), and a synthetic congener modeled after tPMP microbicidal domains (RP-1), human neutrophil peptide-1 (hNP-1), and polymyxin B (bacteria derived). Fluoroscein-Bodipy-labeled daptomycin was used to evaluate daptomycin binding to VRE membranes in the presence or absence of ampicillin. In media containing ampicillin (25 to 100 mg/liter), daptomycin MICs decreased from 1.0 to 0.38 mg/liter. Based on time-kill analysis and an in vitro pharmacodynamic model, ampicillin enhanced daptomycin activity against the study VRE from a bacteriostatic to a bactericidal profile. VRE grown in ampicillin (25 to 150 mg/liter) demonstrated an incremental reduction in its relative net positive surface charge. When grown in the presence (versus absence) of ampicillin (25 and 100 mg/liter), the VRE strain (i) was more susceptible to killing by LL-37, tPMPs, hNP-1, and RP-1 but not to polymyxin B and (ii) exhibited greater binding to Bodipy-labeled daptomycin. We conclude that ampicillin induces reductions in net positive bacterial surface charge of VRE, correlating with enhanced bactericidal effects of cationic calcium-daptomycin and a diverse range of other cationic peptides in vitro. While the mechanism(s) of such β-lactam-mediated shifts in surface charge remains to be defined, these finding suggest a potential for β-lactam-mediated enhancement of activity of both daptomycin and innate host defense peptides against antibiotic-resistant bacteria.
PMCID: PMC3264218  PMID: 22123698
10.  A Current Perspective on Daptomycin for the Clinical Microbiologist 
Clinical Microbiology Reviews  2013;26(4):759-780.
Daptomycin is a lipopeptide antimicrobial with in vitro bactericidal activity against Gram-positive bacteria that was first approved for clinical use in 2004 in the United States. Since this time, significant data have emerged regarding the use of daptomycin for the treatment of serious infections, such as bacteremia and endocarditis, caused by Gram-positive pathogens. However, there are also increasing reports of daptomycin nonsusceptibility, in Staphylococcus aureus and, in particular, Enterococcus faecium and Enterococcus faecalis. Such nonsusceptibility is largely in the context of prolonged treatment courses and infections with high bacterial burdens, but it may occur in the absence of prior daptomycin exposure. Nonsusceptibility in both S. aureus and Enterococcus is mediated by adaptations to cell wall homeostasis and membrane phospholipid metabolism. This review summarizes the data on daptomycin, including daptomycin's unique mode of action and spectrum of activity and mechanisms for nonsusceptibility in key pathogens, including S. aureus, E. faecium, and E. faecalis. The challenges faced by the clinical laboratory in obtaining accurate susceptibility results and reporting daptomycin MICs are also discussed.
PMCID: PMC3811228  PMID: 24092854
11.  A multicentre evaluation of the effectiveness and safety of high-dose daptomycin for the treatment of infective endocarditis 
Journal of Antimicrobial Chemotherapy  2013;68(12):2921-2926.
Despite significant medical advances, infective endocarditis (IE) remains an infection associated with high morbidity and mortality. The objective was to assess the safety and efficacy of high-dose daptomycin, defined as ≥8 mg/kg/day, in patients with confirmed or suspected staphylococcal and/or enterococcal IE.
This was a multicentre, retrospective observational study (2005–11). Adult patients, not undergoing haemodialysis, with blood cultures positive for staphylococci or enterococci and a definitive or possible diagnosis of IE, who received daptomycin ≥8 mg/kg/day (based on total body weight) for ≥72 h were included.
Seventy patients met the inclusion criteria and comprised 33 (47.1%) with right-sided IE (RIE), 35 (50%) with left-sided IE (LIE) and 2 with both RIE and LIE. Several patients had concomitant sites of infection, with bone/joint infection being most prevalent (12.9%). Sixty-five patients received daptomycin as salvage therapy. Pathogens were isolated from 64 patients, with methicillin-resistant Staphylococcus aureus as the most common organism (84.4%), followed by vancomycin-resistant Enterococcus faecium (7.8%). The median (IQR) daptomycin dose was 9.8 mg/kg/day (8.2–10.0 mg/kg/day), and was similar in RIE and LIE patients (9.8 and 9.3 mg/kg/day, respectively). A total of 24 (34.3%) received combination therapy. For those patients with pathogens isolated (n = 64), the organism was eradicated in 57 (89.1%) patients. Among 64 clinically evaluable patients, 55 (85.9%) achieved clinical success. No patients required discontinuation of high-dose daptomycin due to creatine phosphokinase elevations.
Patients with both RIE and LIE had successful outcomes with high-dose daptomycin therapy. Additional clinical trials evaluating high daptomycin dosages in patients with IE are warranted.
PMCID: PMC3820108  PMID: 23928022
MRSA; infections; patient outcomes
12.  Multicenter Evaluation of the Clinical Outcomes of Daptomycin with and without Concomitant β-Lactams in Patients with Staphylococcus aureus Bacteremia and Mild to Moderate Renal Impairment 
Patients with underlying renal disease may be vulnerable to vancomycin-mediated nephrotoxicity and Staphylococcus aureus bacteremia treatment failure. In light of recent data demonstrating the successful use of β-lactam plus daptomycin in very difficult cases of S. aureus bacteremia, we examined safety and clinical outcomes for patients who received daptomycin with or without concomitant β-lactams. We identified 106 patients who received daptomycin for S. aureus bacteremia, had mild or moderate renal insufficiency according to FDA criteria, and enrolled in the Cubicin Outcomes Registry and Experience (CORE), a multicenter registry, from 2005 to 2009. Daptomycin treatment success was 81%. Overall treatment efficacy was slightly enhanced with the addition of a β-lactam (87% versus 78%; P = 0.336), but this trend was most pronounced for bacteremia associated with endocarditis or bone/joint infection or bacteremia from an unknown source (90% versus 57%; P = 0.061). Factors associated with reduced daptomycin efficacy (by logistic regression) were an unknown source of bacteremia (odds ratio [OR] = 7.59; 95% confidence interval [CI] = 1.55 to 37.2), moderate renal impairment (OR = 9.11; 95% CI = 1.46 to 56.8), and prior vancomycin failure (OR = 11.2; 95% CI = 1.95 to 64.5). Two patients experienced an increase in creatine phosphokinase (CPK) that resolved after stopping daptomycin. No patients developed worsening renal insufficiency related to daptomycin. In conclusion, daptomycin appeared to be effective and well tolerated in patients with S. aureus bacteremia and mild to moderate renal insufficiency. Daptomycin treatment efficacy might be enhanced with β-lactam combination therapy in primary endovascular and bone/joint infections. Additional studies will be necessary to confirm these findings.
PMCID: PMC3591880  PMID: 23254428
13.  Efficacy of Daptomycin-Cloxacillin Combination in Experimental Foreign-Body Infection Due to Methicillin-Resistant Staphylococcus aureus 
Despite the use of daptomycin alone at high doses (greater than 6 mg/kg of body weight/day) against difficult-to-treat infections, clinical failures and resistance appeared. Recently, the combination daptomycin-cloxacillin showed enhanced efficacy in clearing bacteremia caused by methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to evaluate the efficacy of daptomycin at usual and high doses (equivalent to 6 and 10 mg/kg/day in humans, respectively) in combination with cloxacillin in a rat tissue cage infection model by MRSA and to compare its efficacy to that of daptomycin-rifampin. We used MRSA strain ATCC BAA-39. In the log- and stationary-phase kill curves, daptomycin-cloxacillin improved the bactericidal activity of daptomycin, especially in log phase. For in vivo studies, therapy was administered intraperitoneally for 7 days with daptomycin at 100 mg/kg/day and 45/mg/kg/day (daptomycin 100 and daptomycin 45), daptomycin 100-cloxacillin at 200 mg/kg/12 h, daptomycin 45-cloxacillin, and daptomycin 100-rifampin at 25 mg/kg/12 h. Daptomycin-rifampin was the best therapy (P < 0.05). Daptomycin 45 was the least effective treatment and did not protect against the emergence of resistant strains. There were no differences between the two dosages of daptomycin plus cloxacillin in any situation, and both protected against resistance. The overall effect of the addition of cloxacillin to daptomycin was a significantly greater cure rate (against adhered bacteria) than that for daptomycin alone. In conclusion, daptomycin-cloxacillin enhanced modestly the in vivo efficacy of daptomycin alone against foreign-body infection by MRSA and was less effective than daptomycin plus rifampin. The benefits of adding cloxacillin to daptomycin should be especially evaluated against infections by rifampin-resistant MRSA and for protection against the emergence of daptomycin nonsusceptibility.
PMCID: PMC3393403  PMID: 22585211
14.  Activity of Daptomycin or Linezolid in Combination with Rifampin or Gentamicin against Biofilm-Forming Enterococcus faecalis or E. faecium in an In Vitro Pharmacodynamic Model Using Simulated Endocardial Vegetations and an In Vivo Survival Assay Using Galleria mellonella Larvae 
Enterococci are the third most frequent cause of infective endocarditis. A high-inoculum stationary-phase in vitro pharmacodynamic model with simulated endocardial vegetations was used to simulate the human pharmacokinetics of daptomycin at 6 or 10 mg/kg of body weight/day or linezolid at 600 mg every 12 h (q12h), alone or in combination with gentamicin at 1.3 mg/kg q12h or rifampin at 300 mg q8h or 900 mg q24h. Biofilm-forming, vancomycin-susceptible Enterococcus faecalis and vancomycin-resistant Enterococcus faecium (vancomycin-resistant enterococcus [VRE]) strains were tested. At 24, 48, and 72 h, all daptomycin-containing regimens demonstrated significantly more activity (decline in CFU/g) than any linezolid-containing regimen against biofilm-forming E. faecalis. The addition of gentamicin to daptomycin (at 6 or 10 mg/kg) in the first 24 h significantly improved bactericidal activity. In contrast, the addition of rifampin delayed the bactericidal activity of daptomycin against E. faecalis, and the addition of rifampin antagonized the activities of all regimens against VRE at 24 h. Also, against VRE, the addition of gentamicin to linezolid at 72 h improved activity and was bactericidal. Rifampin significantly antagonized the activity of linezolid against VRE at 72 h. In in vivo Galleria mellonella survival assays, linezolid and daptomycin improved survival. Daptomycin at 10 mg/kg improved survival significantly over that with linezolid against E. faecalis. The addition of gentamicin improved the efficacy of daptomycin against E. faecalis and those of linezolid and daptomycin against VRE. We conclude that in enterococcal infection models, daptomycin has more activity than linezolid alone. Against biofilm-forming E. faecalis, the addition of gentamicin in the first 24 h causes the most rapid decline in CFU/g. Of interest, the addition of rifampin decreased the activity of daptomycin against both E. faecalis and VRE.
PMCID: PMC4136052  PMID: 24867993
15.  Rapid Emergence of Daptomycin Resistance in Clinical Isolates of Corynebacterium striatum… A Cautionary Tale 
The objective of this study was to investigate the observation of daptomycin resistance in Corynebacterium striatum, both in vivo and in vitro. We describe a case of C. striatum bacteremia in a patient with a left ventricular assist device (LVAD); the initial isolate recovered was daptomycin susceptible with a minimum inhibitory concentration (MIC) of 0.125 μg/ml. Two months later, and after daptomycin therapy, the individual became bacteremic with an isolate of C. striatum with a daptomycin MIC of >256 μg/ml.
To study the prevalence of daptomycin resistance in C. striatum, clinical isolates of C. striatum were grown in broth culture containing daptomycin to investigate emergence of resistance to this antimicrobial. Molecular typing was used to evaluate serial isolates from the index patient and the clinical isolates of C. striatum we assayed.
In vitro analysis of isolates from the index patient and seven of eleven additional C. striatum isolates exhibited emergence of high level daptomycin resistance, despite initially demonstrating low MICs to this antimicrobial agent. This phenotype was persistent even after serial subculture in the absence of daptomycin.
Together, these data demonstrate that caution should be taken when using daptomycin to treat high-inoculum infections and/or infections of indwelling medical devices with C. striatum. To our knowledge, this is the first report characterizing emergence of daptomycin resistance in C. striatum.
PMCID: PMC4331070  PMID: 24973133
16.  Assessment of effects of protein binding on daptomycin and vancomycin killing of Staphylococcus aureus by using an in vitro pharmacodynamic model. 
Antimicrobial Agents and Chemotherapy  1990;34(10):1925-1931.
Initial clinical trials with daptomycin (2 mg/kg per day) were prematurely suspended because of unexplained treatment failures in patients with bacteremia who were treated with daptomycin, despite in vitro data indicating that the gram-positive cocci causing the infection were susceptible to daptomycin. One explanation for these clinical failures may relate to the relatively high degree of daptomycin protein binding (94%). To evaluate the impact of protein on daptomycin activity, a two-chamber in vitro pharmacodynamic model was used to study and compare the interaction between Staphylococcus aureus (clinical isolate) and either daptomycin or vancomycin, each in the presence and absence of physiologic human albumin concentrations. Low-dose (2 mg/kg) daptomycin, high-dose (6 mg/kg) daptomycin, and 10 mg of vancomycin per kg beta-phase elimination serum-concentration-versus-time curves were simulated by using this in vitro pharmacodynamic model. The bacterial kill rates by all three regimens were decreased in the presence of albumin (P less than 0.0002). The average times required for a 99% kill of the initial S. aureus inocula (approximately 5 x 10(7) CFU/ml) without albumin were 0.81 (low-dose daptomycin), 0.33 (high-dose daptomycin), and 6.18 (vancomycin) h. The average times required for a 99% kill of S. aureus with albumin were 7.66 (low-dose daptomycin), 0.95 (high-dose daptomycin), and 10.52 (vancomycin) h. These data demonstrate that, depending on the concentration of daptomycin, the presence of albumin can profoundly diminish the bactericidal activity of daptomycin.
PMCID: PMC171966  PMID: 1963288
17.  Reduced Susceptibility to Host-Defense Cationic Peptides and Daptomycin Coemerge in Methicillin-Resistant Staphylococcus aureus From Daptomycin-Naive Bacteremic Patients 
The Journal of Infectious Diseases  2012;206(8):1160-1167.
Background. We hypothesized that, for methicillin-resistant Staphylococcus aureus (MRSA), in vitro daptomycin susceptibility could be influenced by exposures to endogenous host defense peptides (HDPs) prior to clinical exposure to daptomycin.
Methods. Two endovascular HDPs were used: thrombin-induced platelet microbicidal protein (tPMP) and human neutrophil defensin-1 (hNP-1) from neutrophils. Forty-seven unique MRSA isolates obtained from bacteremic patients in multicenter prospective clinical trials were studied. Clinical characteristics, microbiologic parameters, prior vancomycin therapy, and susceptibilities to tPMP, hNP-1, and daptomycin were compared using univariate and multivariate analyses.
Results. All strains were daptomycin susceptible. Daptomycin minimum inhibitory concentrations (MICs) were inversely related to in vitro tPMP (but not hNP-1) killing. Strains with a daptomycin MIC of 1 mg/L exhibited significantly less killing by tPMP, compared with strains with an MIC of ≤ 0.5 mg/L. Prior vancomycin therapy did not influence this relationship. Regression tree modeling confirmed that reduced tPMP-induced killing in vitro was the strongest predictor of higher daptomycin MICs within the daptomycin-susceptible range.
Conclusions. Among daptomycin-susceptible MRSA isolates from patients who had never received daptomycin, higher daptomycin MICs tracked with increased resistance to killing by platelet-derived but not neutrophil-derived HDPs. These findings support the notion that endogenous exposure of MRSA to specific HDPs may play a role in selecting strains with an intrinsically higher daptomycin MIC phenotype.
PMCID: PMC3448966  PMID: 22904338
18.  Clinical experience with daptomycin in Europe: the first 2.5 years 
To describe the patient populations and infections being treated with daptomycin, as well as the efficacy and safety outcomes.
Patients and methods
Data from the European Cubicin Outcomes Registry and Experience (EU-CORESM), retrospectively collected at 118 institutions between January 2006 and August 2008, were analysed.
Daptomycin treatment was documented in 1127 patients with diverse infections, including complicated skin and soft tissue infections (33%), bacteraemia (22%), endocarditis (12%) and osteomyelitis (6%). It was used empirically, before microbiological results became available, in 53% of patients. Staphylococcus aureus was the most common pathogen (34%), with 52% of isolates resistant to methicillin; coagulase-negative staphylococci and enterococci were also frequent, with 22% of Enterococcus faecium isolates resistant to vancomycin. Daptomycin was used as first-line therapy in 302 (27%) patients. When used second line, the most common reasons for discontinuation of previous antibiotic were treatment failure and toxicity or intolerance. The use of concomitant antibiotics was reported in 65% of patients. Most frequent doses were 6 mg/kg (47%) and 4 mg/kg (32%). The median duration of daptomycin therapy was 10 days (range 1–246 days) in the inpatient setting and 13 days (range 2–189 days) in the outpatient setting. The overall clinical success rate was 79%, with a clinical failure rate of <10% for all infection types. Low failure rates were observed in first- and second-line therapy (6% and 8%, respectively). Daptomycin demonstrated a favourable safety and tolerability profile regardless of treatment duration.
Daptomycin has a relevant role in the treatment of Gram-positive infections.
PMCID: PMC3058564  PMID: 21393205
cyclic lipopeptide; Gram-positive infections; registry
19.  Daptomycin antimicrobial activity tested against methicillin-resistant staphylococci and vancomycin-resistant enterococci isolated in European medical centers (2005) 
Daptomycin is a cyclic lipopeptide with potent activity and broad spectrum against Gram-positive bacteria currently used for the treatment of complicated skin and skin structure infections and bacteremia, including right sided endocarditis. We evaluated the in vitro activity of this compound and selected comparator agents tested against clinical strains of staphylococci and enterococci collected in European medical centers in 2005.
A total of 4,640 strains from 23 medical centers located in 10 European countries, Turkey and Israel (SENTRY Program platform) were tested for susceptibility by reference broth microdilution methods according to Clinical and Laboratory Standards Institute guidelines and interpretative criteria. Mueller-Hinton broth was supplemented to 50 mg/L Ca++ for testing daptomycin. Results for oxacillin (methicillin)-resistant staphylococci and vancomycin-resistant enterococci were analyzed separately.
Oxacillin resistance rates among Staphylococcus aureus varied from 2.1% in Sweden to 42.5% in the United Kingdom (UK) and 54.7% in Ireland (29.1% overall), while vancomycin resistance rates varied from 0.0% in France, Sweden and Switzerland to 66.7% in the UK and 71.4% in Ireland among Enterococcus faecium (17.9% overall). All S. aureus strains were inhibited at daptomycin MIC of 1 mg/L (MIC50/90, 0.25/0.5 mg/L; 100.0% susceptible) and only one coagulase-negative staphylococci strain (0.1%) showed an elevated (>1 mg/L) daptomycin MIC value (4 mg/L). Among E. faecalis (MIC50/90, 0.5/1 mg/L; 100% susceptible) the highest daptomycin MIC value was 2 mg/L; while among E. faecium (MIC50/90, 2/4 mg/L; 100% susceptible) the highest MIC result was 4 mg/L.
Daptomycin showed excellent in vitro activity against staphylococci and enterococci collected in European medical centers in 2005 and resistance to oxacillin, vancomycin or quinupristin/dalfopristin did not compromise its activity overall against these pathogens. Based on these results and those of previous publications, daptomycin appears to be an excellent therapeutic option for serious infections caused by oxacillin-resistant staphylococci and vancomycin-resistant enterococci in Europe.
PMCID: PMC1865382  PMID: 17442104
20.  High-Dose Daptomycin Therapy for Left-Sided Infective Endocarditis: a Prospective Study from the International Collaboration on Endocarditis 
Antimicrobial Agents and Chemotherapy  2013;57(12):6213-6222.
The use of daptomycin in Gram-positive left-sided infective endocarditis (IE) has significantly increased. The purpose of this study was to assess the influence of high-dose daptomycin on the outcome of left-sided IE due to Gram-positive pathogens. This was a prospective cohort study based on 1,112 cases from the International Collaboration on Endocarditis (ICE)-Plus database and the ICE-Daptomycin Substudy database from 2008 to 2010. Among patients with left-sided IE due to Staphylococcus aureus, coagulase-negative staphylococci, and Enterococcus faecalis, we compared those treated with daptomycin (cohort A) to those treated with standard-of-care (SOC) antibiotics (cohort B). The primary outcome was in-hospital mortality. Time to clearance of bacteremia, 6-month mortality, and adverse events (AEs) ascribable to daptomycin were also assessed. There were 29 and 149 patients included in cohort A and cohort B, respectively. Baseline comorbidities did not differ between the two cohorts, except for a significantly higher prevalence of diabetes and previous episodes of IE among patients treated with daptomycin. The median daptomycin dose was 9.2 mg/kg of body weight/day. Two-thirds of the patients treated with daptomycin had failed a previous antibiotic regimen. In-hospital and 6-month mortalities were similar in the two cohorts. In cohort A, median time to clearance of methicillin-resistant S. aureus (MRSA) bacteremia was 1.0 day, irrespective of daptomycin dose, representing a significantly faster bacteremia clearance compared to SOC (1.0 versus 5.0 days; P < 0.01). Regimens with higher daptomycin doses were not associated with increased incidence of AEs. In conclusion, higher-dose daptomycin may be an effective and safe alternative to SOC in the treatment of left-sided IE due to common Gram-positive pathogens.
PMCID: PMC3837915  PMID: 24080644
21.  Impact of Different Antimicrobial Therapies on Clinical and Fiscal Outcomes of Patients with Bacteremia Due to Vancomycin-Resistant Enterococci 
Vancomycin-resistant enterococci (VRE) are a growing health problem, and uncertainties exist regarding the optimal therapy for bloodstream infection due to VRE. We conducted systematic comparative evaluations of the impact of different antimicrobial therapies on the outcomes of patients with bloodstream infections due to VRE. A retrospective study from January 2008 to October 2010 was conducted at Detroit Medical Center. Unique patients with blood cultures due to VRE were included and reviewed. Three major therapeutic classes were analyzed: daptomycin, linezolid, and β-lactams. Three multivariate models were conducted for each outcome, matching for a propensity score predicting the likelihood of receipt of one of the therapeutic classes. A total of 225 cases of bacteremia due to VRE were included, including 86 (38.2%) cases of VR Enterococcus faecalis and 139 (61.8%) of VR Enterococcus faecium. Bacteremia due to VR E. faecalis was more frequent among subjects treated with β-lactams than among those treated with daptomycin or linezolid. The median dose of daptomycin was 6 mg/kg of body weight (range, 6 to 12 mg/kg). After controlling for propensity score and bacteremia due to VR E. faecalis, differences in mortality were nonsignificant among the treatment groups. Therapy with daptomycin was associated with higher median variable direct cost per day than that for linezolid. This large study revealed the three therapeutic classes (daptomycin, linezolid, and β-lactams) are similarly efficacious in the treatment of bacteremia due to susceptible strains of VRE.
PMCID: PMC4068570  PMID: 24798267
22.  Synergy of Daptomycin with Oxacillin and Other β-Lactams against Methicillin-Resistant Staphylococcus aureus 
We previously observed marked synergy between daptomycin and both rifampin and ampicillin against vancomycin-resistant enterococci (VRE). Because the synergy between daptomycin and ampicillin was observed for 100% of VRE strains with high-level ampicillin resistance (ampicillin MIC of ≥128 μg/ml), we looked for synergy between daptomycin and other β-lactams against 18 strains of methicillin-resistant Staphylococcus aureus (MRSA) by employing a time-kill method using Mueller-Hinton broth supplemented to 50 mg of Ca2+/liter. All strains were resistant to oxacillin (16 of 18 strains were resistant at drug concentrations of ≥256 μg/ml), and all strains were susceptible to daptomycin (the MIC at which 90% of the tested isolates were inhibited was 1 μg/ml). Daptomycin was tested at concentrations of 2, 1, 0.5, 0.25, 0.125, and 0.0625 μg/ml alone or in combination with oxacillin at a fixed concentration of 32 μg/ml. Synergy was found for all 18 strains with daptomycin at one-half the MIC in combination with 32 μg of oxacillin/ml, and synergy was found for 11 of 18 strains (61%) with daptomycin at one-fourth the MIC or less in combination with oxacillin. At 24 h, the daptomycin-oxacillin combination with daptomycin at one-half the MIC showed bactericidal activity against all 18 strains, and the combination with one-fourth the daptomycin MIC showed bactericidal activity against 9 of 18 strains. We also used a novel screening method to look for synergy between daptomycin and other β-lactams. In this approach, daptomycin was incorporated into Ca2+-supplemented Mueller-Hinton agar at subinhibitory concentrations, and synergy was screened by comparing test antibiotic Kirby-Bauer disks on agar with and without daptomycin. By this method, daptomycin with ampicillin-sulbactam, ticarcillin-clavulanate, or piperacillin-tazobactam showed synergy comparable to or greater than daptomycin with oxacillin. For seven of the eight strains tested, time-kill studies confirmed synergy between daptomycin and ampicillin-sulbactam with ampicillin in the range of 2 to 8 μg/ml. The combination of daptomycin and β-lactams may be useful for the treatment of MRSA infection, but further studies are needed to elucidate the mechanisms and to determine the in vivo efficacy of the combination.
PMCID: PMC478518  PMID: 15273094
23.  Early In Vitro and In Vivo Development of High-Level Daptomycin Resistance Is Common in Mitis Group Streptococci after Exposure to Daptomycin 
The development of high-level daptomycin resistance (HLDR; MIC of ≥256 mg/liter) after exposure to daptomycin has recently been reported in viridans group streptococcus (VGS) isolates. Our study objectives were as follows: to know whether in vitro development of HLDR after exposure to daptomycin was common among clinical isolates of VGS and Streptococcus bovis; to determine whether HLDR also developed during the administration of daptomycin to treat experimental endocarditis caused by the daptomycin-susceptible, penicillin-resistant Streptococcus mitis strain S. mitis 351; and to establish whether combination with gentamicin prevented the development of HLDR in vitro and in vivo. In vitro studies were performed with 114 VGS strains (mitis group, 92; anginosus group, 10; mutans group, 8; and salivarius group, 4) and 54 Streptococcus bovis strains isolated from 168 consecutive patients with infective endocarditis diagnosed between 1995 and 2010. HLDR was only observed after 24 h of exposure to daptomycin in 27% of the mitis group, including 27% of S. mitis isolates, 47% of S. oralis isolates, and 13% of S. sanguis isolates. In our experimental model, HLDR was detected in 7/11 (63%) and 8/12 (67%) isolates recovered from vegetations after 48 h of daptomycin administered at 6 mg/kg of body weight/24 h and 10 mg/kg/24 h, respectively. In vitro, time-kill experiments showed that daptomycin plus gentamicin was bactericidal against S. mitis 351 at tested concentrations of 0.5 and 1 times the MIC and prevented the development of HLDR. In vivo, the addition of gentamicin at 1 mg/kg/8 h to both daptomycin arms prevented HLDR in 21 out of 23 (91%) rabbits. Daptomycin plus gentamicin was at least as effective as vancomycin plus gentamicin. In conclusion, HLDR develops rapidly and frequently in vitro and in vivo among mitis group streptococci. Combining daptomycin with gentamicin enhanced its activity and prevented the development of HLDR in most cases.
PMCID: PMC3632914  PMID: 23478959
24.  Daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bacteremia: systematic review and meta-analysis 
BMC Infectious Diseases  2014;14(1):687.
Linezolid, which has bacteriostatic activity, is approved for the treatment of vancomycin-resistant enterococci (VRE) infections. Meanwhile, daptomycin exerts bactericidal activity against VRE, but is not approved for the treatment of VRE bacteremia. Only a few studies with small sample sizes have compared the effectiveness of these drugs for treatment of VRE bacteremia.
PubMed, EMBASE, and the Cochrane Library were searched for studies of VRE bacteremia treatment published before January 1, 2014. All studies reporting daptomycin and linezolid treatment outcomes simultaneously were included. The endpoints were mortality and microbiological cure. The adjusted odds ratios (aORs) of mortality in daptomycin- and linezolid-treated patients were extracted if available. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for all outcomes using a random-effects model.
Thirteen studies (532 patients receiving daptomycin, 656 patients receiving linezolid) met the selection criteria. All studies had retrospective cohort designs and relatively small sample sizes. Eight studies compared the aORs of mortality in daptomycin- and linezolid-treated patients. Four studies were published as conference papers and there was significant heterogeneity among these studies (I2 = 63%, p = 0.04). Daptomycin use was not associated with better microbiological cure (daptomycin vs. linezolid, OR: 0.67, 95% CI: 0.42–1.06, p = 0.09). However, mortality was higher in patients receiving daptomycin (OR: 1.43, 95% CI: 1.09–1.86, p = 0.009). Subgroup analysis of studies that reported aORs indicated that daptomycin was associated with higher mortality (OR: 1.59, 95% CI: 1.02–2.50, p = 0.04). There was no evidence of publication bias, but all enrolled studies were retrospective, had small sample sizes, and had substantial limitations.
Although limited data is available, the current meta-analysis shows that linezolid treatment for VRE bacteremia was associated with a lower mortality than daptomycin treatment. However, the results should be interpreted cautiously because of limitations inherent to retrospective studies and the high heterogeneity among studies. A large randomized trial is needed to confirm the present results.
Electronic supplementary material
The online version of this article (doi:10.1186/s12879-014-0687-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4269951  PMID: 25495779
Daptomycin; Linezolid; Meta-analysis; Vancomycin-resistant enterococci
25.  Genetic Basis for In Vivo Daptomycin Resistance in Enterococci 
The New England journal of medicine  2011;365(10):892-900.
Daptomycin is a lipopeptide with bactericidal activity that acts on the cell membrane of enterococci and is often used off-label to treat patients infected with vancomycin-resistant enterococci. However, the emergence of resistance to daptomycin during therapy threatens its usefulness.
We performed whole-genome sequencing and characterization of the cell envelope of a clinical pair of vancomycin-resistant Enterococcus faecalis isolates from the blood of a patient with fatal bacteremia; one isolate (S613) was from blood drawn before treatment and the other isolate (R712) was from blood drawn after treatment with daptomycin. The minimal inhibitory concentrations (MICs) of these two isolates were 1 and 12 μg per milliliter, respectively. Gene replacements were made to exchange the alleles found in isolate S613 with those in isolate R712.
Isolate R712 had in-frame deletions in three genes. Two genes encoded putative enzymes involved in phospholipid metabolism, GdpD (which denotes glycerophosphoryl diester phosphodiesterase) and Cls (which denotes cardiolipin synthetase), and one gene encoded a putative membrane protein, LiaF (which denotes lipid II cycle-interfering antibiotics protein but whose exact function is not known). LiaF is predicted to be a member of a three-component regulatory system (LiaFSR) involved in the stress-sensing response of the cell envelope to antibiotics. Replacement of the liaF allele of isolate S613 with the liaF allele from isolate R712 quadrupled the MIC of daptomycin, whereas replacement of the gdpD allele had no effect on MIC. Replacement of both the liaF and gdpD alleles of isolate S613 with the liaF and gdpD alleles of isolate R712 raised the daptomycin MIC for isolate S613 to 12 μg per milliliter. As compared with isolate S613, isolate R712 — the daptomycin-resistant isolate — had changes in the structure of the cell envelope and alterations in membrane permeability and membrane potential.
Mutations in genes encoding LiaF and a GdpD-family protein were necessary and sufficient for the development of resistance to daptomycin during the treatment of vancomycin-resistant enterococci. (Funded by the National Institute of Allergy and Infectious Diseases and the National Institutes of Health.)
PMCID: PMC3205971  PMID: 21899450

Results 1-25 (1339557)