Search tips
Search criteria

Results 1-25 (460423)

Clipboard (0)

Related Articles

1.  A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis 
Cell Stress & Chaperones  2006;11(1):23-33.
Molecular chaperones play crucial roles in various aspects of the biogenesis and maintenance of proteins in the cell. The heat shock protein 70 (HSP70) chaperone system, in which HSP70 proteins act as chaperones, is one of the major molecular chaperone systems conserved among a variety of organisms. To shed light on the evolutionary history of the constituents of the chordate HSP70 chaperone system and to identify all of the components of the HSP70 chaperone system in ascidians, we carried out a comprehensive survey for HSP70s and their cochaperones in the genome of Ciona intestinalis. We characterized all members of the Ciona HSP70 superfamily, J-proteins, BAG family, and some other types of cochaperones. The Ciona genome contains 8 members of the HSP70 superfamily, all of which have human and protostome counterparts. Members of the STCH subfamily of the HSP70 family and members of the HSPA14 subfamily of the HSP110 family are conserved between humans and protostomes but were not found in Ciona. The Ciona genome encodes 36 J-proteins, 32 of which belong to groups conserved in humans and protostomes. Three proteins seem to be unique to Ciona. J-proteins of the RBJ group are conserved between humans and Ciona but were not found in protostomes, whereas J-proteins of the DNAJC14, ZCSL3, FLJ13236, and C21orf55 groups are conserved between humans and protostomes but were not found in Ciona. J-proteins of the sacsin group seem to be specific to vertebrates. There is also a J-like protein without a conserved HPD tripeptide motif in the Ciona genome. The Ciona genome encodes 3 types of BAG family proteins, all of which have human and protostome counterparts (BAG1, BAG3, and BAT3). BAG2 group is conserved between humans and protostomes but was not found in Ciona, and BAG4 and BAG5 groups seem to be specific to vertebrates. Members for SIL1, UBQLN, UBADC1, TIMM44, GRPEL, and Magmas groups, which are conserved between humans and protostomes, were also found in Ciona. No Ciona member was retrieved for HSPBP1 group, which is conserved between humans and protostomes. For several groups of the HSP70 superfamily, J-proteins, and other types of cochaperones, multiple members in humans are represented by a single counterpart in Ciona. These results show that genes of the HSP70 chaperone system can be distinguished into groups that are shared by vertebrates, Ciona, and protostomes, ones shared by vertebrates and protostomes, ones shared by vertebrates and Ciona, and ones specific to vertebrates, Ciona, or protostomes. These results also demonstrate that the components of the HSP70 chaperone system in Ciona are similar to but simpler than those in humans and suggest that changes of the genome in the lineage leading to humans after the separation from that leading to Ciona increased the number and diversity of members of the HSP70 chaperone system. Changes of the genome in the lineage leading to Ciona also seem to have made the HSP70 chaperone system in this species slightly simpler than that in the common ancestor of humans and Ciona.
PMCID: PMC1400611  PMID: 16572726
2.  Seeing chordate evolution through the Ciona genome sequence 
Genome Biology  2003;4(3):208.
A draft sequence of the compact genome of the sea squirt Ciona intestinalis illuminates how chordates originated and how vertebrate developmental innovations evolved.
A draft sequence of the compact genome of the sea squirt Ciona intestinalis, a non-vertebrate chordate that diverged very early from other chordates, including vertebrates, illuminates how chordates originated and how vertebrate developmental innovations evolved.
PMCID: PMC153453  PMID: 12620098
3.  CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis 
Knockout of genes with CRISPR/Cas9 is a newly emerged approach to investigate functions of genes in various organisms. We demonstrate that CRISPR/Cas9 can mutate endogenous genes of the ascidian Ciona intestinalis, a splendid model for elucidating molecular mechanisms for constructing the chordate body plan. Short guide RNA (sgRNA) and Cas9 mRNA, when they are expressed in Ciona embryos by means of microinjection or electroporation of their expression vectors, introduced mutations in the target genes. The specificity of target choice by sgRNA is relatively high compared to the reports from some other organisms, and a single nucleotide mutation at the sgRNA dramatically reduced mutation efficiency at the on-target site. CRISPR/Cas9-mediated mutagenesis will be a powerful method to study gene functions in Ciona along with another genome editing approach using TALE nucleases.
PMCID: PMC4231237  PMID: 25212715
ascidian; Ciona intestinalis; CRISPR/Cas9; knockout; mutagenesis
4.  NK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field 
PLoS Biology  2013;11(12):e1001725.
Cross inhibition between NK4 and TBX1 transcription factors specifies heart versus pharyngeal muscle fates by promoting the activation of tissue-specific regulators in distinct precursors within the cardiopharyngeal lineage of the ascidian, Ciona intestinalis.
The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF) do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF) and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE), the determinant of atrial siphon muscle (ASM) specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates.
Author Summary
Mutations in the regulatory genes encoding the transcription factors NKX2-5 and TBX1, which govern heart and head muscle development, cause prevalent congenital defects. Recent studies using vertebrate models have shown that the heart and pharyngeal head muscle cells derive from common progenitors in the early embryo. To better understand the genetic mechanisms by which these progenitors select one of the two developmental trajectories, we studied the activity of these transcription factors in a simple invertebrate chordate model, the sea squirt Ciona intestinalis. We show that the sea squirt homolog of NKX2-5 promotes early heart specification by inhibiting the formation of pharyngeal muscles. Conversely, the TBX1 homolog determines pharyngeal muscle fate by inhibiting GATAa and thereby the heart program it instructs, as well as promoting the pharyngeal muscle program through activation of COE (Collier/Olf-1/EBF), a recently identified regulator of skeletal muscle differentiation. Finally, we show that the NKX2-5 homolog protein directly binds to the COE gene to repress its activity. Notably, these antagonistic interactions occur in heart and pharyngeal precursors immediately following the division of their pluripotent mother cells, thus contributing to their respective fate choice. These mechanistic insights into the process of early heart versus head muscle specification in this simple chordate provide the grounds for establishing the etiology of human congenital cardio-craniofacial defects.
PMCID: PMC3849182  PMID: 24311985
5.  An Equatorial Contractile Mechanism Drives Cell Elongation but not Cell Division 
PLoS Biology  2014;12(2):e1001781.
A cytokinesis-like contractile mechanism is co-opted in a different developmental scenario to achieve cell elongation instead of cell division in Ciona intestinalis.
Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that although notochord cells do not divide, they use a cytokinesis-like actomyosin mechanism to drive cell elongation. The actomyosin network forming at the equator of each notochord cell includes phosphorylated myosin regulatory light chain, α-actinin, cofilin, tropomyosin, and talin. We demonstrate that cofilin and α-actinin are two crucial components for cell elongation. Cortical flow contributes to the assembly of the actomyosin ring. Similar to cytokinetic cells, membrane blebs that cause local contractions form at the basal cortex next to the equator and participate in force generation. We present a model in which the cooperation of equatorial actomyosin ring-based constriction and bleb-associated contractions at the basal cortex promotes cell elongation. Our results demonstrate that a cytokinesis-like contractile mechanism is co-opted in a completely different developmental scenario to achieve cell shape change instead of cell division. We discuss the occurrences of actomyosin rings aside from cell division, suggesting that circumferential contraction is an evolutionally conserved mechanism to drive cell or tissue elongation.
Author Summary
The actomyosin cytoskeleton is the primary force that drives cell shape changes. These fibers are organized in elaborate structures that form sarcomeres in the muscle and the contractile ring during cytokinesis. In cytokinesis, the establishment of an equatorial actomyosin ring is preceded and regulated by many cell cycle events, and the ring itself is a complex and dynamic structure. Here we report the presence of an equatorial circumferential actomyosin structure with remarkable similarities to the cytokinetic ring formed in postmitotic notochord cells of sea squirt Ciona intestinalis. The notochord is a transient rod-like structure found in all embryos that belong to the phylum Chordata, and in Ciona, a simple chordate, it consists of only 40 cylindrical cells arranged in a single file, which elongate individually during development. Our study shows that the activity of the equatorial actomyosin ring is required for the elongation of the notochord cells. We also find that cortical flow contributes significantly to the formation of the ring at the equator. Similar to cytokinetic cells, we observe the formation of membrane blebs outside the equatorial region. Our analyses suggest that cooperation of actomyosin ring-based circumferential constriction and bleb-associated contractions drive cell elongation in Ciona. We conclude that cells can utilize a cytokinesis-like force generation mechanism to promote cell shape change instead of cell division.
PMCID: PMC3913557  PMID: 24503569
6.  Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians 
eLife  null;3:e03728.
Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. In this study, we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or ‘unintelligibility’, of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-acting elements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis.
eLife digest
When two species have features that look similar, this may be because the features arise by the same processes during development. Other features may look similar yet develop by different mechanisms. ‘Developmental system drift’ refers to the process where a physical feature remains unaltered during evolution, but the underlying pathway that controls its development is changed. However, to date, there have been only a few experimental studies that support this idea.
Ascidians—also commonly known as sea squirts—are vase-like marine creatures, which start off as tadpole-like larvae that swim around until they find a place to settle down and attach themselves. Once attached, the sea squirts lose the ability to swim and start feeding, typically by filtering material out of the seawater. Sea squirts and their close relatives are the invertebrates (animals without backbones) that are most closely related to all vertebrates (animals with backbones), including humans. Furthermore, although different species of sea squirt have almost identical embryos, their genomes are very different.
Stolfi et al. have now studied whether developmental system drift may have occurred during the evolution of ascidians, by analyzing different species of sea squirt named Molgula and Ciona. Stolfi et al. compared the genomes of Molgula and Ciona and studied the expression of genes in the cells that give rise to the heart and the muscles of the head. As an embryo develops, specific genes are switched on or off, and these patterns of gene activation were broadly identical in the two species of sea squirt examined.
Enhancers are sequences of DNA that control when and how a gene is switched on. Given the similarities between the development of heart and head muscle cells in the different sea squirts, Stolfi et al. looked to see if the mechanisms of gene expression, and therefore the enhancers, were also conserved. Unexpectedly, this was not the case. When enhancers from Molgula were introduced into Ciona (and vice versa), these sequences were unable to switch on gene expression—thus enhancers from one sea squirt species could not function in the other.
Stolfi et al. conclude that the developmental systems may have drifted considerably during evolution of the sea squirts, in spite of their nearly identical embryos. This reinforces the view that different paths can lead to the formation of similar physical features.
PMCID: PMC4356046  PMID: 25209999
development; evolution; DSD; ascidians; tunicates; cardiopharyngeal mesoderm; other
7.  Functional Brachyury Binding Sites Establish a Temporal Read-out of Gene Expression in the Ciona Notochord 
PLoS Biology  2013;11(10):e1001697.
During notochord formation in chordate embryos, the transcription factor Brachyury employs different regulatory strategies to ensure the sequential activation of downstream genes and thereby the deployment of a specific developmental program at the right time and place.
The appearance of the notochord represented a milestone in Deuterostome evolution. The notochord is necessary for the development of the chordate body plan and for the formation of the vertebral column and numerous organs. It is known that the transcription factor Brachyury is required for notochord formation in all chordates, and that it controls transcription of a large number of target genes. However, studies of the structure of the cis-regulatory modules (CRMs) through which this control is exerted are complicated in vertebrates by the genomic complexity and the pan-mesodermal expression territory of Brachyury. We used the ascidian Ciona, in which the single-copy Brachyury is notochord-specific and CRMs are easily identifiable, to carry out a systematic characterization of Brachyury-downstream notochord CRMs. We found that Ciona Brachyury (Ci-Bra) controls most of its targets directly, through non-palindromic binding sites that function either synergistically or individually to activate early- and middle-onset genes, respectively, while late-onset target CRMs are controlled indirectly, via transcriptional intermediaries. These results illustrate how a transcriptional regulator can efficiently shape a shallow gene regulatory network into a multi-tiered transcriptional output, and provide insights into the mechanisms that establish temporal read-outs of gene expression in a fast-developing chordate embryo.
Author Summary
Transcription factors control where and when gene expression is switched on by binding to specific stretches of DNA known as cis-regulatory modules (CRMs). In this study, we investigated the architecture and composition of CRMs that direct gene expression in the notochord—a transient rod-like structure found in all embryos that belong to the phylum chordata, which includes humans. Here we used the sea squirt Ciona, a simple chordate, and analyzed how the transcription factor Brachyury ensures the appropriate deployment of its target genes at specific times during the sequential steps of notochord formation. We compared CRMs found in different notochord genes downstream of Brachyury, expecting to find genes associated with greater numbers of Brachyury binding sites to be expressed at higher levels. To our surprise, we found instead that a higher number of functional Brachyury binding sites is typical of CRMs associated with genes that are expressed early in notochord development, while single-site CRMs are characteristic of genes that are turned on during the intermediate stages of this process. Finally, CRMs associated with genes expressed late in notochord development do not contain functional Brachyury binding sites but are controlled by Brachyury indirectly, through the action of intermediary transcription factors. These differences explain how a transcription factor that is present at all stages in a certain cell type can generate a sequential transcriptional output of gene expression.
PMCID: PMC3812116  PMID: 24204212
8.  Ciona intestinalis as a Marine Model System to Study Some Key Developmental Genes Targeted by the Diatom-Derived Aldehyde Decadienal 
Marine Drugs  2015;13(3):1451-1465.
The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes) induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazing. The cell targets of these compounds remain largely unknown. Here we identify some of the genes targeted by the diatom PUA 2-trans-4-trans-decadienal (DD) using the tunicate Ciona intestinalis. The tools, techniques and genomic resources available for Ciona, as well as the suitability of Ciona embryos for medium-to high-throughput strategies, are key to their employment as model organisms in different fields, including the investigation of toxic agents that could interfere with developmental processes. We demonstrate that DD can induce developmental aberrations in Ciona larvae in a dose-dependent manner. Moreover, through a preliminary analysis, DD is shown to affect the expression level of genes involved in stress response and developmental processes.
PMCID: PMC4377993  PMID: 25789602
ascidian; Hox; ParaHox; stress; glutathione (GSH); development
9.  Transposon mediated transgenesis in a marine invertebrate chordate: Ciona intestinalis 
Genome Biology  2007;8(Suppl 1):S3.
Achievement of transposon mediated germline transgenesis in a basal chordate, Ciona intestinalis, is discussed. A Tc1/mariner superfamily transposon, Minos, has excision and transposition activities in Ciona. Minos enables the creation of stable transgenic lines, enhancer detection, and insertional mutagenesis.
PMCID: PMC2106840  PMID: 18047695
10.  Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura 
The notochord is a defining feature of the chordate clade, and invertebrate chordates, such as tunicates, are uniquely suited for studies of this structure. Here we used a well-characterized set of 50 notochord genes known to be targets of the notochord-specific Brachyury transcription factor in one tunicate, Ciona intestinalis (Class Ascidiacea), to begin determining whether the same genetic toolkit is employed to build the notochord in another tunicate, Oikopleura dioica (Class Larvacea). We identified Oikopleura orthologs of the Ciona notochord genes, as well as lineage-specific duplicates for which we determined the phylogenetic relationships with related genes from other chordates, and we analyzed their expression patterns in Oikopleura embryos.
Of the 50 Ciona notochord genes that were used as a reference, only 26 had clearly identifiable orthologs in Oikopleura. Two of these conserved genes appeared to have undergone Oikopleura- and/or tunicate-specific duplications, and one was present in three copies in Oikopleura, thus bringing the number of genes to test to 30. We were able to clone and test 28 of these genes. Thirteen of the 28 Oikopleura orthologs of Ciona notochord genes showed clear expression in all or in part of the Oikopleura notochord, seven were diffusely expressed throughout the tail, six were expressed in tissues other than the notochord, while two probes did not provide a detectable signal at any of the stages analyzed. One of the notochord genes identified, Oikopleura netrin, was found to be unevenly expressed in notochord cells, in a pattern reminiscent of that previously observed for one of the Oikopleura Hox genes.
A surprisingly high number of Ciona notochord genes do not have apparent counterparts in Oikopleura, and only a fraction of the evolutionarily conserved genes show clear notochord expression. This suggests that Ciona and Oikopleura, despite the morphological similarities of their notochords, have developed rather divergent sets of notochord genes after their split from a common tunicate ancestor. This study demonstrates that comparisons between divergent tunicates can lead to insights into the basic complement of genes sufficient for notochord development, and elucidate the constraints that control its composition.
PMCID: PMC3034685  PMID: 21251251
11.  Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus 
BMC Genomics  2006;7:288.
To gain insight into the evolutionary features of the huntingtin (htt) gene in Chordata, we have sequenced and characterized the full-length htt mRNA in the ascidian Ciona intestinalis, a basal chordate emerging as new invertebrate model organism. Moreover, taking advantage of the availability of genomic and EST sequences, the htt gene structure of a number of chordate species, including the cogeneric ascidian Ciona savignyi, and the vertebrates Xenopus and Gallus was reconstructed.
The C. intestinalis htt transcript exhibits some peculiar features, such as spliced leader trans-splicing in the 98 nt-long 5' untranslated region (UTR), an alternative splicing in the coding region, eight alternative polyadenylation sites, and no similarities of both 5' and 3'UTRs compared to homologs of the cogeneric C. savignyi. The predicted protein is 2946 amino acids long, shorter than its vertebrate homologs, and lacks the polyQ and the polyP stretches found in the the N-terminal regions of mammalian homologs. The exon-intron organization of the htt gene is almost identical among vertebrates, and significantly conserved between Ciona and vertebrates, allowing us to hypothesize an ancestral chordate gene consisting of at least 40 coding exons.
During chordate diversification, events of gain/loss, sliding, phase changes, and expansion of introns occurred in both vertebrate and ascidian lineages predominantly in the 5'-half of the htt gene, where there is also evidence of lineage-specific evolutionary dynamics in vertebrates. On the contrary, the 3'-half of the gene is highly conserved in all chordates at the level of both gene structure and protein sequence. Between the two Ciona species, a fast evolutionary rate and/or an early divergence time is suggested by the absence of significant similarity between UTRs, protein divergence comparable to that observed between mammals and fishes, and different distribution of repetitive elements.
PMCID: PMC1636649  PMID: 17092333
12.  The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family 
Integrins are a functionally significant family of metazoan cell surface adhesion receptors. The receptors are dimers composed of an alpha and a beta chain. Vertebrate genomes encode an expanded set of integrin alpha and beta chains in comparison with protostomes such as drosophila or the nematode worm. The publication of the genome of a basal chordate, Ciona intestinalis, provides a unique opportunity to gain further insight into how and when the expanded integrin supergene family found in vertebrates evolved.
The Ciona genome encodes eleven α and five β chain genes that are highly homologous to their vertebrate homologues. Eight of the α chains contain an A-domain that lacks the short alpha helical region present in the collagen-binding vertebrate alpha chains. Phylogenetic analyses indicate the eight A-domain containing α chains cluster to form an ascidian-specific clade that is related to but, distinct from, the vertebrate A-domain clade. Two Ciona α chains cluster in laminin-binding clade and the remaining chain clusters in the clade that binds the RGD tripeptide sequence. Of the five Ciona β chains, three form an ascidian-specific clade, one clusters in the vertebrate β1 clade and the remaining Ciona chain is the orthologue of the vertebrate β4 chain.
The Ciona repertoire of integrin genes provides new insight into the basic set of these receptors available at the beginning of vertebrate evolution. The ascidian and vertebrate α chain A-domain clades originated from a common precursor but radiated separately in each lineage. It would appear that the acquisition of collagen binding capabilities occurred in the chordate lineage after the divergence of ascidians.
PMCID: PMC1145181  PMID: 15892888
13.  Functional evolution of the vitamin D and pregnane X receptors 
The vitamin D receptor (VDR) and pregnane X receptor (PXR) are nuclear hormone receptors of the NR1I subfamily that show contrasting patterns of cross-species variation. VDR and PXR are thought to have arisen from duplication of an ancestral gene, evident now as a single gene in the genome of the chordate invertebrate Ciona intestinalis (sea squirt). VDR genes have been detected in a wide range of vertebrates including jawless fish. To date, PXR genes have not been found in cartilaginous fish. In this study, the ligand selectivities of VDRs were compared in detail across a range of vertebrate species and compared with those of the Ciona VDR/PXR. In addition, several assays were used to search for evidence of PXR-mediated hepatic effects in three model non-mammalian species: sea lamprey (Petromyzon marinus), zebrafish (Danio rerio), and African clawed frog (Xenopus laevis).
Human, mouse, frog, zebrafish, and lamprey VDRs were found to have similar ligand selectivities for vitamin D derivatives. In contrast, using cultured primary hepatocytes, only zebrafish showed evidence of PXR-mediated induction of enzyme expression, with increases in testosterone 6β-hydroxylation activity (a measure of cytochrome P450 3A activity in other species) and flurbiprofen 4-hydroxylation activity (measure of cytochrome P450 2C activity) following exposure to known PXR activators. A separate assay in vivo using zebrafish demonstrated increased hepatic transcription of another PXR target, multidrug resistance gene (ABCB5), following injection of the major zebrafish bile salt, 5α-cyprinol 27-sulfate. The PXR target function, testosterone hydroxylation, was detected in frog and sea lamprey primary hepatocytes, but was not inducible in these two species by a wide range of PXR activators in other animals. Analysis of the sea lamprey draft genome also did not show evidence of a PXR gene.
Our results show tight conservation of ligand selectivity of VDRs across vertebrate species from Agnatha to mammals. Using a functional approach, we demonstrate classic PXR-mediated effects in zebrafish, but not in sea lamprey or African clawed frog liver cells. Using a genomic approach, we failed to find evidence of a PXR gene in lamprey, suggesting that VDR may be the original NR1I gene.
PMCID: PMC2263054  PMID: 17997857
14.  A cis-Regulatory Signature for Chordate Anterior Neuroectodermal Genes 
PLoS Genetics  2010;6(4):e1000912.
One of the striking findings of comparative developmental genetics was that expression patterns of core transcription factors are extraordinarily conserved in bilaterians. However, it remains unclear whether cis-regulatory elements of their target genes also exhibit common signatures associated with conserved embryonic fields. To address this question, we focused on genes that are active in the anterior neuroectoderm and non-neural ectoderm of the ascidian Ciona intestinalis. Following the dissection of a prototypic anterior placodal enhancer, we searched all genomic conserved non-coding elements for duplicated motifs around genes showing anterior neuroectodermal expression. Strikingly, we identified an over-represented pentamer motif corresponding to the binding site of the homeodomain protein OTX, which plays a pivotal role in the anterior development of all bilaterian species. Using an in vivo reporter gene assay, we observed that 10 of 23 candidate cis-regulatory elements containing duplicated OTX motifs are active in the anterior neuroectoderm, thus showing that this cis-regulatory signature is predictive of neuroectodermal enhancers. These results show that a common cis-regulatory signature corresponding to K50-Paired homeodomain transcription factors is found in non-coding sequences flanking anterior neuroectodermal genes in chordate embryos. Thus, field-specific selector genes impose architectural constraints in the form of combinations of short tags on their target enhancers. This could account for the strong evolutionary conservation of the regulatory elements controlling field-specific selector genes responsible for body plan formation.
Author Summary
Regional identity in embryos is defined by a few specific transcription factors that activate a large number of target genes through binding to common tags in regulatory sequences. In chordates it is unclear if such tags can be identified in the cis-regulatory regions of regionally expressed genes. To address this question we focused on the anterior nervous system where Otx codes for a transcription factor that triggers expression of many other head-specific genes. We analyzed an element that is active in the region bordering the anterior nervous system in the marine invertebrate Ciona intestinalis. We found that the crucial binding sites have to be duplicated and close enough. One of the pairs is bound by OTX. We showed that anterior nervous system genes are often flanked by duplicated OTX binding sites. We confirmed by transgenic assays that about half of these genomic sequences are active and drive expression anteriorly. This study unravels a simple regulatory logic in the anterior enhancers. It indicates that although there are major changes in the organization of the binding sites at short evolutionary range, conserved expression patterns are partly generated by a duplicated organization of conserved binding sites for region-specific transcription factors.
PMCID: PMC2855326  PMID: 20419150
15.  Ciona intestinalis as a model for cardiac development 
The primitive chordate Ciona intestinalis has emerged as a significant model system for the study of heart development. The Ciona embryo employs a conserved heart gene network in the context of extremely low cell numbers and reduced genetic redundancy. Here, I review recent studies on the molecular genetics of Ciona cardiogenesis as well as classic work on heart anatomy and physiology. I also discuss the potential of employing Ciona to decipher a comprehensive chordate gene network and to determine how this network controls heart morphogenesis.
PMCID: PMC1857341  PMID: 17223594
Heart development; Organogenesis; Gene regulation; Chordate evolution
16.  The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis 
G protein-coupled receptors (GPCRs) constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in eukaryotes. The genome of the protochordate Ciona intestinalis has a compact size with an ancestral complement of many diversified gene families of vertebrates and is a good model system for studying protochordate to vertebrate diversification. An analysis of the Ciona repertoire of GPCRs from a comparative genomic perspective provides insight into the evolutionary origins of the GPCR signalling system in vertebrates.
We have identified 169 gene products in the Ciona genome that code for putative GPCRs. Phylogenetic analyses reveal that Ciona GPCRs have homologous representatives from the five major GRAFS (Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin) families concomitant with other vertebrate GPCR repertoires. Nearly 39% of Ciona GPCRs have unambiguous orthologs of vertebrate GPCR families, as defined for the human, mouse, puffer fish and chicken genomes. The Rhodopsin family accounts for ~68% of the Ciona GPCR repertoire wherein the LGR-like subfamily exhibits a lineage specific gene expansion of a group of receptors that possess a novel domain organisation hitherto unobserved in metazoan genomes.
Comparison of GPCRs in Ciona to that in human reveals a high level of orthology of a protochordate repertoire with that of vertebrate GPCRs. Our studies suggest that the ascidians contain the basic ancestral complement of vertebrate GPCR genes. This is evident at the subfamily level comparisons since Ciona GPCR sequences are significantly analogous to vertebrate GPCR subfamilies even while exhibiting Ciona specific genes. Our analysis provides a framework to perform future experimental and comparative studies to understand the roles of the ancestral chordate versions of GPCRs that predated the divergence of the urochordates and the vertebrates.
PMCID: PMC2396169  PMID: 18452600
17.  An organismal perspective on C. intestinalis development, origins and diversification 
eLife  null;4:e06024.
The ascidian Ciona intestinalis, commonly known as a ‘sea squirt’, has become an important model for embryological studies, offering a simple blueprint for chordate development. As a model organism, it offers the following: a small, compact genome; a free swimming larva with only about 2600 cells; and an embryogenesis that unfolds according to a predictable program of cell division. Moreover, recent phylogenies reveal that C. intestinalis occupies a privileged branch in the tree of life: it is our nearest invertebrate relative. Here, we provide an organismal perspective of C. intestinalis, highlighting aspects of its life history and habitat—from its brief journey as a larva to its radical metamorphosis into adult form—and relate these features to its utility as a laboratory model.
PMCID: PMC4373457  PMID: 25807088
the natural history of model organisms; C. intestinalis; chordate; tunicate; C. intestinalis
18.  Ascidian Mitogenomics: Comparison of Evolutionary Rates in Closely Related Taxa Provides Evidence of Ongoing Speciation Events 
Genome Biology and Evolution  2014;6(3):591-605.
Ascidians are a fascinating group of filter-feeding marine chordates characterized by rapid evolution of both sequences and structure of their nuclear and mitochondrial genomes. Moreover, they include several model organisms used to investigate complex biological processes in chordates. To study the evolutionary dynamics of ascidians at short phylogenetic distances, we sequenced 13 new mitogenomes and analyzed them, together with 15 other available mitogenomes, using a novel approach involving detailed whole-mitogenome comparisons of conspecific and congeneric pairs. The evolutionary rate was quite homogeneous at both intraspecific and congeneric level, and the lowest congeneric rates were found in cryptic (morphologically undistinguishable) and in morphologically very similar species pairs. Moreover, congeneric nonsynonymous rates (dN) were up to two orders of magnitude higher than in intraspecies pairs. Overall, a clear-cut gap sets apart conspecific from congeneric pairs. These evolutionary peculiarities allowed easily identifying an extraordinary intraspecific variability in the model ascidian Botryllus schlosseri, where most pairs show a dN value between that observed at intraspecies and congeneric level, yet consistently lower than that of the Ciona intestinalis cryptic species pair. These data suggest ongoing speciation events producing genetically distinct B. schlosseri entities. Remarkably, these ongoing speciation events were undetectable by the cox1 barcode fragment, demonstrating that, at low phylogenetic distances, the whole mitogenome has a higher resolving power than cox1. Our study shows that whole-mitogenome comparative analyses, performed on a suitable sample of congeneric and intraspecies pairs, may allow detecting not only cryptic species but also ongoing speciation events.
PMCID: PMC3971592  PMID: 24572017
ascidian; mitochondrial genome; evolutionary rate; species identification
19.  Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations 
Genome Biology  2008;9(10):R152.
An improved assembly of the Ciona intestinalis genome reveals that it contains non-canonical introns and that about 20% of Ciona genes reside in operons.
The draft genome sequence of the ascidian Ciona intestinalis, along with associated gene models, has been a valuable research resource. However, recently accumulated expressed sequence tag (EST)/cDNA data have revealed numerous inconsistencies with the gene models due in part to intrinsic limitations in gene prediction programs and in part to the fragmented nature of the assembly.
We have prepared a less-fragmented assembly on the basis of scaffold-joining guided by paired-end EST and bacterial artificial chromosome (BAC) sequences, and BAC chromosomal in situ hybridization data. The new assembly (115.2 Mb) is similar in length to the initial assembly (116.7 Mb) but contains 1,272 (approximately 50%) fewer scaffolds. The largest scaffold in the new assembly incorporates 95 initial-assembly scaffolds. In conjunction with the new assembly, we have prepared a greatly improved global gene model set strictly correlated with the extensive currently available EST data. The total gene number (15,254) is similar to that of the initial set (15,582), but the new set includes 3,330 models at genomic sites where none were present in the initial set, and 1,779 models that represent fusions of multiple previously incomplete models. In approximately half, 5'-ends were precisely mapped using 5'-full-length ESTs, an important refinement even in otherwise unchanged models.
Using these new resources, we identify a population of non-canonical (non-GT-AG) introns and also find that approximately 20% of Ciona genes reside in operons and that operons contain a high proportion of single-exon genes. Thus, the present dataset provides an opportunity to analyze the Ciona genome much more precisely than ever.
PMCID: PMC2760879  PMID: 18854010
20.  In silico identification of the sea squirt selenoproteome 
BMC Genomics  2010;11:289.
Computational methods for identifying selenoproteins have been developed rapidly in recent years. However, it is still difficult to identify the open reading frame (ORF) of eukaryotic selenoprotein gene, because the TGA codon for a selenocysteine (Sec) residue in the active centre of selenoprotein is traditionally a terminal signal of protein translation. Although the identification of selenoproteins from genomes through bioinformatics methods has been conducted in bacteria, unicellular eukaryotes, insects and several vertebrates, only a few results have been reported on the ancient chordate selenoproteins.
A gene assembly algorithm SelGenAmic has been constructed and presented in this study for identifying selenoprotein genes from eukaryotic genomes. A method based on this algorithm was developed to build an optimal TGA-containing-ORF for each TGA in a genome, followed by protein similarity analysis through conserved sequence alignments to screen out selenoprotein genes form these ORFs. This method improved the sensitivity of detecting selenoproteins from a genome due to the design that all TGAs in the genome were investigated for its possibility of decoding as a Sec residue. Using this method, eighteen selenoprotein genes were identified from the genome of Ciona intestinalis, leading to its member of selenoproteome up to 19. Among them a selenoprotein W gene was found to have two SECIS elements in the 3'-untranslated region. Additionally, the disulfide bond formation protein A (DsbA) was firstly identified as a selenoprotein in the ancient chordates of Ciona intestinalis, Ciona savignyi and Branchiostoma floridae, while selenoprotein DsbAs had only been found in bacteria and green algae before.
The method based on SelGenAmic algorithm is capable of identifying eukaryotic selenoprotein genes from their genomes. Application of this method to Ciona intestinalis proves its successes in finding Sec-decoding TGA from large-scale eukaryotic genome sequences, which fills the gap in our knowledge on the ancient chordate selenoproteins.
PMCID: PMC2874816  PMID: 20459719
21.  New Insights into the Evolution of Metazoan Tyrosinase Gene Family 
PLoS ONE  2012;7(4):e35731.
Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.
PMCID: PMC3334994  PMID: 22536431
22.  Hypotheses on the evolution of hyaluronan: A highly ironic acid 
Glycobiology  2013;23(4):398-411.
Hyaluronan is a high-molecular-weight glycosaminoglycan (GAG) prominent in the extracellular matrix. Emerging relatively late in evolution, it may have evolved to evade immune recognition. Chondroitin is a more ancient GAG and a possible hyaluronan precursor. Epimerization of a 4-hydroxyl in N-acetylgalactosamine in chondroitin to N-acetylglucosamine of hyaluronan is the only structural difference other than chain length between these two polymers. The axial 4-hydroxyl group extends out perpendicular from the equatorial plane of N-acetylgalactosamine in chondroitin. We suspect that this hydroxyl is a prime target for immune recognition. Conversion of a thumbs-up hydroxyl group into a thumbs-down position in the plane of the sugar endows hyaluronan with the ability to avoid immune recognition. Chitin is another potential precursor to hyaluronan. But regardless whether of chondroitin or of chitin origin, an ancient chondroitinase enzyme sequence seems to have been commandeered to catalyze the cleavage of the new hyaluronan substrate. The evolution of six hyaluronidase-like sequences in the human genome from a single chondroitinase as found in Caenorhabditis elegans can now be traced. Confirming our previous predictions, two duplication events occurred, with three hyaluronidase-like sequences occurring in the genome of Ciona intestinalis (sea squirt), the earliest known chordate. This was probably followed by en masse duplication, with six such genes present in the genome of zebra fish onwards. These events occurred, however, much earlier than predicted. It is also apparent on an evolutionary time scale that in several species, this gene family is continuing to evolve.
PMCID: PMC3581078  PMID: 23315448
chondroitin; evolution; hyaluronan; hyaluronidase; immunology
23.  Evolution of pharmacologic specificity in the pregnane X receptor 
The pregnane X receptor (PXR) shows the highest degree of cross-species sequence diversity of any of the vertebrate nuclear hormone receptors. In this study, we determined the pharmacophores for activation of human, mouse, rat, rabbit, chicken, and zebrafish PXRs, using a common set of sixteen ligands. In addition, we compared in detail the selectivity of human and zebrafish PXRs for steroidal compounds and xenobiotics. The ligand activation properties of the Western clawed frog (Xenopus tropicalis) PXR and that of a putative vitamin D receptor (VDR)/PXR cloned in this study from the chordate invertebrate sea squirt (Ciona intestinalis) were also investigated.
Using a common set of ligands, human, mouse, and rat PXRs share structurally similar pharmacophores consisting of hydrophobic features and widely spaced excluded volumes indicative of large binding pockets. Zebrafish PXR has the most sterically constrained pharmacophore of the PXRs analyzed, suggesting a smaller ligand-binding pocket than the other PXRs. Chicken PXR possesses a symmetrical pharmacophore with four hydrophobes, a hydrogen bond acceptor, as well as excluded volumes. Comparison of human and zebrafish PXRs for a wide range of possible activators revealed that zebrafish PXR is activated by a subset of human PXR agonists. The Ciona VDR/PXR showed low sequence identity to vertebrate VDRs and PXRs in the ligand-binding domain and was preferentially activated by planar xenobiotics including 6-formylindolo-[3,2-b]carbazole. Lastly, the Western clawed frog (Xenopus tropicalis) PXR was insensitive to vitamins and steroidal compounds and was activated only by benzoates.
In contrast to other nuclear hormone receptors, PXRs show significant differences in ligand specificity across species. By pharmacophore analysis, certain PXRs share similar features such as human, mouse, and rat PXRs, suggesting overlap of function and perhaps common evolutionary forces. The Western clawed frog PXR, like that described for African clawed frog PXRs, has diverged considerably in ligand selectivity from fish, bird, and mammalian PXRs.
PMCID: PMC2358886  PMID: 18384689
24.  A Multicassette Gateway Vector Set for High Throughput and Comparative Analyses in Ciona and Vertebrate Embryos 
PLoS ONE  2007;2(9):e916.
The past few years have seen a vast increase in the amount of genomic data available for a growing number of taxa, including sets of full length cDNA clones and cis-regulatory sequences. Large scale cross-species comparisons of protein function and cis-regulatory sequences may help to understand the emergence of specific traits during evolution.
Principal Findings
To facilitate such comparisons, we developed a Gateway compatible vector set, which can be used to systematically dissect cis-regulatory sequences, and overexpress wild type or tagged proteins in a variety of chordate systems. It was developed and first characterised in the embryos of the ascidian Ciona intestinalis, in which large scale analyses are easier to perform than in vertebrates, owing to the very efficient embryo electroporation protocol available in this organism. Its use was then extended to fish embryos and cultured mammalian cells.
This versatile vector set opens the way to the mid- to large-scale comparative analyses of protein function and cis-regulatory sequences across chordate evolution. A complete user manual is provided as supplemental material.
PMCID: PMC1976267  PMID: 17878951
25.  Computational prediction and experimental validation of Ciona intestinalis microRNA genes 
BMC Genomics  2007;8:445.
This study reports the first collection of validated microRNA genes in the sea squirt, Ciona intestinalis. MicroRNAs are processed from hairpin precursors to ~22 nucleotide RNAs that base pair to target mRNAs and inhibit expression. As a member of the subphylum Urochordata (Tunicata) whose larval form has a notochord, the sea squirt is situated at the emergence of vertebrates, and therefore may provide information about the evolution of molecular regulators of early development.
In this study, computational methods were used to predict 14 microRNA gene families in Ciona intestinalis. The microRNA prediction algorithm utilizes configurable microRNA sequence conservation and stem-loop specificity parameters, grouping by miRNA family, and phylogenetic conservation to the related species, Ciona savignyi. The expression for 8, out of 9 attempted, of the putative microRNAs in the adult tissue of Ciona intestinalis was validated by Northern blot analyses. Additionally, a target prediction algorithm was implemented, which identified a high confidence list of 240 potential target genes. Over half of the predicted targets can be grouped into the gene ontology categories of metabolism, transport, regulation of transcription, and cell signaling.
The computational techniques implemented in this study can be applied to other organisms and serve to increase the understanding of the origins of non-coding RNAs, embryological and cellular developmental pathways, and the mechanisms for microRNA-controlled gene regulatory networks.
PMCID: PMC2243180  PMID: 18047675

Results 1-25 (460423)