PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1043187)

Clipboard (0)
None

Related Articles

1.  The Interactions of microRNA and Epigenetic Modifications in Prostate Cancer 
Cancers  2013;5(3):998-1019.
Epigenetic modifiers play important roles in fine-tuning the cellular transcriptome. Any imbalance in these processes may lead to abnormal transcriptional activity and thus result in disease state. Distortions of the epigenome have been reported in cancer initiation and progression. DNA methylation and histone modifications are principle components of this epigenome, but more recently it has become clear that microRNAs (miRNAs) are another major component of the epigenome. Interactions of these components are apparent in prostate cancer (CaP), which is the most common non-cutaneous cancer and second leading cause of death from cancer in the USA. Changes in DNA methylation, altered histone modifications and miRNA expression are functionally associated with CaP initiation and progression. Various aspects of the epigenome have also been investigated as biomarkers for different stages of CaP detection, though with limited success. This review aims to summarize key aspects of these mechanistic interactions within the epigenome and to highlight their translational potential as functional biomarkers. To this end, exploration of TCGA prostate cancer data revealed that expression of key CaP miRNAs inversely associate with DNA methylation. Given the importance and prevalence of these epigenetic events in CaP biology it is timely to understand further how different epigenetic components interact and influence each other.
doi:10.3390/cancers5030998
PMCID: PMC3795376  PMID: 24202331
epigenetics; DNA methylation; histone modifications; microRNA; prostate cancer; cancer
2.  Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development 
PLoS Medicine  2013;10(11):e1001551.
TB filled in by Laureen
Please see later in the article for the Editors' Summary
Background
Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development.
Methods and Findings
Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression.
Conclusions
HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Cancer, which is responsible for 13% of global deaths, can develop anywhere in the body, but all cancers are characterized by uncontrolled cell growth and reduced cellular differentiation (the process by which unspecialized cells such as “stem” cells become specialized during development, tissue repair, and normal cell turnover). Genetic alterations—changes in the sequence of nucleotides (DNA's building blocks) in specific genes—are required for this cellular transformation and subsequent cancer development (carcinogenesis). However, recent evidence suggests that epigenetic modifications—reversible, heritable changes in gene function that occur in the absence of nucleotide sequence changes—may also be involved in carcinogenesis. For example, the addition of methyl groups to a set of genes called stem cell polycomb group target genes (PCGTs; polycomb genes control the expression of their target genes by modifying their DNA or associated proteins) is one of the earliest molecular changes in human cancer development, and increasing evidence suggests that hypermethylation of PCGTs is an epigenetic hallmark of cancer.
Why Was This Study Done?
The methylation of PCGTs, which is triggered by age and by environmental factors that are associated with cancer development, reduces cellular differentiation and leads to the accumulation of undifferentiated cells that are susceptible to cancer development. It is unclear, however, whether epigenetic modifications have a causal role in carcinogenesis. Here, the researchers investigate the involvement of epigenetic factors in the development of endometrial (womb) cancer. The risk of endometrial cancer (which affects nearly 50,000 women annually in the United States) is largely determined by environmental and lifestyle factors. Specifically, the risk of this cancer is increased in women in whom estrogen (a hormone that drives cell proliferation in the endometrium) is functionally dominant over progesterone (a hormone that inhibits endometrial proliferation and causes cell differentiation); obese women and women who have taken estrogen-only hormone replacement therapies fall into this category. Thus, endometrial cancer is an ideal model in which to study whether epigenetic mechanisms underlie carcinogenesis.
What Did the Researchers Do and Find?
The researchers collected data on genome-wide DNA methylation at cytosine- and guanine-rich sites in endometrial cancers and normal endometrium and integrated this information with the human interactome and transcriptome (all the physical interactions between proteins and all the genes expressed, respectively, in a cell) using an algorithm called Functional Epigenetic Modules (FEM). This analysis identified HAND2 as the hub of the most highly ranked differential methylation hotspot in endometrial cancer. HAND2 is a progesterone-regulated stem cell PCGT. It encodes a transcription factor that is expressed in the endometrial stroma (the connective tissue that lies below the epithelial cells in which most endometrial cancers develop) and that suppresses the production of the growth factors that mediate the growth-inducing effects of estrogen on the endometrial epithelium. The researchers hypothesized, therefore, that epigenetic deregulation of HAND2 could be a key step in endometrial cancer development. In support of this hypothesis, the researchers report that HAND2 methylation was increased in premalignant endometrial lesions (cancer-prone, abnormal-looking tissue) compared to normal endometrium, and was associated with suppression of HAND2 expression. Moreover, a high level of endometrial HAND2 methylation in premalignant lesions predicted a poor response to progesterone treatment (which stops the growth of some endometrial cancers), and analysis of HAND2 methylation in endometrial secretions collected from women with postmenopausal bleeding (a symptom of endometrial cancer) accurately identified individuals with early stage endometrial cancer. Finally, mice in which the Hand2 gene was specifically deleted in the endometrium developed precancerous endometrial lesions with age.
What Do These Findings Mean?
These and other findings identify HAND2 methylation as a common, key molecular alteration in endometrial cancer. These findings need to be confirmed in more women, and studies are needed to determine the immediate molecular and cellular consequences of HAND2 silencing in endometrial stromal cells. Nevertheless, these results suggest that HAND2 methylation could potentially be used as a biomarker for the early detection of endometrial cancer and for predicting treatment response. More generally, these findings support the idea that methylation of HAND2 (and, by extension, the methylation of other PCGTs) is not a passive epigenetic feature of cancer but is functionally involved in cancer development, and provide a framework for identifying other genes that are epigenetically regulated and functionally important in carcinogenesis.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001551
The US National Cancer Institute provides information on all aspects of cancer and has detailed information about endometrial cancer for patients and professionals (in English and Spanish)
The not-for-profit organization American Cancer Society provides information on cancer and how it develops and specific information on endometrial cancer (in several languages)
The UK National Health Service Choices website includes an introduction to cancer, a page on endometrial cancer, and a personal story about endometrial cancer
The not-for-profit organization Cancer Research UK provides general information about cancer and specific information about endometrial cancer
Wikipedia has a page on cancer epigenetics (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The Eve Appeal charity that supported this research provides useful information on gynecological cancers
doi:10.1371/journal.pmed.1001551
PMCID: PMC3825654  PMID: 24265601
3.  The significance of epigenetic alterations in lung carcinogenesis 
Molecular Biology Reports  2012;40(1):309-325.
Lung cancer is recognized as a leading cause of cancer-related death worldwide and its frequency is still increasing. The prognosis in lung cancer is poor and limited by the difficulties of diagnosis at early stage of disease, when it is amenable to surgery treatment. Therefore, the advance in identification of lung cancer genetic and epigenetic markers with diagnostic and/or prognostic values becomes an important tool for future molecular oncology and personalized therapy. As in case of other tumors, aberrant epigenetic landscape has been documented also in lung cancer, both at early and late stage of carcinogenesis. Hypermethylation of specific genes, mainly tumor suppressor genes, as well as hypomethylation of oncogenes and retrotransposons, associated with histopathological subtypes of lung cancer, has been found. Epigenetic aberrations of histone proteins and, especially, the lower global levels of histone modifications have been associated with poorer clinical outcome in lung cancer. The recently discovered role of epigenetic modifications of microRNA expression in tumors has been also proven in lung carcinogenesis. The identified epigenetic events in lung cancer contribute to its specific epigenotype and correlated phenotypic features. So far, some of them have been suggested to be cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. As epigenetic aberrations are reversible, their correction has emerged as a promising therapeutic target.
doi:10.1007/s11033-012-2063-4
PMCID: PMC3518808  PMID: 23086271
Epigenetic modifications; Promoter hypermethylation; Histone modifications; miRNA; Lung cancer
4.  Dynamic Epigenetic Regulation of Gene Expression during the Life Cycle of Malaria Parasite Plasmodium falciparum 
PLoS Pathogens  2013;9(2):e1003170.
Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC), we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5′ ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome.
Author Summary
Malaria is a devastating parasitic disease caused by the protozoan protist Plasmodium falciparum. The complex life cycle of P. falciparum comprises various morphological and functionally distinct forms and is completed in two different hosts. Various regulatory mechanisms are employed by these parasites to complete their life cycle and survive in human hosts. Epigenetic mechanisms, though not fully explored, have been implicated as one of the key players in gene regulation, morphological differentiation and antigenic variation. Here, we present a comprehensive epigenetic map of 12 histone post-translational modifications during the intraerythrocytic life cycle of P. falciparum. We have been able to identify at least eight histone modifications whose dynamic patterns correlate with the transcriptional regulation across the life cycle. In particular, we have shown that a set of euchromatic histone marks work in synergy, creating a dynamic unique histone code that is linked with gene expression during the progression of the Plasmodium intraerythrocytic developmental cycle. These findings enhance our knowledge of complex gene regulation and will help to identify novel targets for fighting malaria.
doi:10.1371/journal.ppat.1003170
PMCID: PMC3585154  PMID: 23468622
5.  Mechanisms and therapeutic advances in the management of endocrine-resistant breast cancer 
The estrogen receptor (ER) pathway plays a critical role in breast cancer development and progression. Endocrine therapy targeting estrogen action is the most important systemic therapy for ER positive breast cancer. However its efficacy is limited by intrinsic and acquired resistance. Mechanisms responsible for endocrine resistance include deregulation of the ER pathway itself, including loss of ER expression, post-translational modification of ER, deregulation of ER co-activators; increased receptor tyrosine kinase signaling leading to activation of various intracellular pathways involved in signal transduction, proliferation and cell survival, including growth factor receptor tyrosine kinases human epidermal growth factor receptor-2, epidermal growth factor receptor, PI3K/AKT/mammalian target of rapamycin (mTOR), Mitogen activated kinase (MAPK)/ERK, fibroblast growth factor receptor, insulin-like growth factor-1 receptor; alterations in cell cycle and apoptotic machinery; Epigenetic modification including dysregulation of DNA methylation, histone modification, and nucleosome remodeling; and altered expression of specific microRNAs. Functional genomics has helped us identify a catalog of genetic and epigenetic alterations that may be exploited as potential therapeutic targets and biomarkers of response. New treatment combinations targeting ER and such oncogenic signaling pathways which block the crosstalk between these pathways have been proven effective in preclinical models. Results of recent clinical studies suggest that subsets of patients benefit from the combination of inhibitor targeting certain oncogenic signaling pathway with endocrine therapy. Especially, inhibition of the mTOR signaling pathway, a key component implicated in mediating multiple signaling cascades, offers a promising approach to restore sensitivity to endocrine therapy in breast cancer. We systematically reviewed important publications cited in PubMed, recent abstracts from ASCO annual meetings and San Antonio Breast Cancer Symposium, and relevant trials registered at ClinicalTrials.gov. We present the molecular mechanisms contributing to endocrine resistance, in particular focusing on the biological rationale for the clinical development of novel targeted agents in endocrine resistant breast cancer. We summarize clinical trials utilizing novel strategies to overcome therapeutic resistance, highlighting the need to better identify the appropriate patients whose diseases are most likely to benefit from these specific strategies.
doi:10.5306/wjco.v5.i3.248
PMCID: PMC4127598  PMID: 25114842
Endocrine therapy; Endocrine resistance; Breast cancer; Therapeutic advances; Targeted therapy
6.  Alterations of Histone H1 Phosphorylation During Bladder Carcinogenesis 
Journal of proteome research  2013;12(7):3317-3326.
There is a crucial need for development of prognostic and predictive biomarkers in human bladder carcinogenesis in order to personalize preventive and therapeutic strategies and improve outcomes. Epigenetic alterations, such as histone modifications, are implicated in the genetic dysregulation that is fundamental to carcinogenesis. Here we focus on profiling the histone modifications during the progression of bladder cancer. Histones were extracted from normal human bladder epithelial cells, an immortalized human bladder epithelial cell line (hTERT), and four human bladder cancer cell lines (RT4, J82, T24, and UMUC3) ranging from superficial low-grade to invasive high-grade cancers. Liquid Chromatography-Mass Spectrometry (LC-MS) profiling revealed a statistically significant increase in phosphorylation of H1 linker histones from normal human bladder epithelial cells to low-grade superficial to high-grade invasive bladder cancer cells. This finding was further validated by immunohistochemical staining of the normal epithelium and transitional cell cancer from human bladders. Cell cycle analysis of histone H1 phosphorylation by western blotting showed an increase of phosphorylation from G0/G1 phase to M phase, again supporting this as a proliferative marker. Changes in histone H1 phosphorylation status may further clarify epigenetic changes during bladder carcinogenesis and provide diagnostic and prognostic biomarkers or targets for future therapeutic interventions.
doi:10.1021/pr400143x
PMCID: PMC3743963  PMID: 23675690
Bladder Cancer; Histone H1; Phosphorylation; Mass Spectrometry
7.  Next Generation Quantitative Proteomic Tools for Analyzing Histone Modifications 
Histones are small proteins that package DNA into chromosomes, and a large number of studies have showed that several single post-translational modification sites on the histones are associated with both gene activation and silencing. Nevertheless, what type of effect distinct combinations of simultaneously occuring histone modifications (Histone Codes or patterns) have upon cellular events is poorly understood. The main reason for this lack of knowledge is that robust high-throughput methods for quantitative characterization or even qualitative identification of combinatorial Histone Codes by any standard biological, immunological or physical technique do not exist. We plan to specifically address this deficiency by developing novel mass spectrometry based proteomic methods and accompanying bioinformatics to quantitatively characterize molecular level descriptions of combinatorial Histone Codes, and apply these methods to study how these dynamic Histone Codes influence gene expression under different biological conditions. Here we present initial proteomics data that describes: (i) high-throughput comparison of histone modifications from multiple cellular states (ii) developing mass spectrometry methods for quantitative tracking of combinatorial Histone Codes (iii) monitoring in vivo Histone Code dynamics, and (iv) investigating the role of Histone Code interpreting proteins in recognizing distinct Histone Codes. Ultimately, we will work towards the goal of taking any defined part of the genome and accurately quantifying the Histone Codes, detecting all the non-histone proteins that reside on these distinct pieces of chromatin, and then mapping this proteomic data back to specific genomic locations, therefore taking a proteomic snapshot of what that chromosome landscape looks like during any nuclear event. These studies in combination with biological experiments will help provide a systems biology outlook on gene expression that will lay down the basic scientific foundation to advance several applications, such as stem cell reprogramming and cancer progression.
PMCID: PMC3186548
8.  Quantitative Proteomics for Understanding the Histone Code 
Histones are small proteins that package DNA into chromosomes, and a large number of studies have showed that several single post-translational modification sites on the histones are associated with both gene activation and silencing. Nevertheless, what type of effect distinct combinations of simultaneously occurring histone modifications (Histone Codes or patterns) have upon cellular events is poorly understood. The main reason for this lack of knowledge is that robust high-throughput methods for quantitative characterization or even qualitative identification of combinatorial Histone Codes by any standard biological, immunological or physical technique do not exist. We plan to specifically address this deficiency by developing novel mass spectrometry based proteomic methods and accompanying bioinformatics to quantitatively characterize molecular level descriptions of combinatorial Histone Codes, and apply these methods to study how these dynamic Histone Codes influence gene expression under different biological conditions. Here we present data that describes: (i) high-throughput comparison of histone modifications from multiple cellular states (ii) developing mass spectrometry methods for quantitative tracking of combinatorial Histone Codes (iii) monitoring in vivo Histone Code dynamics, and (iv) investigating the role of Histone Code interpreting proteins in recognizing distinct Histone Codes. Ultimately, we will work towards the goal of taking any defined part of the genome and accurately quantifying the Histone Codes, detecting all the non-histone proteins that reside on these distinct pieces of chromatin, and then mapping this proteomic data back to specific genomic locations, therefore taking a proteomic snapshot of what that chromosome landscape looks like during any nuclear event. These studies in combination with biological experiments will help provide a systems biology outlook on gene expression that will lay down the basic scientific foundation to advance several applications, such as stem cell reprogramming and cancer progression.
PMCID: PMC3635403
9.  Histone modifications and a choice of variant: a language that helps the genome express itself 
F1000Prime Reports  2014;6:76.
Covalent post-translational modifications on histones impact chromatin structure and function. Their misfunction, along with perturbations or mutations in genes that regulate their dynamic status, has been observed in several diseases. Thus, targeting histone modifications represents attractive opportunities for therapeutic intervention and biomarker discovery. The best approach to address this challenge is to paint a comprehensive picture integrating the growing number of modifications on individual residues and their combinatorial association, the corresponding modifying enzymes, and effector proteins that bind modifications. Furthermore, how they are imposed in a distinct manner during the cell cycle and on specific histone variants are important dimensions to consider. Firstly, this report highlights innovative technologies used to characterize histone modifications, and the corresponding enzymes and effector proteins. Secondly, we examine the recent progress made in understanding the dynamics and maintenance of histone modifications on distinct variants. We also discuss their roles as potential carriers of epigenetic information. Finally, we provide examples of initiatives to exploit histone modifications in cancer management, with the potential for new therapeutic opportunities.
doi:10.12703/P6-76
PMCID: PMC4166940  PMID: 25343033
10.  Epigenetic modifications in cancer 
Clinical genetics  2011;81(4):303-311.
Cancer initiation and progression is controlled by both genetic and epigenetic events. The complexity of carcinogenesis cannot be accounted for by genetic alterations alone but also involves epigenetic changes. Epigenetics refers to the study of mechanisms that alter gene expression without altering the primary DNA sequence. Epigenetic mechanisms are heritable and reversible, and include changes in DNA methylation, histone modifications and small noncoding microRNAs (miRNA). Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Aberrant epigenetic modifications probably occur at a very early stage in neoplastic development, and they are widely described as essential players in cancer progression. Recent advances in epigenetics offer a better understanding of the underlying mechanism(s) of carcinogenesis and provide insight into the discovery of putative cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. In this review, we summarize the current literature on epigenetic changes causing genetic alterations that are thought to contribute to cancer, and discuss the potential impact of epigenetics future research.
doi:10.1111/j.1399-0004.2011.01809.x
PMCID: PMC3590802  PMID: 22082348
cancer; DNA methylation; epigenetics; histone modification; microRNA
11.  Targeting the Epigenome in Lung Cancer: Expanding Approaches to Epigenetic Therapy 
Frontiers in Oncology  2013;3:261.
Epigenetic aberrations offer dynamic and reversible targets for cancer therapy; increasingly, alteration via overexpression, mutation, or rearrangement is found in genes that control the epigenome. Such alterations suggest a fundamental role in carcinogenesis. Here, we consider three epigenetic mechanisms: DNA methylation, histone tail modification and non-coding, microRNA regulation. Evidence for each of these in lung cancer origin or progression has been gathered, along with evidence that epigenetic alterations might be useful in early detection. DNA hypermethylation of tumor suppressor promoters has been observed, along with global hypomethylation and hypoacetylation, suggesting an important role for tumor suppressor gene silencing. These features have been linked as prognostic markers with poor outcome in lung cancer. Several lines of evidence have also suggested a role for miRNA in carcinogenesis and in outcome. Cigarette smoke downregulates miR-487b, which targets both RAS and MYC; RAS is also a target of miR-let-7, again downregulated in lung cancer. Together the evidence implicates epigenetic aberration in lung cancer and suggests that targeting these aberrations should be carefully explored. To date, DNA methyltransferase and histone deacetylase inhibitors have had minimal clinical activity. Explanations include the possibility that the agents are not sufficiently potent to invoke epigenetic reversion to a more normal state; that insufficient time elapses in most clinical trials to observe true epigenetic reversion; and that doses often used may provoke off-target effects such as DNA damage that prevent epigenetic reversion. Combinations of epigenetic therapies may address those problems. When epigenetic agents are used in combination with chemotherapy or targeted therapy it is hoped that downstream biological effects will provoke synergistic cytotoxicity. This review evaluates the challenges of exploiting the epigenome in the treatment of lung cancer.
doi:10.3389/fonc.2013.00261
PMCID: PMC3793201  PMID: 24130964
epigenetics; non-small cell lung cancer; small-cell lung cancer; DNA methylation; histone modification; microRNA
12.  Epigenetic alteration and microRNA dysregulation in cancer 
Frontiers in Genetics  2013;4:258.
MicroRNAs (miRNAs) play pivotal roles in numerous biological processes, and their dysregulation is a common feature of human cancer. Thanks to recent advances in the analysis of the cancer epigenome, we now know that epigenetic alterations, including aberrant DNA methylation and histone modifications, are major causes of miRNA dysregulation in cancer. Moreover, the list of miRNA genes silenced in association with CpG island hypermethylation is rapidly growing, and various oncogenic miRNAs are now known to be upregulated via DNA hypomethylation. Histone modifications also play important roles in the dysregulation of miRNAs, and histone deacetylation and gain of repressive histone marks are strongly associated with miRNA gene silencing. Conversely, miRNA dysregulation is causally related to epigenetic alterations in cancer. Thus aberrant methylation of miRNA genes is a potentially useful biomarker for detecting cancer and predicting its outcome. Given that many of the silenced miRNAs appear to act as tumor suppressors through the targeting of oncogenes, re-expression of the miRNAs could be an effective approach to cancer therapy, and unraveling the relationship between epigenetic alteration and miRNA dysregulation may lead to the discovery of new therapeutic targets.
doi:10.3389/fgene.2013.00258
PMCID: PMC3847369  PMID: 24348513
microRNA; tumor suppressor; oncomir; CpG island methylation; histone modification; biomarker; EZH2
13.  Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix 
Clinical Epigenetics  2012;4(1):13.
Cervical cancer (CC) is one of the most malignant tumors and the second or third most common type of cancer in women worldwide. The association between human papillomavirus (HPV) and CC is widely known and accepted (99.7% of cases). At present, the pathogenesis mechanisms of CC are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic alterations. In the past, it was generally thought that genetic mutation was a key event of tumor pathogenesis, especially somatic mutation of tumor suppressor genes. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in DNA sequence. Specific epigenetic processes include DNA methylation, chromotin remodeling, histone modification, and microRNA regulations. These alterations, in combination or individually, make it possible to establish the methylation profiles, histone modification maps, and expression profiles characteristic of this pathology, which become useful tools for screening, early detection, or prognostic markers in cervical cancer. This paper reviews recent epigenetics research progress in the CC study, and tries to depict the relationships between CC and DNA methylation, histone modification, as well as microRNA regulations.
doi:10.1186/1868-7083-4-13
PMCID: PMC3502457  PMID: 22938091
Cervical cancer; Human papillomavirus; Epigenetics alterations; Biomarkers
14.  Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells 
BMC Cancer  2013;13:37.
Background
Post-translational modifications (PTMs) of histones and other proteins are perturbed in tumours. For example, reduced levels of acetylated H4K16 and trimethylated H4K20 are associated with high tumour grade and poor survival in breast cancer. Drug-like molecules that can reprogram selected histone PTMs in tumour cells are therefore of interest as potential cancer chemopreventive agents. In this study we assessed the effects of the phytocompounds garcinol and curcumin on histone and p53 modification in cancer cells, focussing on the breast tumour cell line MCF7.
Methods
Cell viability/proliferation assays, cell cycle analysis by flow cytometry, immunodetection of specific histone and p53 acetylation marks, western blotting, siRNA and RT-qPCR.
Results
Although treatment with curcumin, garcinol or the garcinol derivative LTK-14 hampered MCF7 cell proliferation, differential effects of these compounds on histone modifications were observed. Garcinol treatment resulted in a strong reduction in H3K18 acetylation, which is required for S phase progression. Similar effects of garcinol on H3K18 acetylation were observed in the osteosarcoma cells lines U2OS and SaOS2. In contrast, global levels of acetylated H4K16 and trimethylated H4K20 in MCF7 cells were elevated after garcinol treatment. This was accompanied by upregulation of DNA damage signalling markers such as γH2A.X, H3K56Ac, p53 and TIP60. In contrast, exposure of MCF7 cells to curcumin resulted in increased global levels of acetylated H3K18 and H4K16, and was less effective in inducing DNA damage markers. In addition to its effects on histone modifications, garcinol was found to block CBP/p300-mediated acetylation of the C-terminal activation domain of p53, but resulted in enhanced acetylation of p53K120, and accumulation of p53 in the cytoplasmic compartment. Finally, we show that the elevation of H4K20Me3 levels by garcinol correlated with increased expression of SUV420H2, and was prevented by siRNA targeting of SUV420H2.
Conclusion
In summary, although garcinol and curcumin can both inhibit histone acetyltransferase activities, our results show that these compounds have differential effects on cancer cells in culture. Garcinol treatment alters expression of chromatin modifying enzymes in MCF7 cells, resulting in reprogramming of key histone and p53 PTMs and growth arrest, underscoring its potential as a cancer chemopreventive agent.
doi:10.1186/1471-2407-13-37
PMCID: PMC3583671  PMID: 23356739
Garcinol; Curcumin; Acetyltransferase; HAT inhibitor; Histones; p53; Post-translational modifications; H4K20Me3; SUV420H2; TIP60
15.  Transcription-Independent Heritability of Induced Histone Modifications in the Mouse Preimplantation Embryo 
PLoS ONE  2009;4(6):e6086.
Enzyme-catalyzed, post-translational modifications of core histones have been implicated in the complex changes in gene expression that drive early mammalian development. However, until recently the small number of cells available from the preimplantation embryo itself has prevented quantitative analysis of histone modifications at key regulator genes. The possible involvement of histone modifications in the embryo's response to extracellular signals, or as determinants of cell fate or lineage progression, remains unclear. Here we describe the use of a recently-developed chromatin immunoprecipitation technique (CChIP) to assay histone modification levels at key regulator genes (Pou5f1, Nanog, Cdx2, Hoxb1, Hoxb9) as mouse embryos progress from 8-cell to blastocyst in culture. Only by the blastocyst stage, when the embryonic (Inner Cell Mass) and extra-embryonic (Trophoblast) lineages are compared, do we see the expected association between histone modifications previously linked to active and silent chromatin, and transcriptional state. To explore responses to an environmental signal, we exposed embryos to the histone deacetylase inhibitor, anti-epileptic and known teratogen valproic acid (VPA), during progression from 8-cell to morula stage. Such treatment increased H4 acetylation and H3 lysine 4 methylation at the promoters of Hoxb1 and Hoxb9, but not the promoters of Pou5f1, Nanog,Cdx2 or the housekeeping gene Gapdh. Despite the absence of detectable Hoxb transcription, these VPA-induced changes were heritable, following removal of the inhibitor, at least until the blastocyst stage. The selective hyperacetylation of Hoxb promoters in response to a histone deacetylase inhibitor, suggests that Hox genes have a higher turnover of histone acetates than other genes in the preimplantation embryo. To explain the heritability, through mitosis, of VPA-induced changes in histone modification at Hoxb promoters, we describe how an epigenetic feed-forward loop, based on cross-talk between H3 acetylation and H3K4 methylation, might generate a persistently increased steady-state level of histone acetylation in response to a transient signal.
doi:10.1371/journal.pone.0006086
PMCID: PMC2698989  PMID: 19564914
16.  The genetics of neuroendocrine prostate cancers: a review of current and emerging candidates 
Prostate cancer (PC) displays a strong familial link and genetic factors; genes regulating inflammation may have a pivotal role in the disease. Epigenetic changes control chromosomal integrity, gene functions, and, ultimately, carcinogenesis. The most widely studied epigenetic event in PC is aberrant DNA methylation (hypo- and hypermethylation); besides this, chromatin remodeling and micro RNA (miRNA) are other studied alterations in PC. These all lead to genomic instability and inappropriate gene expression. Causative dysfunction of histone modifying enzymes results in generic and locus-specific changes in chromatin remodeling. miRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen-receptor signaling and apoptosis. These epigenetic alterations have the potential to act as biomarkers for PC for screening and diagnosis as well as prognosis and follow-up. The variable biological potential for a newly diagnosed PC is one of the biggest challenges. The other major clinical problem is in the management of castration-resistant PC. Neuroendocrine (NE) differentiation is one of the putative explanations for the development of castration-resistant disease. Most advanced and poorly differentiated cancer does not produce prostate-specific antigen (PSA) in response to disease progression. Circulating and tissue biomarkers like chromogranin A (CgA) thus become important tools. There is the potential to use various genetic and epigenetic alterations and NE differentiation as therapeutic targets in the management of PC. However, we are still some distance from developing clinically effective tools. Valuable insights into the nature of NE differentiation in PC have been gained in the last decades, but additional understanding of its pathogenetic mechanisms is needed. This will help in devising novel therapeutic strategies to develop targeted therapies. CgA has the potential to become an important marker of advanced castration-resistant PC in cases where prostate-specific antigen can no longer be relied upon. Aberrant androgen-receptor signaling at various levels provides evidence of the importance of this pathway for the development of castration-resistant PC. Many epigenetic influences – in particular, the role of changing miRNA expression – provide valuable insights. Currently, massive sequencing efforts are underway to define important somatic genetic alterations (amplifications, deletions, point mutations, translocations) in PC, and these alterations hold great promise as prognostic markers and for predicting response to therapy.
doi:10.2147/TACG.S28881
PMCID: PMC3681198  PMID: 23776386
prostate cancer; epigenetic; genetic; neuroendocrine differentiation
17.  Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer 
DNA methylation and histone modifications are important epigenetic modifications associated with gene (dys)regulation. The epigenetic modifications are balanced by epigenetic enzymes, so-called writers and erasers, such as DNA (de)methylases and histone (de)acetylases. Aberrant epigenetic alterations have been associated with various diseases, including breast cancer. Since aberrant epigenetic modifications are potentially reversible, they might represent targets for breast cancer therapy. Indeed, several drugs have been designed to inhibit epigenetic enzymes (epi-drugs), thereby reversing epigenetic modifications. US Food and Drug Administration approval has been obtained for some epi-drugs for hematological malignancies. However, these drugs have had very modest anti-tumor efficacy in phase I and II clinical trials in breast cancer patients as monotherapy. Therefore, current clinical trials focus on the combination of epi-drugs with other therapies to enhance or restore the sensitivity to such therapies. This approach has yielded some promising results in early phase II trials. The disadvantage of epi-drugs, however, is genome-wide effects, which may cause unwanted upregulation of, for example, pro-metastatic genes. Development of gene-targeted epigenetic modifications (epigenetic editing) in breast cancer can provide a novel approach to prevent such unwanted events. In this context, identification of crucial epigenetic modifications regulating key genes in breast cancer is of critical importance. In this review, we first describe aberrant DNA methylation and histone modifications as two important classes of epigenetic mutations in breast cancer. Then we focus on the preclinical and clinical epigenetic-based therapies currently being explored for breast cancer. Finally, we describe epigenetic editing as a promising new approach for possible applications towards more targeted breast cancer treatment.
doi:10.1186/s13058-014-0412-z
PMCID: PMC4303227  PMID: 25410383
18.  Epigenetics in breast cancer: what's new? 
Epigenetic changes are critical for development and progression of cancers, including breast cancer. Significant progress has been made in the basic understanding of how various epigenetic changes such as DNA methylation, histone modification, miRNA expression, and higher order chromatin structure affect gene expression. The present review will focus on methylation and demethylation of histones. While the acetylation of histones has been at the forefront of well-characterized post-translational modifications of histones, including the development of inhibitors targeting de-acetylating enzymes, the past few years have witnessed a dramatic increase in knowledge regarding the role of histone methylation/demethylation. This is an exciting and rapidly evolving area of research, with much promise for potential clinical intervention in several cancers including breast cancer. We also summarize efforts to identity DNA methylation signatures that could be prognostic and/or predictive markers in breast cancer, focusing on recent studies using genome-wide approaches. Finally, we briefly review the efforts made by both the National Institutes of Health Epigenome Project and The Cancer Genome Atlas, especially highlighting the study of breast cancer epigenetics, exciting technological advances, potential roadblocks, and future directions.
doi:10.1186/bcr2925
PMCID: PMC3326545  PMID: 22078060
19.  Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer 
BMC Cancer  2014;14:531.
Background
Post-translational modification of histone tails by methylation plays an important role in tumorigenesis. In this study, we investigated the nuclear expression of H3K4me3, H3K9me3 and H4K20me3 in early-stage colon cancer in relation to clinical outcome.
Methods
Tumor tissue cores of 254 TNM stage I-III colorectal cancer patients were immunohistochemically stained for H3K4me3, H3K9me3 and H4K20me3 and scored using the semi-automated Ariol system. Cox proportional hazard trend analyses were performed to assess the prognostic value of the combined markers with respect to patient survival and tumor recurrence.
Results
The histone methylation markers only showed prognostic value in early-stage (TNM stage I and II) colon cancer. Therefore, only this patient set (n = 121) was used for further statistical analyses. Low nuclear expression of H3K4me3, and high expression of H3K9me3 and H4K20me3 were associated with good prognosis. In combined marker analyses, the patient group showing most favorable expression (low H3K4me3, high H3K9me3 and high H4K20me3) was associated with the best prognosis. Multivariate trend analyses showed significantly increased hazard ratios (HR) for each additional marker showing unfavorable expression, as compared to the “all favorable” reference group. The HR for disease-free survival was 3.81 (1.72-8.45; p = 0.001), for locoregional recurrence-free survival 2.86 (1.59-5.13; p < 0.001) and for distant recurrence-free survival 2.94 (1.66-5.22; p < 0.001).
Conclusions
Combined nuclear expression of histone modifications H3K4me3, H3K9me3 and H4K20me3 is prognostic in early-stage colon cancer. The combination of expression of the three histone modifications provides better stratification of patient groups as compared to the individual markers and provides a good risk assessment for each patient group.
doi:10.1186/1471-2407-14-531
PMCID: PMC4223547  PMID: 25047223
Histone modifications; Trimethylation; Epigenetics; Colon cancer; Prognosis; Patient survival; Tumor recurrence
20.  Epigenetics of cervical cancer. An overview and therapeutic perspectives 
Molecular Cancer  2005;4:38.
Cervical cancer remains one of the greatest killers of women worldwide. It is difficult to foresee a dramatic increase in cure rate even with the most optimal combination of cytotoxic drugs, surgery, and radiation; therefore, testing of molecular targeted therapies against this malignancy is highly desirable. A number of epigenetic alterations occur during all stages of cervical carcinogenesis in both human papillomavirus and host cellular genomes, which include global DNA hypomethylation, hypermetylation of key tumor suppressor genes, and histone modifications. The reversible nature of epigenetic changes constitutes a target for transcriptional therapies, namely DNA methylation and histone deacetylase inhibitors. To date, studies in patients with cervical cancer have demonstrated the feasibility of reactivating the expression of hypermethylated and silenced tumor suppressor genes as well as the hyperacetylating and inhibitory effect upon histone deacetylase activity in tumor tissues after treatment with demethylating and histone deacetylase inhibitors. In addition, detection of epigenetic changes in cytological smears, serum DNA, and peripheral blood are of potential interest for development of novel biomolecular markers for early detection, prediction of response, and prognosis.
doi:10.1186/1476-4598-4-38
PMCID: PMC1291396  PMID: 16248899
21.  Histone H2A.Z deregulation in prostate cancer. Cause or effect? 
Cancer Metastasis Reviews  2014;33(2-3):429-439.
Genetic and epigenetic changes are at the root of all cancers. The epigenetic component involves alterations of the post-synthetic modifications of DNA (methylation) and histones (histone posttranslational modifications, PTMs) as well as of those of their molecular “writers,” “readers,” and “erasers.” Noncoding RNAs (ncRNA) can also play a role. Here, we focus on the involvement of histone alterations in cancer, in particular that of the histone variant H2A.Z in the etiology of prostate cancer. The structural mechanisms putatively responsible for the contribution of H2A.Z to oncogenic gene expression programs are first described, followed by what is currently known about the involvement of this histone variant in the regulation of androgen receptor regulated gene expression. The implications of this and their relevance to oncogene deregulation in different stages of prostate cancer, including the progression toward androgen independence, are discussed. This review underscores the increasing awareness of the epigenetic contribution of histone variants to oncogenic progression.
doi:10.1007/s10555-013-9486-9
PMCID: PMC4113680  PMID: 24398858
Histone variants; Prostate cancer; Androgen independence
22.  The Redox Basis of Epigenetic Modifications: From Mechanisms to Functional Consequences 
Antioxidants & Redox Signaling  2011;15(2):551-589.
Abstract
Epigenetic modifications represent mechanisms by which cells may effectively translate multiple signaling inputs into phenotypic outputs. Recent research is revealing that redox metabolism is an increasingly important determinant of epigenetic control that may have significant ramifications in both human health and disease. Numerous characterized epigenetic marks, including histone methylation, acetylation, and ADP-ribosylation, as well as DNA methylation, have direct linkages to central metabolism through critical redox intermediates such as NAD+, S-adenosyl methionine, and 2-oxoglutarate. Fluctuations in these intermediates caused by both normal and pathologic stimuli may thus have direct effects on epigenetic signaling that lead to measurable changes in gene expression. In this comprehensive review, we present surveys of both metabolism-sensitive epigenetic enzymes and the metabolic processes that may play a role in their regulation. To close, we provide a series of clinically relevant illustrations of the communication between metabolism and epigenetics in the pathogenesis of cardiovascular disease, Alzheimer disease, cancer, and environmental toxicity. We anticipate that the regulatory mechanisms described herein will play an increasingly large role in our understanding of human health and disease as epigenetics research progresses. Antioxid. Redox Signal. 15, 551–589.
Introduction
Epigenetic Control of Gene Expression
Histone methylation
Histone methyltransferases
History of histone demethylation
Mechanisms of histone demethylases
Kinetic considerations of histone demethylases
Histone acetylation
Histone acetyltransferases
Histone deacetylases
Nonsirtuin HDACs
Sirtuin deacetylases
Histone ADP-ribosylation
PARP activity and functionality
Indirect effects of ADP-ribosylation
DNA methylation
DNA methyltransferases
DNA demethylases
Noncoding RNA and epigenetic regulation
Long ncRNAs
Short ncRNAs
Epigenetic Regulation and Redox Metabolism
Redox Metabolism
The citric acid cycle and intermediates of central metabolism
2-Hydroxyglutarate: oncometabolite or normal regulator?
GSH and the recycling of SAM
The NAD+/NADH ratio
The NAD+/NADH ratio and central metabolism
Caloric restriction, the NAD+/NADH ratio, and sirtuins
PARP, NAD+, and sirtuin activity
Plasma membrane redox system and NAD+
Maintenance of the intracellular iron redox status and epigenetic enzymes
Labile iron and oxidative stress
Iron–sulfur center proteins and epigenetic modification
Direct interaction with epigenetic enzyme iron loading
Ascorbate and 2-OG and Fe(II)-dependent dioxygenases
Nitric oxide and iron
Redox regulation and noncoding RNA
Direct modulation of HDAC activity by ROS
Oxygen tension and epigenetic phenomena
Toward a Global Model for Redox Epigenetic Maintenance
Metabolic Epigenetics and Disease
Cardiovascular disease
Alzheimer disease
Cancer
Environmental toxicology and epigenetics
Alcohol
Challenges and Future Directions
Conclusions
doi:10.1089/ars.2010.3492
PMCID: PMC3118659  PMID: 20919933
23.  P73-S High-Resolution Mass Spectrometry Study of the Effects of Chemical and Environmental Stimuli on the Post-Translational State of Histone H4 
As altered epigenetic regulation is a common feature of cancer, a greater understanding is required of the role of histone post-translational modifications as epigenetic regulators of changes in chromatin structure. Chromatin remodeling may also be important in the cellular response to DNA damage induced by anti-cancer drugs. A greater understanding of the nature of histone PTMs and resulting DNA damage in normal and cancerous tissues might indicate differences in the activity of enzymes involved in modifying histones, which could yield potential targets for cancer-specific therapy. Trichostatin A (TSA), a histone deacetylase inhibitor, promotes acetylation of histones and subsequently increases the accessibility to cellular machinery by the unraveling of DNA.
Using high-resolution 9.4T and 12T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers, the aim of this work was to characterise, in an unbiased fashion, the histone PTMs induced in histone H4 in response to treatment with TSA and certain environmental stimuli.
FT-ICR mass spectrometry is not well suited to online analysis, owing to the extended scan time required to achieve optimum resolving power. The TriVersa Nanomate enables fraction collection of the HPLC eluent allowing FT acquisition time to be decoupled from separation time. Following further sample cleanup, it proved possible to infuse unfractionated complex histone samples. The most abundant classes of histone present in the cell (H2A, H2B, H3, H4) were observed
The resolving power of FT-ICR permits the post-translational modification of H4 to be observed directly. It can be seen that in the case of cells treated with TSA, there was considerable variation in the acetylation state of histone H4. It was also possible to affect the acetylation state using certain environmental stimuli.
PMCID: PMC2291944
24.  Epigenetic regulation in alcoholic liver disease 
Alcoholic liver disease (ALD) is characterized by steatosis or fat deposition in the liver and inflammation, which leads to cirrhosis and hepatocellular carcinoma. Induction of target genes without involving changes in DNA sequence seems to contribute greatly to liver injury. Chromatin modifications including alterations in histones and DNA, as well as post-transcriptional changes collectively referred to as epigenetic effects are altered by alcohol. Recent studies have pointed to a significant role for epigenetic mechanisms at the nucleosomal level influencing gene expression and disease outcome in ALD. Specifically, epigenetic alterations by alcohol include histone modifications such as changes in acetylation and phosphorylation, hypomethylation of DNA, and alterations in miRNAs. These modifications can be induced by alcohol-induced oxidative stress that results in altered recruitment of transcriptional machinery and abnormal gene expression. Delineating these mechanisms in initiation and progression of ALD is becoming a major area of interest. This review summarizes key epigenetic mechanisms that are dysregulated by alcohol in the liver. Alterations by alcohol in histone and DNA modifications, enzymes related to histone acetylation such as histone acetyltransferases, histone deacetylases and sirtuins, and methylation enzymes such as DNA methyltransferases are discussed. Chromatin modifications and miRNA alterations that result in immune cell dysfunction contributing to inflammatory cytokine production in ALD is reviewed. Finally, the role of alcohol-mediated oxidative stress in epigenetic regulation in ALD is described. A better understanding of these mechanisms is crucial for designing novel epigenetic based therapies to ameliorate ALD.
doi:10.3748/wjg.v17.i20.2456
PMCID: PMC3103803  PMID: 21633650
Alcohol; Epigenetics; Histones; Acetylation; DNA methylation; miRNA; Genes
25.  Dietary Factors and Epigenetic Regulation for Prostate Cancer Prevention12 
Advances in Nutrition  2011;2(6):497-510.
The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.
doi:10.3945/an.111.001032
PMCID: PMC3226387  PMID: 22332092

Results 1-25 (1043187)