Search tips
Search criteria

Results 1-25 (1575741)

Clipboard (0)

Related Articles

1.  Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases 
Primary and secondary brain cancers are highly treatment resistant, and their marked angiogenesis attracts interest as a potential therapeutic target. Recent observations reveal that the microvascular endothelium of primary high-grade gliomas expresses prostate specific membrane antigen (PSMA). Breast cancers express PSMA and they frequently form secondary brain tumors. Hence we report here our pilot study addressing the feasibility of PSMA targeting in brain and metastatic breast tumors, by examining PSMA levels in all glioma grades (19 patients) and in breast cancer brain metastases (5 patients).
Tumor specimens were acquired from archival material and normal brain tissues from autopsies. Tissue were stained and probed for PSMA, and the expression levels imaged and quantified using automated hardware and software. PSMA staining intensities of glioma subtypes, breast tumors, and breast tumor brain metastases were compared statistically versus normals.
Normal brain microvessels (4 autopsies) did not stain for PSMA, while a small proportion (<5%) of healthy neurons stained, and were surrounded by an intact blood brain barrier. Tumor microvessels of the highly angiogenic grade IV gliomas showed intense PSMA staining which varied between patients and was significantly higher (p < 0.05) than normal brain. Grade I gliomas showed moderate vessel staining, while grade II and III gliomas had no vessel staining, but a few (<2%) of the tumor cells stained. Both primary breast cancer tissues and the associated brain metastases exhibited vascular PSMA staining, although the intensity of staining was generally less for the metastatic lesions.
Our results align with and extend previous data showing PSMA expression in blood vessels of gliomas and breast cancer brain metastases. These results provide a rationale for more comprehensive studies to explore PSMA targeted agents for treating secondary brain tumors with PSMA expressing vasculature. Moreover, given that PSMA participates in angiogenesis, cell signaling, tumor survival, and invasion, characterizing its expression may help guide later investigations of the poorly understood process of low grade glioma progression to glioblastoma.
PMCID: PMC3994554  PMID: 24645697
PSMA; VWF; Gliomas; Brain metastases; Targeted therapy; Breast cancer
2.  Expression of follicle-stimulating hormone receptor by the vascular endothelium in tumor metastases 
BMC Cancer  2013;13:246.
The Follicle Stimulating Hormone receptor (FSHR) is expressed by the vascular endothelium in a wide range of human tumors. It was not determined however if FSHR is present in metastases which are responsible for the terminal illness.
We used immunohistochemistry based on a highly FSHR-specific monoclonal antibody to detect FSHR in cancer metastases from 6 major tumor types (lung, breast, prostate, colon, kidney, and leiomyosarcoma ) to 6 frequent locations (bone, liver, lymph node, brain, lung, and pleura) of 209 patients.
In 166 patients examined (79%), FSHR was expressed by blood vessels associated with metastatic tissue. FSHR-positive vessels were present in the interior of the tumors and some few millimeters outside, in the normally appearing tissue. In the interior of the metastases, the density of the FSHR-positive vessels was constant up to 7 mm, the maximum depth available in the analyzed sections. No significant differences were noticed between the density of FSHR-positive vessels inside vs. outside tumors for metastases from lung, breast, colon, and kidney cancers. In contrast, for prostate cancer metastases, the density of FSHR-positive vessels was about 3-fold higher at the exterior of the tumor compared to the interior. Among brain metastases, the density of FSHR-positive vessels was highest in lung and kidney cancer, and lowest in prostate and colon cancer. In metastases of breast cancer to the lung pleura, the percentage of blood vessels expressing FSHR was positively correlated with the progesterone receptor level, but not with either HER-2 or estrogen receptors. In normal tissues corresponding to the host organs for the analyzed metastases, obtained from patients not known to have cancer, FSHR staining was absent, with the exception of approx. 1% of the vessels in non tumoral temporal lobe epilepsy samples.
FSHR is expressed by the endothelium of blood vessels in the majority of metastatic tumors.
PMCID: PMC3663659  PMID: 23688201
Breast cancer; Colon cancer; Kidney cancer; Lung cancer; Prostate cancer; Endothelial cells; Leiomyosarcoma; Follicle-stimulating hormone receptor; Metastasis; Tumor blood vessels
3.  Three-Dimensional Characterization of the Vascular Bed in Bone Metastasis of the Rat by Microcomputed Tomography (MicroCT) 
PLoS ONE  2011;6(3):e17336.
Angiogenesis contributes to proliferation and metastatic dissemination of cancer cells. Anatomy of blood vessels in tumors has been characterized with 2D techniques (histology or angiography). They are not fully representative of the trajectories of vessels throughout the tissues and are not adapted to analyze changes occurring inside the bone marrow cavities.
Methodology/Principal Findings
We have characterized the vasculature of bone metastases in 3D at different times of evolution of the disease. Metastases were induced in the femur of Wistar rats by a local injection of Walker 256/B cells. Microfil®, (a silicone-based polymer) was injected at euthanasia in the aorta 12, 19 and 26 days after injection of tumor cells. Undecalcified bones (containing the radio opaque vascular casts) were analyzed by microCT, and a first 3D model was reconstructed. Bones were then decalcified and reanalyzed by microCT; a second model (comprising only the vessels) was obtained and overimposed on the former, thus providing a clear visualization of vessel trajectories in the invaded metaphysic allowing quantitative evaluation of the vascular volume and vessel diameter. Histological analysis of the marrow was possible on the decalcified specimens. Walker 256/B cells induced a marked osteolysis with cortical perforations. The metaphysis of invaded bones became progressively hypervascular. New vessels replaced the major central medullar artery coming from the diaphyseal shaft. They sprouted from the periosteum and extended into the metastatic area. The newly formed vessels were irregular in diameter, tortuous with a disorganized architecture. A quantitative analysis of vascular volume indicated that neoangiogenesis increased with the development of the tumor with the appearance of vessels with a larger diameter.
This new method evidenced the tumor angiogenesis in 3D at different development times of the metastasis growth. Bone and the vascular bed can be identified by a double reconstruction and allowed a quantitative evaluation of angiogenesis upon time.
PMCID: PMC3065464  PMID: 21464932
4.  Bone marrow cells participate in tumor vessel formation that supports the growth of Ewing’s sarcoma in the lung 
Angiogenesis  2010;14(2):125-133.
An MHC-mismatch bone marrow (BM) transplant Ewing’s sarcoma mouse model was used to investigate whether BM cells participate in the vessel formation that support Ewing’s sarcoma lung metastasis. BM cells from H-2Kb/d donor mice were transplanted into sublethally irradiated H-2Kd recipient mice. Donor BM cells were identified using the H-2Kb marker. Engraftment was confirmed by identifying the H-2Kb IL-1β-type specific polymorphism. After engraftment highly lung metastatic TC71-PM4 cells were injected intravenously. Mice were sacrificed 10 weeks after tumor cell injection. Hematoxylin-and-eosin staining was performed to identify lung metastatic foci. These tumors were then evaluated using immunohistochemical analysis. H-2Kb-positive cells were found in lung metastases but not in normal lung, liver or spleen tissues. Injection of CM-Dil-labeled BM cells into tumor bearing and control mice showed that nonspecific organ migration occurred at 24 h, but that these cells were absent 1 week later in control mice. These data suggest that the migration of the H-2Kb BM cells to lung nodules was specific because these cells were observed 14 weeks after transplantation. Co-localization of H-2Kb and CD31 or VE-Cadherin demonstrated that some endothelial cells were BM-derived. Co-localization of H-2Kb and Desmin, smooth muscle actin (α-SMA) or PDGFR-β indicated that a fraction of pericytes was also BM-derived. These results suggest that BM cells participate in the vascular formation that supports the growth of Ewing’s sarcoma lung metastases. BM cells migrated to the metastatic tumor and differentiated into endothelial cells and pericytes. These data indicated that targeting this process may have therapeutic potential.
PMCID: PMC3087863  PMID: 21184173
Bone marrow cells; Vasculogenesis; Metastasis; Ewing’s sarcoma; Neovascularization
5.  Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Sunitinib-Induced Vascular Changes to Schedule Chemotherapy in Renal Cell Carcinoma Xenograft Tumors1 
Translational Oncology  2010;3(5):293-306.
In an attempt to develop better therapeutic approaches for metastatic renal cell carcinoma (RCC), the combination of the antiangiogenic drug sunitinib with gemcitabine was studied. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), we have previously determined that a sunitinib dosage of 20 mg/kg per day increased kidney tumor perfusion and decreased vascular permeability in a preclinical murine RCC model. This sunitinib dosage causing regularization of tumor vessels was selected to improve delivery of gemcitabine to the tumor. DCE-MRI was used to monitor regularization of vasculature with sunitinib in kidney tumors to schedule gemcitabine. We established an effective and nontoxic schedule of sunitinib combined with gemcitabine consisting of pretreatment with sunitinib for 3 days followed by four treatments of gemcitabine at 20 mg/kg given 3 days apart while continuing daily sunitinib treatment. This treatment caused significant tumor growth inhibition resulting in small residual tumor nodules exhibiting giant tumor cells with degenerative changes, which were observed both in kidney tumors and in spontaneous lung metastases, suggesting a systemic antitumor response. The combined therapy caused a significant increase in mouse survival. DCE-MRI monitoring of vascular changes induced by sunitinib, gemcitabine, and both combined showed increased tumor perfusion and decreased vascular permeability in kidney tumors. These findings, confirmed histologically by thinning of tumor blood vessels, suggest that both sunitinib and gemcitabine exert antiangiogenic effects in addition to cytotoxic antitumor activity. These studies show that DCE-MRI can be used to select the dose and schedule of antiangiogenic drugs to schedule chemotherapy and improve its efficacy.
PMCID: PMC2935633  PMID: 20885892
6.  Preclinical evaluation of Sunitinib as a single agent in the prophylactic setting in a mouse model of bone metastases 
BMC Cancer  2013;13:32.
A substantial number of breast cancer patients are identified as being at high risk of developing metastatic disease. With increasing number of targeted therapeutics entering clinical trials, chronic administration of these agents may be a feasible approach for the prevention of metastases within this subgroup of patients. In this preclinical study we examined whether Sunitinib, a multi-tyrosine kinase inhibitor which has anti-angiogenic and anti-resorptive activity, is effective in the prevention of bone metastases.
Sunitinib was administered daily with the first dose commencing prior to tumor cell inoculation. Intracardiac injection was performed with MDA-MB23 bone-seeking cells, which were stably transfected with DsRed2. In vivo plain radiography and fluorescent imaging (Berthold NightOwl) was used in the analysis of bone metastases. Histomorphometry was used for the quantification of TRAP+ cells from bone sections and immunohistochemistry was performed using an antibody reactive to CD34 for quantification of microvessel density.
Preventive dosing administration of Sunitinib does not inhibit colonization of tumor cells to bone or reduce the size of osteolytic lesions. There was a decrease in the number of TRAP+ cells with Sunitinib treatment but this did not reach significance. Sunitinib inhibited tumor growth as determined by imaging of fluorescent tumor area. Immunohistochemical analyses of microvessel density revealed a concomitant decrease in the number of tumor blood vessels.
The findings suggest that Sunitinib can be used as a therapeutic agent for the treatment of bone metastases but as a single agent it is not effective in terms of prevention. Therefore a combination approach with other cytostatic drugs should be pursued.
PMCID: PMC3562143  PMID: 23347638
Sunitinib; Bone metastases; Breast cancer; Imaging
The purpura accompanying the two foregoing cases of sarcoimatosis would seem to find its explanation in the coexistence of several factors, the main feature being an involvement of the vascular system by the sarcomatous elements. There existed in Case I a direct lesion of the vessel wall whereby the sarcoma cells invaded directly the various coats, and were found mainly between the intima and the adventitia, dissecting their way, as it were, along these tracts in the vessel walls. There was further an extensive involvement of the perivascular lymphatics, from which point, indeed, it would seem that the sarcoma cells had invaded the walls of the vessels themselves. In Case II, moreover, not only was there a definite invasion of the lymph spaces near the vessels, but, furthermore, there was undoubted evidence of the existence of emboli of sarcoma cells in the lumina of the blood vessels; and in the immediate vicinity of such conditions hæmorrhages were invariably found. While some vessels, and indeed a great many, were quite free from such emboli, in others the lumina were completely occluded by spindle cells, so as to preclude the possibility that these were merely a collection of desquamated endothelial cells, such as is frequently found as the result of post-mortem changes. That such an embolic condition can exist is by no means an unreasonable supposition, and, while it is generally recognised that multiple sarcomata are usually made up of small round cells, in this case we have an undoubted example of sarcomatosis of the spindle-celled variety. There are numerous instances of this " embolic purpura," as it may be called, especially in French and German literature, the condition being associated with rheumatism, valvular lesions of the heart, and other diseases which induce directly or indirectly the formation of emboli. Krauss, Gimard, Leloir, and others have insisted with considerable emphasis on the embolic origin of many purpuric conditions, and in some instances they have verified their observations by histological examination. Leloir assumes that, in addition to the presence of the ordinary emboli and the changes in the vessel walls with desquamative endarteritis, the blood itself may be much altered chemically, and that in the cachectic conditions clots may be thrown down from the circulating blood and be carried onward to form capillary emboli, with resulting hæmorrhagic infarctions. Krogerer, some ten years ago, in examining the skin removed from patients with symptomatic purpura, found definite thromboses in the smaller veins, and even in the arteries. According to his view, the alterations in the vessel walls gave rise to slowed circulation and tendency to thrombosis, bringing about a liability to hæmorrhages. His plates bear out his theories regarding the thrombi, many of which show considerable organization. But a careful examination of the purpuric areas shows further that a mere invasion of the vascular system by sarcoma cells can not explain all the various blood effusions present. On examining the skin, for instance, in those areas where large irregular hæmorrhages had occurred, there was but little evidence of vascular invasion, while the emboli, on the other hand, seemed to exist mainly in the localized smaller and more circumscribed patches. One must therefore conclude that in such instances a combination of factors will alone afford a rational explanation of the purpura, and that in the general condition of the patient we shall find another cause for the enormous effusions of blood. In both of our cases there were high fever, cachexia, and a rapid progressive asthenia, all being the results of a sarcomatosis, and implying also grave alterations in the composition of the blood. From this we may infer an altered condition of the vessel walls, and hence probably a combination of circumstances sufficient to explain the incidence of hæmorrhage. The raised cutaneous nodules in our second case, some of which were hæmorrhagic, can not be regarded as pure sarcomatous metastases, for on microscopic examination they merely revealed hæmorrhage or necrosis, or both, and sometimes plugging of the vessels. There was nowhere in these nodules evidence of new growths. Such elevations, then, must have been produced rather by a temporary serous or cellular exudation coincident with or following upon the hæmorrhage—a probability which is emphasized by the fact that during the last days of the patient's illness many of the nodules diminished in size. Whether the œdema and infiltration were secondary to the embolic process in the subcutaneous vessels or whether they were merely coincident with the hæmorrhage would be difficult to decide. The ringlike spots, however, are of special interest, inasmuch as it has been shown that they have been present in more than one case of sarcoma. It is not impossible that such spots may be definitely related either to the embolic processes or to a direct invasion of the cutaneous vessels, though, so far as we know, there do not exist any experimental proofs to bear out such a theory. From what has been said, however, it is evident that the cutaneous vessels were plugged during the last few days of the illness, at a time when the walls of the smaller vessels and capillaries were already greatly enfeebled. The result of the embolic formation may therefore mean a decided deficiency in the supply of nutriment to the involved area, the collateral circulation naturally being poor under the circumstances. As soon, then, as the vessels had become plugged, the surrounding blood supply would be poured in to a limited extent, and, on meeting the enfeebled vessels, might possibly break through their thin walls, thus producing a zone of hæmorrhage around the area deprived of its normal nutrition. In other words, the condition may be regarded as in many respects analogous to that presented in embolic infarcts in regions with end arteries, central necrosis with peripheral congestion and hæmorrhage being induced, the latter being chiefly limited to the outer zone of the necrotic area. The cutaneous vessels under such circumstances may be regarded as end arteries in a functional sense, since the collateral circulation would be so diminished under the altered conditions that no complete nourishment could be afforded to the area supplied normally by the plugged vessel. Von Recklinghausen has directed especial attention to the occurrence of cutaneous hæmorrhages following embolic or thrombotic occlusion of peripheral arteries. The possibility of some toxic condition as a factor in the production of the purpura in our cases may also be suggested; but while we would not exclude this possibility, we are unable to find any positive evidence in its favour. Focal necroses, which are often associated with toxic and infectious processes, were present only in direct association with the hæmorrhages, and were not distributed in the liver, spleen, and kidneys in the manner characteristic of toxic infections. Nevertheless the absence of these necroses does not exclude the possibility of the existence of some form of toxæmia. Infection demonstrable by bacteriological examination was absent, and there is no reason to regard our cases as allied to the infectious purpuras. The thermic theory suggested by Fagge at all events finds no place in the production of the multiple tumours in our cases, inasmuch as in each instance extensive visceral growths had given rise to the metastases.
PMCID: PMC2117935  PMID: 19866815
8.  Rhodamine-RCA in vivo labeling guided laser capture microdissection of cancer functional angiogenic vessels in a murine squamous cell carcinoma mouse model 
Molecular Cancer  2006;5:5.
Cancer growth, invasion and metastasis are highly related to tumor-associated neovasculature. The presence and progression of endothelial cells in cancer is chaotic, unorganized, and angiogenic vessels are less functional. Therefore, not all markers appearing on the chaotic endothelial cells are accessible if a drug is given through the vascular route. Identifying endothelial cell markers from functional cancer angiogenic vessels will indicate the accessibility and potential efficacy of vascular targeted therapies.
In order to quickly and effectively identify endothelial cell markers on the functional and accessible tumor vessels, we developed a novel technique by which tumor angiogenic vessels are labeled in vivo followed by Laser Capture Microdissection of microscopically isolated endothelial cells for genomic screening. Female C3H mice (N = 5) with established SCCVII tumors were treated with Rhodamine-RCA lectin by tail vein injection, and after fluorescence microscopy showed a successful vasculature staining, LCM was then performed on frozen section tissue using the PixCell II instrument with CapSure HS caps under the Rhodamine filter. By this approach, the fluorescent angiogenic endothelial cells were successfully picked up. As a result, the total RNA concentration increased from an average of 33.4 ng/ul +/- 24.3 (mean +/- S.D.) to 1913.4 ng/ul +/- 164. Relatively pure RNA was retrieved from both endothelial and epithelial cells as indicated by the 260/280 ratios (range 2.22–2.47). RT-PCR and gene electrophoresis successfully detected CD31 and Beta-Actin molecules with minimal Keratin 19 expression, which served as the negative control.
Our present study demonstrates that in vivo Rhodamine RCA angiogenic vessel labeling provided a practical approach to effectively guide functional endothelial cell isolation by laser capture microdissection with fluorescent microscopy, resulting in high quality RNA and pure samples of endothelial cells pooled for detecting genomic expression.
PMCID: PMC1420324  PMID: 16457726
9.  Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? 
Cancer Medicine  2013;2(4):427-436.
Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co-option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co-option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10–30% of the tumors are reported to use this alternative blood supply. In addition, vessel co-option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co-option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co-option with specific examples of vessel co-option in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply.
Both primary and metastatic tumors use preexisting host tissue vessels as their blood supply. Tumors may grow to a clinically detectable size without angiogenesis and makes them less likely to respond to drugs designed to target the abnormal vasculature produced by angiogenesis, but further studies to explore the biological and clinical implication of these co-opted vessels is needed.
PMCID: PMC3799277  PMID: 24156015
Angiogenesis; cancer; lung cancer; nonangiogenic tumors; tumor growth; vessel co-option
10.  A Computational Model for Predicting Nanoparticle Accumulation in Tumor Vasculature 
PLoS ONE  2013;8(2):e56876.
Vascular targeting of malignant tissues with systemically injected nanoparticles (NPs) holds promise in molecular imaging and anti-angiogenic therapies. Here, a computational model is presented to predict the development of tumor neovasculature over time and the specific, vascular accumulation of blood-borne NPs. A multidimensional tumor-growth model is integrated with a mesoscale formulation for the NP adhesion to blood vessel walls. The fraction of injected NPs depositing within the diseased vasculature and their spatial distribution is computed as a function of tumor stage, from 0 to day 24 post-tumor inception. As the malignant mass grows in size, average blood flow and shear rates increase within the tumor neovasculature, reaching values comparable with those measured in healthy, pre-existing vessels already at 10 days. The NP vascular affinity, interpreted as the likelihood for a blood-borne NP to firmly adhere to the vessel walls, is a fundamental parameter in this analysis and depends on NP size and ligand density, and vascular receptor expression. For high vascular affinities, NPs tend to accumulate mostly at the inlet tumor vessels leaving the inner and outer vasculature depleted of NPs. For low vascular affinities, NPs distribute quite uniformly intra-tumorally but exhibit low accumulation doses. It is shown that an optimal vascular affinity can be identified providing the proper balance between accumulation dose and uniform spatial distribution of the NPs. This balance depends on the stage of tumor development (vascularity and endothelial receptor expression) and the NP properties (size, ligand density and ligand-receptor molecular affinity). Also, it is demonstrated that for insufficiently developed vascular networks, NPs are transported preferentially through the healthy, pre-existing vessels, thus bypassing the tumor mass. The computational tool described here can effectively select an optimal NP formulation presenting high accumulation doses and uniform spatial intra-tumor distributions as a function of the development stage of the malignancy.
PMCID: PMC3585411  PMID: 23468887
11.  Suppression of angiogenesis and tumor growth in vitro and in vivo using an anti-angiopoietin-2 single-chain antibody 
Hepatocellular carcinomas (HCCs) are tumors with a highly developed vascular architecture. HCC cells require access to blood vessels for growth and metastasis; therefore, the inhibition of angiogenesis represents a potential therapeutic target for HCC that may reduce the mortality and morbidity from HCC. Various attempts to develop an anti-angiogenic therapy have been made in past decades; however, modest results have been achieved in clinical trials and the challenge of HCC treatment remains. Single-chain antibodies (scFv) are characterized by low molecular weight, low immunogenicity, high penetration and a short half-life, and are easy to produce on a large scale by genetic engineering. Accordingly, an scFv against a specific angiogenic regulator, such as angiopoietin (Ang), may be a promising anti-angiogenic therapy for HCC. Our previous study indicated that an imbalanced expression of angiopoietin-2 (Ang-2) vs. angiopoietin-1 (Ang-1) in HCCs contributes to initiation of neovascularization and promotes the angiogenesis and progression of HCCs. Therefore, we suggest that specific Ang-2-targeting interventions may be valuable in the treatment of HCC via remodeling the neovascular network and changing the tumor microenvironment. In this study, a prokaryotic expression vector of Ang-2 was constructed and purified human Ang-2 protein was isolated. An scFv against human Ang-2 (scFv-Ang2) was identified and purified via phage display technology, and the effects of scFv-Ang2 in vitro and in vivo on HCC in nude mice were evaluated. The results show that scFv-Ang2 inhibits vascular endothelial growth factor (VEGF) and Ang-2 induces the proliferation, migration and tubule formation of human umbilical vein endothelial cells (HUVECs) in vitro. In the in vivo assay, statistical indices, including tumor weight and volume, metastases to lungs, CD31 expression and the microvessel density (MVD) count in the scFv-Ang2-treated group of mice were significantly lower than those in the control group (P<0.05). In conclusion, the successfully generated scFv-Ang2 showed significant inhibitory effects on the angiogenesis and tumor growth of human HCC in vitro and in vivo.
PMCID: PMC3919851  PMID: 24520243
angiopoietin-2; phage display peptide library; single-chain antibody; neovascularization; liver tumor
12.  Phase Contrast MRI is an Early Marker of Micrometastatic Breast Cancer Development in the Rat Brain 
Nmr in Biomedicine  2011;25(5):726-736.
The early growth of micrometastatic breast cancer in the brain often occurs through vessel co-option and is independent of angiogenesis. Remodeling of the existing vasculature is an important step in the evolution of co-opting micrometastases into angiogenesis-dependent solid tumor masses. The purpose of this study was to determine if phase contrast MRI, an intrinsic source of contrast exquisitely sensitive to the magnetic susceptibility properties of deoxygenated hemoglobin, could detect vascular changes occurring independent of angiogenesis in a rat model of breast cancer metastases to the brain. Twelve nude rats were administered with 106 MDA-MB-231BRL “brain seeking” breast cancer cells through intracardiac injection. Serial, multiparametric MRI of the brain was performed weekly until metastatic disease was detected. The results demonstrate that images of the signal phase were more sensitive to metastatic brain lesions (area under receiver operating characteristic curve, AUC = 0.97) compared to T2* gradient echo magnitude images, (AUC = 0.73). The difference between the two techniques was likely the result of the confounding effects of edema on the magnitude signal. A region of interest analysis revealed that vascular abnormalities detected with phase contrast MRI preceded tumor permeability as measured with contrast-enhanced MRI by 1 to 2 weeks. Tumor size was correlated with permeability (R2 = 0.23, p < 0.01), but phase contrast was independent of tumor size (R2 = 0.03). Histopathological analysis demonstrated that capillary endothelial cells coopted by tumor cells were significantly enlarged, but less dense, compared to the normal brain vasculature. Whereas co-opted vessels were VEGF-negative, vessels within larger tumor masses were VEGF-positive. In conclusion, phase contrast MRI is believed to be sensitive to vascular remodeling in co-opting brain tumor metastases independent of sprouting angiogenesis and may therefore aid in pre-clinical studies of angiogenic-independent tumors or monitoring continued tumor growth following anti-angiogenic therapy.
PMCID: PMC3252479  PMID: 21954124
magnetic resonance imaging; phase contrast; vascular remodeling; brain metastasis; vessel co-option; ferumoxides
13.  Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation 
Pennes Bio Heat Transfer Equation (PBHTE) has been widely used to approximate the overall temperature distribution in tissue using a perfusion parameter term in the equation during hyperthermia treatment. In the similar modeling, effective thermal conductivity (Keff) model uses thermal conductivity as a parameter to predict temperatures. However the equations do not describe the thermal contribution of blood vessels. A countercurrent vascular network model which represents a more fundamental approach to modeling temperatures in tissue than do the generally used approximate equations such as the Pennes BHTE or effective thermal conductivity equations was presented in 1996. This type of model is capable of calculating the blood temperature in vessels and describing a vasculature in the tissue regions.
In this paper, a countercurrent blood vessel network (CBVN) model for calculating tissue temperatures has been developed for studying hyperthermia cancer treatment. We use a systematic approach to reveal the impact of a vasculature of blood vessels against a single vessel which most studies have presented. A vasculature illustrates branching vessels at the periphery of the tumor volume. The general trends present in this vascular model are similar to those shown for physiological systems in Green and Whitmore. The 3-D temperature distributions are obtained by solving the conduction equation in the tissue and the convective energy equation with specified Nusselt number in the vessels.
This paper investigates effects of size of blood vessels in the CBVN model on total absorbed power in the treated region and blood flow rates (or perfusion rate) in the CBVN on temperature distributions during hyperthermia cancer treatment. Also, the same optimized power distribution during hyperthermia treatment is used to illustrate the differences between PBHTE and CBVN models. Keff (effective thermal conductivity model) delivers the same difference as compared to the CBVN model. The optimization used here is adjusting power based on the local temperature in the treated region in an attempt to reach the ideal therapeutic temperature of 43°C. The scheme can be used (or adapted) in a non-invasive power supply application such as high-intensity focused ultrasound (HIFU). Results show that, for low perfusion rates in CBVN model vessels, impacts on tissue temperature becomes insignificant. Uniform temperature in the treated region is obtained.
Therefore, any method that could decrease or prevent blood flow rates into the tumorous region is recommended as a pre-process to hyperthermia cancer treatment. Second, the size of vessels in vasculatures does not significantly affect on total power consumption during hyperthermia therapy when the total blood flow rate is constant. It is about 0.8% decreasing in total optimized absorbed power in the heated region as γ (the ratio of diameters of successive vessel generations) increases from 0.6 to 0.7, or from 0.7 to 0.8, or from 0.8 to 0.9. Last, in hyperthermia treatments, when the heated region consists of thermally significant vessels, much of absorbed power is required to heat the region and (provided that finer spatial power deposition exists) to heat vessels which could lead to higher blood temperatures than tissue temperatures when modeled them using PBHTE.
PMCID: PMC2851699  PMID: 20346157
14.  Microbeam Radiation Therapy Alters Vascular Architecture and Tumor Oxygenation and is Enhanced by a Galectin-1 Targeted Anti-Angiogenic Peptide 
Radiation Research  2012;177(6):804-812.
In this study, we sought to determine the therapeutic potential of variably sized (50 μm or 500 μm wide, 14 mm tall) parallel microbeam radiation therapy (MRT) alone and in combination with a novel anti-angiogenic peptide, anginex, in mouse mammary carcinomas (4T1) – a moderately hypoxic and radioresistant tumor with propensity to metastasize. The fraction of total tumor volume that was directly irradiated was approximately 25% in each case, but the distance between segments irradiated by the planar microbeams (width of valley dose region) varied by an order of magnitude from 150-1500 μm corresponding to 200 μm and 2000 μm center-to-center inter-microbeam distances, respectively. We found that MRT administered in 50 μm beams at 150 Gy was most effective in delaying tumor growth. Furthermore, tumor growth delay induced by 50 μm beams at 150 Gy was virtually indistinguishable from the 500 μm beams at 150 Gy. Fifty-micrometer beams at the lower peak dose of 75 Gy induced growth delay intermediate between 150 Gy and untreated tumors, while 500 μm beams at 75 Gy were unable to alter tumor growth compared to untreated tumors. However, the addition of anginex treatment increased the relative tumor growth delay after 500 μm beams at 75 Gy most substantially out of the conditions tested. Anginex treatment of animals whose tumors received the 50 μm beams at 150 Gy also led to an improvement in growth delay from that induced by the comparable MRT alone. Immunohistochemical staining for CD31 (endothelial cells) and aSMA (smooth muscle pericyte-associated blood vessels as a measure of vessel normalization) indicated that vessel density was significantly decreased in all irradiated groups and pericyte staining was significantly increased in the irradiated groups on day 14 after irradiation. The addition of anginex treatment further decreased the mean vascular density in all combination treatment groups and further increased the amount of pericyte staining in these tumors. Finally, evidence of tumor hypoxia was found to decrease in tumors analyzed at 1–14 days after MRT in the groups receiving 150 Gy peak dose, but not 75 Gy peak dose. Our results suggest that tumor vascular damage induced by MRT at these potentially clinically acceptable peak entrance doses may provoke vascular normalization and may be exploited to improve tumor control using agents targeting angiogenesis.
PMCID: PMC3391740  PMID: 22607585
15.  Immuno-Expression of Endoglin and Smooth Muscle Actin in the Vessels of Brain Metastases. Is There a Rational for Anti-Angiogenic Therapy? 
Despite ongoing clinical trials, the efficacy of anti-angiogenic drugs for the treatment of brain metastases (BM) is still questionable. The lower response rate to anti-angiogenic therapy in the presence of BM than in metastatic disease involving other sites suggests that BM may be insensitive to these drugs, although the biological reasons underlining this phenomenon are still to be clarified. With the aim of assessing whether the targets of anti-angiogenic therapies are actually present in BM, in the present study, we analyzed the microvessel density (MVD), a measure of neo-angiogenesis, and the vascular phenotype (mature vs. immature) in the tumor tissue of a series of BM derived from different primary tumors. By using immunohistochemistry against endoglin, a specific marker for newly formed vessels, we found that neo-angiogenesis widely varies in BM depending on the site of the primary tumor, as well as on its histotype. According to our results, BM from lung cancer displayed the highest MVD counts, while those from renal carcinoma had the lowest. Then, among BM from lung cancer, those from large cell and adenocarcinoma histotypes had significantly higher MVD counts than those originating from squamous cell carcinoma (p = 0.0043; p = 0.0063). Of note, MVD counts were inversely correlated with the maturation index of the endoglin-stained vessels, reflected by the coverage of smooth muscle actin (SMA) positive pericytes (r = −0.693; p < 0.0001). Accordingly, all the endoglin-positive vessels in BM from pulmonary squamous cell carcinoma and renal carcinoma, displayed a mature phenotype, while vessels with an immature phenotype were found in highly vascularized BM from pulmonary large cell and adenocarcinoma. The low MVD and mature phenotype observed in BM from some primary tumors may account for their low sensitivity to anti-angiogenic therapies. Although our findings need to be validated in correlative studies with a clinical response, this should be taken into account in therapeutic protocols in order to avoid the adverse effects of useless therapies.
PMCID: PMC4013588  PMID: 24699047
brain metastasis; endoglin; MVD; pericytes; angiogenesis
16.  Therapeutic Potential of 90Y- and 131I-Labeled Anti-CD20 Monoclonal Antibody in Treating Non-Hodgkin's Lymphoma with Pulmonary Involvement: A Monte Carlo–Based Dosimetric Analysis 
Pulmonary involvement is common in patients with non-Hodgkin's lymphoma (NHL). 90Y- and 131I-anti-CD20 antibodies (ibritumomab tiuxetan and tositumomab, respectively) have been approved for the treatment of refractory low-grade follicular NHL. In this work, we used Monte Carlo–based dosimetry to compare the potential of 90Y and 131I, based purely on their emission properties, in targeted therapy for NHL lung metastases of various nodule sizes and tumor burdens.
Lung metastases were simulated as spheres, with radii ranging from 0.2 to 5.0 cm, which were randomly distributed in a voxelized adult male lung phantom. Total tumor burden was varied from 0.2 to 1,641 g. Tumor uptake and retention kinetics of the 2 radionuclides were assumed equivalent; a uniform distribution of activity within tumors was assumed. Absorbed dose to tumors and lung parenchyma per unit activity in lung tumors was calculated by a Monte Carlo–based system using the MCNP4B package. Therapeutic efficacy was defined as the ratio of mean absorbed dose in the tumor to that in normal lung. Dosimetric analysis was also performed for a lung-surface distribution of tumor nodules mimicking pleural metastatic disease.
The therapeutic efficacy of both 90Y and 131I declined with increasing tumor burden. In treating tumors with radii less than 2.0 cm, 131I targeting was more efficacious than 90Y targeting. 90Y yielded a broader distribution of tumor absorbed doses, with the minimum 54.1% lower than the average dose; for 131I, the minimum absorbed dose was 33.3% lower than the average. The absorbed dose to normal lungs was reduced when the tumors were distributed on the lung surface. For surface tumors, the reductions in normal-lung absorbed dose were greater for 90Y than for 131I, but 131I continued to provide a greater therapeutic ratio across different tumor burdens and sizes.
Monte Carlo–based dosimetry was performed to compare the therapeutic potential of 90Y and 131I targeting of lung metastases in NHL patients. 131I provided a therapeutic advantage over 90Y, especially in tumors with radii less than 2.0 cm and at lower tumor burdens. For both 90Y- and 131I-labeled antibodies, treatment is more efficacious when applied to metastatic NHL cases with lower tumor burdens. 131I has advantages over 90Y in treating smaller lung metastases.
PMCID: PMC2967041  PMID: 17204712
non-Hodgkin's lymphoma; pulmonary metastases; dosimetry; Monte Carlo; 90Y; 131I
17.  CSPG4 Protein as a New Target for the Antibody-Based Immunotherapy of Triple-Negative Breast Cancer 
The cell surface proteoglycan, chondroitin sulfate proteoglycan 4 (CSPG4), is a potential target for monoclonal antibody (mAb)–based immunotherapy for many types of cancer. The lack of effective therapy for triple-negative breast cancer (TNBC) prompted us to examine whether CSPG4 is expressed in TNBC and can be targeted with CSPG4-specific mAb.
CSPG4 protein expression was assessed in 44 primary TNBC lesions, in TNBC cell lines HS578T, MDA-MB-231, MDA-MB-435, and SUM149, and in tumor cells in pleural effusions from 12 metastatic breast cancer patients. The effect of CSPG4-specific mAb 225.28 on growth, adhesion, and migration of TNBC cells was tested in vitro. The ability of mAb 225.28 to induce regression of tumor metastases (n = 7 mice) and to inhibit spontaneous metastasis and tumor recurrence (n = 12 mice per group) was tested in breast cancer models in mice. The mechanisms responsible for the antitumor effect of mAb 225.28 were also investigated in the cell lines and in the mouse models. All statistical tests were two-sided.
CSPG4 protein was preferentially expressed in 32 of the 44 (72.7%) primary TNBC lesions tested, in TNBC cell lines, and in tumor cells in pleural effusions from 12 metastatic breast cancer patients. CSPG4-specific mAb 225.28 statistically significantly inhibited growth, adhesion, and migration of TNBC cells in vitro. mAb 225.28 induced 73.1% regression of tumor metastasis in a TNBC cell–derived experimental lung metastasis model (mAb 225.28 vs control, mean area of metastatic nodules = 44590.8 vs 165950.8 μm2; difference of mean = 121360.0 μm2, 95% confidence interval = 91010.7 to 151709.4 μm2; P < .001). Additionally, mAb 225.28 statistically significantly reduced spontaneous lung metastases and tumor recurrences in an orthotopic xenograft mouse model. The mechanisms responsible for antitumor effect included increased apoptosis and reduced mitotic activity in tumor cells, decreased blood vessel density in the tumor microenvironment, and reduced activation of signaling pathways involved in cell survival, proliferation and metastasis.
This study identified CSPG4 as a new target for TNBC. The antitumor activity of CSPG4-specific mAb was mediated by multiple mechanisms, including the inhibition of signaling pathways crucial for TNBC cell survival, proliferation, and metastasis.
PMCID: PMC2950168  PMID: 20852124
18.  Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding 
eLife  2014;3:e03720.
During development, tissue repair, and tumor growth, most blood vessel networks are generated through angiogenesis. Vascular endothelial growth factor (VEGF) is a key regulator of this process and currently both VEGF and its receptors, VEGFR1, VEGFR2, and Neuropilin1 (NRP1), are targeted in therapeutic strategies for vascular disease and cancer. NRP1 is essential for vascular morphogenesis, but how NRP1 functions to guide vascular development has not been completely elucidated. In this study, we generated a mouse line harboring a point mutation in the endogenous Nrp1 locus that selectively abolishes VEGF-NRP1 binding (Nrp1VEGF−). Nrp1VEGF− mutants survive to adulthood with normal vasculature revealing that NRP1 functions independent of VEGF-NRP1 binding during developmental angiogenesis. Moreover, we found that Nrp1-deficient vessels have reduced VEGFR2 surface expression in vivo demonstrating that NRP1 regulates its co-receptor, VEGFR2. Given the resources invested in NRP1-targeted anti-angiogenesis therapies, our results will be integral for developing strategies to re-build vasculature in disease.
eLife digest
Blood flows through blood vessels to carry oxygen and nutrients towards, and waste away from, the cells of the body. New blood vessels are formed not only during development but also throughout life as part of normal tissue growth and repair. However, blood vessels may also form as a consequence of diseases, such as cancer. For example, tumors often stimulate the growth of new blood vessels to ensure a good supply of blood carrying nutrients and oxygen. As such, some anti-cancer therapies try to stop blood vessels from developing in an attempt to slow down or prevent tumor growth.
New blood vessels often form by branching off from existing vessels. One molecule that stimulates this branching process is called vascular endothelial growth factor (or VEGF for short). Three ‘receptor’ proteins found on the outside of cells can bind to the VEGF molecule and then trigger a response inside the cell that guides the development of new blood vessels. VEGF and its receptor proteins—including one called NRP1—are being investigated as a possible target for drugs that could treat cancer and other diseases affecting blood vessels. However, the exact mechanisms that control the formation of new blood vessels are not fully understood, which makes it difficult to develop these treatments.
Now Gelfand et al. have created mice whose NRP1 receptors cannot bind VEGF. These mice unexpectedly survive to adulthood and develop normal blood vessels. This outcome is in contrast to mice that lack NRP1, which normally die as embryos and have severe defects with their nerves and blood vessels. Gelfand et al. instead found that mice that only lack NRP1 in the cells of their blood vessels had less of another receptor protein called VEGFR2 on the surface of these cells. This result suggests that NRP1 controls blood vessel development, not by binding to VEGF but by affecting how much of the VEGFR2 receptor is available to interact with VEGF.
These findings challenge the long-held view of how NRP1 functions and lead Gelfand et al. to suggest a new mechanism: NRP1 interacts with VEGFR2, rather than with VEGF, to control the formation of new blood vessels. Future work will aim to uncover how these interactions regulate the normal development of blood vessels, and if other molecules that bind to NRP1 are involved in this process. Furthermore, these findings may help to guide the on-going efforts to develop drugs that target NRP1 into treatments that are effective against diseases that involve problems with blood vessels—including diabetes, immune disorders, and cancer.
PMCID: PMC4197402  PMID: 25244320
Neuropilin-1; developmental angiogenesis; VEGFR2; VEGF; mouse genetics; mouse
19.  Ultrasound Molecular Imaging of Secreted Frizzled Related Protein-2 Expression in Murine Angiosarcoma 
PLoS ONE  2014;9(1):e86642.
Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2) is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6±0.27 (n = 13, p = 0.0032). The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression.
PMCID: PMC3906081  PMID: 24489757
20.  DMXAA Causes Tumor Site-Specific Vascular Disruption in Murine Non-Small Cell Lung Cancer, and like the Endogenous Non-Canonical Cyclic Dinucleotide STING Agonist, 2′3′-cGAMP, Induces M2 Macrophage Repolarization 
PLoS ONE  2014;9(6):e99988.
The vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a murine agonist of the stimulator of interferon genes (STING), appears to target the tumor vasculature primarily as a result of stimulating pro-inflammatory cytokine production from tumor-associated macrophages (TAMs). Since there were relatively few reports of DMXAA effects in genetically-engineered mutant mice (GEMM), and models of non-small cell lung cancer (NSCLC) in particular, we examined both the effectiveness and macrophage dependence of DMXAA in various NSCLC models. The DMXAA responses of primary adenocarcinomas in K-rasLA1/+ transgenic mice, as well as syngeneic subcutaneous and metastatic tumors, generated by a p53R172HΔg/+; K-rasLA1/+ NSCLC line (344SQ-ELuc), were assessed both by in vivo bioluminescence imaging as well as by histopathology. Macrophage-dependence of DMXAA effects was explored by clodronate liposome-mediated TAM depletion. Furthermore, a comparison of the vascular structure between subcutaneous tumors and metastases was carried out using micro-computed tomography (micro-CT). Interestingly, in contrast to the characteristic hemorrhagic necrosis produced by DMXAA in 344SQ-ELuc subcutaneous tumors, this agent failed to cause hemorrhagic necrosis of either 344SQ-ELuc-derived metastases or autochthonous K-rasLA1/+ NSCLCs. In addition, we found that clodronate liposome-mediated depletion of TAMs in 344SQ-ELuc subcutaneous tumors led to non-hemorrhagic necrosis due to tumor feeding-vessel occlusion. Since NSCLC were comprised exclusively of TAMs with anti-inflammatory M2-like phenotype, the ability of DMXAA to re-educate M2-polarized macrophages was examined. Using various macrophage phenotypic markers, we found that the STING agonists, DMXAA and the non-canonical endogenous cyclic dinucleotide, 2′3′-cGAMP, were both capable of re-educating M2 cells towards an M1 phenotype. Our findings demonstrate that the choice of preclinical model and the anatomical site of a tumor can determine the vascular disrupting effectiveness of DMXAA, and they also support the idea of STING agonists having therapeutic utility as TAM repolarizing agents.
PMCID: PMC4062468  PMID: 24940883
21.  VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment 
BMC Cancer  2010;10:683.
Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein.
Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal) and WM239 (melanoma) xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1-/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX.
VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD) in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93%) and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60%) xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased stabilization of colorectal microvessels, but no such change in melanoma vessels.
Overall, our study suggests that while heterogeneous expression of VEGFR2 is a feature of human tumors, it may not affect response to low dose metronomic cyclophosphamide treatment and possibly other anti-angiogenic approaches. It remains to be seen whether this heterogeneity is partly responsible for the variable clinical success seen to date with targeted anti-VEGFR2 therapy.
PMCID: PMC3009683  PMID: 21159176
22.  A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: a feasibility study using simulations on autopsy specimens 
A nanoparticle delivery system termed dynamic magnetic shift (DMS) has the potential to more effectively treat metastatic cancer by equilibrating therapeutic magnetic nanoparticles throughout tumors. To evaluate the feasibility of DMS, histological liver sections from autopsy cases of women who died from breast neoplasms were studied to measure vessel number, size, and spatial distribution in both metastatic tumors and normal tissue. Consistent with prior studies, normal tissue had a higher vascular density with a vessel-to-nuclei ratio of 0.48 ± 0.14 (n = 1000), whereas tumor tissue had a ratio of 0.13 ± 0.07 (n = 1000). For tumors, distances from cells to their nearest blood vessel were larger (average 43.8 μm, maximum 287 μm, n ≈ 5500) than normal cells (average 5.3 μm, maximum 67.8 μm, n ≈ 5500), implying that systemically delivered nanoparticles diffusing from vessels into surrounding tissue would preferentially dose healthy instead of cancerous cells. Numerical simulations of magnetically driven particle transport based on the autopsy data indicate that DMS would correct the problem by increasing nanoparticle levels in hypovascular regions of metastases to that of normal tissue, elevating the time-averaged concentration delivered to the tumor for magnetic actuation versus diffusion alone by 1.86-fold, and increasing the maximum concentration over time by 1.89-fold. Thus, DMS may prove useful in facilitating therapeutic nanoparticles to reach poorly vascularized regions of metastatic tumors that are not accessed by diffusion alone.
PMCID: PMC3224717  PMID: 22131836
cancer; metastases; vasculature; drug delivery; magnetic; nanoparticles
23.  Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer 
Oncotarget  2014;5(23):12418-12427.
Therapeutic vaccination targeting self-molecules is an attractive alternative to monoclonal antibody-based therapies for cancer and various inflammatory diseases. However, development of cancer vaccines targeting self-molecules has proven difficult. One complicating factor is that tumor cells have developed strategies to escape recognition by the immune system. Antigens specifically expressed by the tumor vasculature can therefore provide alternative targets. The alternatively spliced extra domain-A and B (ED-A and ED-B) of fibronectin are expressed during vasculogenesis in the embryo, but essentially undetectable under normal conditions in the adult. However, these domains are re-expressed during tumor angiogenesis and matrix remodeling, which renders them highly interesting for targeted cancer therapies.
Using the MMTV-PyMT transgenic model of metastatic mammary carcinoma, we show that tumor burden can be significantly decreased by immunization against ED-A in a therapeutic setting. Furthermore, we found that in mice carrying anti-ED-A antibodies the number of metastases was reduced. ED-A immunization increased infiltration of macrophages and compromised tumor blood vessel function. These findings implicate an attack of the tumor vasculature by the immune system, through a polyclonal antibody response. We conclude that tumor vascular antigens are promising candidates for development of therapeutic vaccines targeting growth of primary tumors as well as disseminated disease.
PMCID: PMC4322999  PMID: 25360764
ED-A; immunization; tumor vasculature; therapeutic; cancer vaccine
24.  An Anti-Vascular Endothelial Growth Factor Receptor 2/Fetal Liver Kinase-1 Listeria monocytogenes Anti-Angiogenesis Cancer Vaccine for the Treatment of Primary and Metastatic Her-2/neu+ Breast Tumors in a Mouse Model1 
Thirty years after angiogenesis was shown to play an enabling role in cancer, modern medicine is still trying to develop novel compounds and therapeutics to target the tumor vasculature. However, most therapeutics require multiple rounds of administration and can have toxic side effects. In this study, we use anti-angiogenesis immunotherapy to target cells actively involved in forming new blood vessels that support the growth and spread of breast cancer. Targeting a central cell type involved in angiogenesis, endothelial cells, we immunized against host vascular endothelial growth factor receptor 2 to fight the growth of Her-2/neu+ breast tumors. Using the bacterial vector, Listeria monocytogenes (Lm), we fused polypeptides from the mouse vascular endothelial growth factor receptor 2 molecule (fetal liver kinase-1) to the microbial adjuvant, listeriolysin-O, and used Lm to deliver the Ags and elicit potent antitumor CTL responses. Lm-listeriolysin-O-fetal liver kinase-1 was able to eradicate some established breast tumors, reduce microvascular density in the remaining tumors, protect against tumor rechallenge and experimental metastases, and induce epitope spreading to various regions of the tumor-associated Ag Her-2/neu. Tumor eradication was found to be dependent on epitope spreading to HER-2/neu and was not solely due to the reduction of tumor vasculature. However, vaccine efficacy did not affect normal wound healing nor have toxic side effects on pregnancy. We show that an anti-angiogenesis vaccine can overcome tolerance to the host vasculature driving epitope spreading to an endogenous tumor protein and drive active tumor regression.
PMCID: PMC2850569  PMID: 19380802
25.  Microvascular Architecture of Hepatic Metastases in a Mouse Model 
HPB Surgery  1997;10(3):149-158.
Development of effective treatment for hepatic metastases can be initiated by a better understanding of tumour vasculature and blood supply. This study was designed to characterise the microvascular architecture of hepatic metastases and observe the source of contributory blood supply from the host. Metastases were induced in mice by an intrasplenic injection of colon carcinoma cells (106 cells/ml.) Vascularization of tumours was studied over a three week period by scanning electron microscopy of microvascular corrosion casts. Metastatic liver involvement was observed initially within a week post induction, as areas approximately 100 μm in diameter not perfused by the casting resin. On histology these spaces corresponded to tumour cell aggregates. The following weeks highlighted the angiogenesis phase of these tumours as they received a vascular supply from adjacent hepatic sinusoids. Direct sinusoidal supply of metastases was maintained throughout tumour growth. At the tumour periphery most sinusoids were compressed to form a sheath demarcating the tumour from the hepatic vasculature. No direct supply from the hepatic artery or the portal vein was observed. Dilated vessels termed vascular lakes dominated the complex microvascular architecture of the tumours, most tapering as they traversed towards the periphery. Four vascular branching patterns could be identified as true loops, bifurcations and trifurcations, spirals and capillary networks. The most significant observation in this study was the direct sinusoidal supply of metastases, together with the vascular lakes and the peripheral sinusoidal sheaths of the tumour microculature.
PMCID: PMC2423855  PMID: 9174859

Results 1-25 (1575741)