Search tips
Search criteria

Results 1-25 (1239995)

Clipboard (0)

Related Articles

1.  Andes Virus Infection of Lymphatic Endothelial Cells Causes Giant Cell and Enhanced Permeability Responses That Are Rapamycin and Vascular Endothelial Growth Factor C Sensitive 
Journal of Virology  2012;86(16):8765-8772.
Hantaviruses primarily infect endothelial cells (ECs) and nonlytically cause vascular changes that result in hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Acute pulmonary edema during HPS may be caused by capillary leakage and failure of lymphatic vessels to clear fluids. Uniquely regulated lymphatic ECs (LECs) control fluid clearance, although roles for lymphatics in hantavirus disease remain undetermined. Here we report that hantaviruses productively infect LECs and that LEC infection by HPS causing Andes virus (ANDV) and HFRS causing Hantaan virus (HTNV) are inhibited by αvβ3 integrin antibodies. Although αvβ3 integrins regulate permeabilizing responses directed by vascular endothelial growth factor receptor 2 (VEGFR2), we found that only ANDV-infected LECs were hyperpermeabilized by the addition of VEGF-A. However, VEGF-C activation of LEC-specific VEGFR3 receptors blocked ANDV- and VEGF-A-induced LEC permeability. In addition, ∼75% of ANDV-infected LECs became viable mononuclear giant cells, >4 times larger than normal, in response to VEGF-A. Giant cells are associated with constitutive mammalian target of rapamycin (mTOR) activation, and we found that both giant LECs and LEC permeability were sensitive to rapamycin, an mTOR inhibitor, and VEGF-C addition. These findings indicate that ANDV uniquely alters VEGFR2-mTOR signaling responses of LECs, resulting in giant cell and LEC permeability responses. This suggests that ANDV infection alters normal LEC and lymphatic vessel functions which may contribute to edematous fluid accumulation during HPS. Moreover, the ability of VEGF-C and rapamycin to normalize LEC responses suggests a potential therapeutic approach for reducing pulmonary edema and the severity of HPS following ANDV infection.
PMCID: PMC3421700  PMID: 22696643
2.  Genetic Delivery of Bevacizumab to Suppress Vascular Endothelial Growth Factor-Induced High-Permeability Pulmonary Edema 
Human Gene Therapy  2009;20(6):598-610.
High-permeability pulmonary edema causing acute respiratory distress syndrome is associated with high mortality. Using a model of intratracheal adenovirus (Ad)-mediated overexpression of human vascular endothelial growth factor (VEGF)-A165 in mouse lung to induce alveolar permeability and consequent pulmonary edema, we hypothesized that systemic administration of a second adenoviral vector expressing an anti-VEGF antibody (AdαVEGFAb) would protect the lung from pulmonary edema. Pulmonary edema was induced in mice by intratracheal administration of AdVEGFA165. To evaluate anti-VEGF antibody therapy, the mice were treated intravenously with AdαVEGFAb, an adenoviral vector encoding the light and heavy chains of an anti-human VEGF antibody with the bevacizumab (Avastin) antigen-binding site. Lung VEGF-A165 and phosphorylated VEGF receptor (VEGFR)-2 levels, histology, lung wet-to-dry weight ratios, and bronchoalveolar lavage fluid (BALF) levels of total protein were assessed. Administration of AdαVEGFAb to mice decreased AdVEGFA165-induced levels of human VEGF-A165 and phosphorylated VEGFR-2 in the lung. Histological analysis of AdαVEGFAb-treated mice demonstrated a reduction of edema fluid in the lung tissue that correlated with a reduction of lung wet-to-dry ratios and BALF total protein levels. Importantly, administration of AdαVEGFAb 48 hr after induction of pulmonary edema with AdVEGFA165 was effective in suppressing pulmonary edema. Administration of an adenoviral vector encoding an anti-VEGF antibody that is the equivalent of bevacizumab effectively suppresses VEGF-A165-induced high-permeability pulmonary edema, suggesting that anti-VEGF antibody therapy may represent a novel therapy for high-permeability pulmonary edema.
PMCID: PMC2828641  PMID: 19254174
3.  A potential role for reactive oxygen species and the HIF-1α-VEGF pathway in hypoxia-induced pulmonary vascular leak 
Acute hypoxia causes pulmonary vascular leak and is involved in the pathogenesis of pulmonary edema associated with inflammation, acute altitude exposure, and other critical illnesses. Reactive oxygen species, HIF-1 and VEGF have all been implicated in various hypoxic pathologies, yet the ROS-HIF-1-VEGF pathway in pulmonary vascular leak has not been defined. We hypothesized that the ROS-HIF-1-VEGF pathway has an important role in producing hypoxia-induced pulmonary vascular leak. Human pulmonary artery endothelial cell monolayers (HPAEC) were exposed to either normoxia (21% O2) or acute hypoxia (3% O2) for 24 h and monolayer permeability, H2O2, nuclear HIF-1α, and cytosolic VEGF were determined. HPAEC were treated with antioxidant cocktail (AO: ascorbate, glutathione, and α-tocopherol), HIF-1 siRNA, or VEGF soluble binding protein (sFlt-1) to delineate the role of the ROS-HIF-1-VEGF pathway in hypoxia-induced HPAEC leak. Additionally, mice exposed to hypobaric hypoxia (18,000 ft, 10% O2) were treated with the same antioxidant to determine if in-vitro responses corresponded to in-vivo hypoxia stress. Hypoxia increased albumin permeability, H2O2 production, nuclear HIF-1α, and cytosolic VEGF concentration. Treatment with an AO lowered the hypoxia-induced HPAEC monolayer permeability as well as elevation of HIF-1α and VEGF. Treatment of hypoxia-induced HPAEC with either a siRNA designed against HIF-1α or VEGF antagonist soluble fms-like tyrosine kinase (sFlt)-1 decreased monolayer permeability. Mice treated with AO and exposed to hypobaric hypoxia (18,000 ft, 10% O2) had less pulmonary vascular leak than those that were untreated. Our data suggest that hypoxia-induced permeability is due, in part, to the ROS-HIF-1α-VEGF pathway.
PMCID: PMC2689923  PMID: 19358884
Hypoxia; pulmonary edema; reactive oxygen species; HIF-1α; VEGF; HIF
4.  Hypoxia Induces Permeability and Giant Cell Responses of Andes Virus-Infected Pulmonary Endothelial Cells by Activating the mTOR-S6K Signaling Pathway 
Journal of Virology  2013;87(23):12999-13008.
Andes virus (ANDV) is a South American hantavirus that causes a highly lethal hantavirus pulmonary syndrome (HPS) characterized by hypoxia, thrombocytopenia, and vascular leakage leading to acute pulmonary edema. ANDV infects human pulmonary microvascular and lymphatic endothelial cells (MECs and LECs, respectively) and nonlytically enhances the permeability of interendothelial cell adherence junctions in response to vascular endothelial growth factor (VEGF). Recent findings also indicate that ANDV causes the formation of giant endothelial cells. Here, we demonstrate that hypoxic conditions alone enhance permeability and giant cell responses of ANDV-infected MECs and LECs through activation of the mTOR signaling pathway. In contrast to infection of cells with nonpathogenic Tula virus (TULV), we observed that exposure of ANDV-infected MECs and LECs to hypoxic conditions resulted in a 3- to 6-fold increase in monolayer permeability and the formation of giant cells 3× to 5× normal size. ANDV infection in combination with hypoxic conditions resulted in the enhancement of hypoxia-inducible factor 1α (HIF1α)-directed VEGF A, angiopoietin 4, and EGLN3 transcriptional responses. Constitutive mTOR signaling induces the formation of giant cells via phosphorylation of S6K, and mTOR regulates hypoxia and VEGF A-induced cellular responses. We found that S6K was hyperphosphorylated in ANDV-infected, hypoxia-treated MECs and LECs and that rapamycin treatment for 1 h inhibited mTOR signaling responses and blocked permeability and giant cell formation in ANDV-infected monolayers. These findings indicate that ANDV infection and hypoxic conditions enhance mTOR signaling responses, resulting in enhanced endothelial cell permeability and suggest a role for rapamycin in therapeutically stabilizing the endothelium of microvascular and lymphatic vessels during ANDV infection.
PMCID: PMC3838155  PMID: 24067973
5.  Hantaviruses Direct Endothelial Cell Permeability by Sensitizing Cells to the Vascular Permeability Factor VEGF, while Angiopoietin 1 and Sphingosine 1-Phosphate Inhibit Hantavirus-Directed Permeability▿  
Journal of Virology  2008;82(12):5797-5806.
Hantaviruses infect human endothelial cells and cause two vascular permeability-based diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Hantavirus infection alone does not permeabilize endothelial cell monolayers. However, pathogenic hantaviruses inhibit the function of αvβ3 integrins on endothelial cells, and hemorrhagic disease and vascular permeability deficits are consequences of dysfunctional β3 integrins that normally regulate permeabilizing vascular endothelial growth factor (VEGF) responses. Here we show that pathogenic Hantaan, Andes, and New York-1 hantaviruses dramatically enhance the permeability of endothelial cells in response to VEGF, while the nonpathogenic hantaviruses Prospect Hill and Tula have no effect on endothelial cell permeability. Pathogenic hantaviruses directed endothelial cell permeability 2 to 3 days postinfection, coincident with pathogenic hantavirus inhibition of αvβ3 integrin functions, and hantavirus-directed permeability was inhibited by antibodies to VEGF receptor 2 (VEGFR2). These studies demonstrate that pathogenic hantaviruses, similar to αvβ3 integrin-deficient cells, specifically enhance VEGF-directed permeabilizing responses. Using the hantavirus permeability assay we further demonstrate that the endothelial-cell-specific growth factor angiopoietin 1 (Ang-1) and the platelet-derived lipid mediator sphingosine 1-phosphate (S1P) inhibit hantavirus directed endothelial cell permeability at physiologic concentrations. These results demonstrate the utility of a hantavirus permeability assay and rationalize the testing of Ang-1, S1P, and antibodies to VEGFR2 as potential hantavirus therapeutics. The central importance of β3 integrins and VEGF responses in vascular leak and hemorrhagic disease further suggest that altering β3 or VEGF responses may be a common feature of additional viral hemorrhagic diseases. As a result, our findings provide a potential mechanism for vascular leakage after infection by pathogenic hantaviruses and the means to inhibit hantavirus-directed endothelial cell permeability that may be applicable to additional vascular leak syndromes.
PMCID: PMC2395149  PMID: 18367532
6.  Andes Virus Regulation of Cellular MicroRNAs Contributes to Hantavirus-Induced Endothelial Cell Permeability▿  
Journal of Virology  2010;84(22):11929-11936.
Hantaviruses infect human endothelial cells (ECs) and cause two diseases marked by vascular permeability defects, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Vascular permeability occurs in the absence of EC lysis, suggesting that hantaviruses alter normal EC fluid barrier functions. ECs infected by pathogenic hantaviruses are hyperresponsive to vascular endothelial growth factor (VEGF), and this alters the fluid barrier function of EC adherens junctions, resulting in enhanced paracellular permeability. Vascular permeability and VEGF-directed responses are determined by EC-specific microRNAs (miRNAs), which regulate cellular mRNA transcriptional responses. miRNAs mature within cytoplasmic processing bodies (P bodies), and the hantavirus nucleocapsid (N) protein binds RNA and localizes to P bodies, suggesting that hantaviruses may modify miRNA functions within infected ECs. Here we assessed changes in EC miRNAs following infection by the HPS-causing Andes hantavirus (ANDV). We analyzed 352 human miRNAs within ANDV-infected ECs using quantitative real-time (RT)-PCR arrays. Fourteen miRNAs, including six miRNAs that are associated with regulating vascular integrity, were upregulated >4-fold following infection by ANDV. Nine miRNAs were downregulated 3- to 3,400-fold following ANDV infection; these included miR-410, involved in regulating secretion, and miR-218, which is linked to the regulation of EC migration and vascular permeability. We further analyzed changes in miR-126, an EC-specific miRNA that regulates vascular integrity by suppressing SPRED1 and PIK3R2 mRNAs. While miR-126 levels were only slightly altered, we found that SPRED1 and PIK3R2 mRNA levels were increased 10- and 7-fold, respectively, in ANDV-infected ECs but were unaltered in ECs infected by the nonpathogenic Tula hantavirus (TULV). Consistent with increased SPRED1 expression, we found that the level of phospho-cofilin was decreased within ANDV-infected ECs. Moreover, small interfering RNA (siRNA) knockdown of SPRED1 dramatically decreased the permeability of ANDV-infected ECs in response to VEGF, suggesting that increased SPRED1 contributes to EC permeability following ANDV infection. These findings suggest that interference with normal miRNA functions contributes to the enhanced paracellular permeability of ANDV-infected ECs and that hantavirus regulation of miRNA functions is an additional determinant of hantavirus pathogenesis.
PMCID: PMC2977893  PMID: 20844033
7.  Endothelial Cell Permeability during Hantavirus Infection Involves Factor XII-Dependent Increased Activation of the Kallikrein-Kinin System 
PLoS Pathogens  2013;9(7):e1003470.
Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections.
Author Summary
Primary manifestations of disease due to hantavirus infections include systemic vascular leakage and hypotension for which the underlying mechanism is not known. A particularly perplexing finding is that the vascular endothelium remains intact during hantavirus infection and with no apparent cytopathic effects to explain leakage and edema. Our studies show for the first time that hantavirus-infected EC have increased KKS activation resulting in liberation of the inflammatory peptide, BK. BK is a potent inducer of vascular permeability, edema formation, and hypotension; thus, our results provide a novel mechanism for hantavirus-induced vascular abnormalities. Additionally, we describe the use of an in vitro capillary blood vessel model to examine responses occurring locally in blood vessels during infection. This model could be used in future studies by others for assessing further aspects of hantavirus pathogenesis or that of other vascular tropic viruses.
PMCID: PMC3715459  PMID: 23874198
8.  Protective role of vascular endothelial growth factor in endotoxin-induced acute lung injury in mice 
Respiratory Research  2007;8(1):60.
Vascular endothelial growth factor (VEGF), a substance that stimulates new blood vessel formation, is an important survival factor for endothelial cells. Although overexpressed VEGF in the lung induces pulmonary edema with increased lung vascular permeability, the role of VEGF in the development of acute lung injury remains to be determined.
To evaluate the role of VEGF in the pathogenesis of acute lung injury, we first evaluated the effects of exogenous VEGF and VEGF blockade using monoclonal antibody on LPS-induced lung injury in mice. Using the lung specimens, we performed TUNEL staining to detect apoptotic cells and immunostaining to evaluate the expression of apoptosis-associated molecules, including caspase-3, Bax, apoptosis inducing factor (AIF), and cytochrome C. As a parameter of endothelial permeability, we measured the albumin transferred across human pulmonary artery endothelial cell (HPAEC) monolayers cultured on porous filters with various concentrations of VEGF. The effect of VEGF on apoptosis HPAECs was also examined by TUNEL staining and active caspase-3 immunoassay.
Exogenous VEGF significantly decreased LPS-induced extravascular albumin leakage and edema formation. Treatment with anti-VEGF antibody significantly enhanced lung edema formation and neutrophil emigration after intratracheal LPS administration, whereas extravascular albumin leakage was not significantly changed by VEGF blockade. In lung pathology, pretreatment with VEGF significantly decreased the numbers of TUNEL positive cells and those with positive immunostaining of the pro-apoptotic molecules examined. VEGF attenuated the increases in the permeability of the HPAEC monolayer and the apoptosis of HPAECs induced by TNF-α and LPS. In addition, VEGF significantly reduced the levels of TNF-α- and LPS-induced active caspase-3 in HPAEC lysates.
These results suggest that VEGF suppresses the apoptosis induced by inflammatory stimuli and functions as a protective factor against acute lung injury.
PMCID: PMC2042500  PMID: 17718922
9.  NK Cell Activation in Human Hantavirus Infection Explained by Virus-Induced IL-15/IL15Rα Expression 
PLoS Pathogens  2014;10(11):e1004521.
Clinical infection with hantaviruses cause two severe acute diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases are characterized by strong immune activation, increased vascular permeability, and up to 50% case-fatality rates. One prominent feature observed in clinical hantavirus infection is rapid expansion of natural killer (NK) cells in peripheral blood of affected individuals. We here describe an unusually high state of activation of such expanding NK cells in the acute phase of clinical Puumala hantavirus infection. Expanding NK cells expressed markedly increased levels of activating NK cell receptors and cytotoxic effector molecules. In search for possible mechanisms behind this NK cell activation, we observed virus-induced IL-15 and IL-15Rα on infected endothelial and epithelial cells. Hantavirus-infected cells were shown to strongly activate NK cells in a cell-cell contact-dependent way, and this response was blocked with anti-IL-15 antibodies. Surprisingly, the strength of the IL-15-dependent NK cell response was such that it led to killing of uninfected endothelial cells despite expression of normal levels of HLA class I. In contrast, hantavirus-infected cells were resistant to NK cell lysis, due to a combination of virus-induced increase in HLA class I expression levels and hantavirus-mediated inhibition of apoptosis induction. In summary, we here describe a possible mechanism explaining the massive NK cell activation and proliferation observed in HFRS patients caused by Puumala hantavirus infection. The results add further insights into mechanisms behind the immunopathogenesis of hantavirus infections in humans and identify new possible targets for intervention.
Author Summary
Hantaviruses cause severe clinical infections with up to 50% case-fatality rates. The diseases represent an important global health problem as no vaccine or specific treatment is available. The most prominent hallmark in patients is strong immune activation, reflected as massive CD8 T and NK cell expansion, accompanied by severe vascular leakage. The mechanisms behind this massive immune activation are still not fully understood. Here, we first assessed the expression of several activation markers and receptors on NK cells derived from hantavirus-infected patients using flow cytometry. High NK cell activation was observed during the acute phase of clinical infection. To address possible underlying mechanisms explaining this NK cell activation, we established an in vitro hantavirus infection model using human primary endothelial cells, the natural in vivo targets of the virus. We demonstrate hantavirus-induced IL-15/IL-15Rα on infected endothelial cells, and show that this results in NK cell activation, similar to the profile found in hantavirus-infected patients. Interestingly, these activated NK cells were able to kill uninfected endothelial cells despite their normal expression of HLA class I. The present data add further insights into hantavirus-induced pathogenesis and suggest possible targets for future therapeutical interventions in these severe diseases.
PMCID: PMC4239055  PMID: 25412359
10.  The early responses of VEGF and its receptors during acute lung injury: implication of VEGF in alveolar epithelial cell survival 
Critical Care  2006;10(5):R130.
The function of the vascular endothelial growth factor (VEGF) system in acute lung injury (ALI) is controversial. We hypothesized that the role of VEGF in ALI may depend upon the stages of pathogenesis of ALI.
To determine the responses of VEGF and its receptors during the early onset of ALI, C57BL6 mice were subjected to intestinal ischemia or sham operation for 30 minutes followed by intestinal ischemia-reperfusion (IIR) for four hours under low tidal volume ventilation with 100% oxygen. The severity of lung injury, expression of VEGF and its receptors were assessed. To further determine the role of VEGF and its type I receptor in lung epithelial cell survival, human lung epithelial A549 cells were treated with small interference RNA (siRNA) to selectively silence related genes.
IIR-induced ALI featured interstitial inflammation, enhancement of pulmonary vascular permeability, increase of total cells and neutrophils in the bronchoalveolar lavage (BAL), and alveolar epithelial cell death. In the BAL, VEGF was significantly increased in both sham and IIR groups, while the VEGF and VEGF receptor (VEGFR)-1 in the lung tissues were significantly reduced in these two groups. The increase of VEGF in the BAL was correlated with the total protein concentration and cell count. Significant negative correlations were observed between the number of VEGF or VEGFR-1 positive cells, and epithelial cells undergoing cell death. When human lung epithelial A549 cells were pre-treated with 50 nM of siRNA either against VEGF or VEGFR-1 for 24 hours, reduced VEGF and VEGFR-1 levels were associated with reduced cell viability.
These results suggest that VEGF may have dual roles in ALI: early release of VEGF may increase pulmonary vascular permeability; reduced expression of VEGF and VEGFR-1 in lung tissue may contribute to the death of alveolar epithelial cells.
PMCID: PMC1751039  PMID: 16968555
11.  Vascular Endothelial Growth Factor Mediates Intracrine Survival in Human Breast Carcinoma Cells through Internally Expressed VEGFR1/FLT1 
PLoS Medicine  2007;4(6):e186.
While vascular endothelial growth factor (VEGF) expression in breast tumors has been correlated with a poor outcome in the pathogenesis of breast cancer, the expression, localization, and function of VEGF receptors VEGFR1 (also known as FLT1) and VEGFR2 (also known as KDR or FLK1), as well as neuropilin 1 (NRP1), in breast cancer are controversial.
Methods and Findings
We investigated the expression and function of VEGF and VEGF receptors in breast cancer cells. We observed that VEGFR1 expression was abundant, VEGFR2 expression was low, and NRP1 expression was variable. MDA-MB-231 and MCF-7 breast cancer cells, transfected with antisense VEGF cDNA or with siVEGF (VEGF-targeted small interfering RNA), showed a significant reduction in VEGF expression and increased apoptosis as compared to the control cells. Additionally, specifically targeted knockdown of VEGFR1 expression by siRNA (siVEGFR1) significantly decreased the survival of breast cancer cells through down-regulation of protein kinase B (AKT) phosphorylation, while targeted knockdown of VEGFR2 or NRP1 expression had no effect on the survival of these cancer cells. Since a VEGFR1-specific ligand, placenta growth factor (PGF), did not, as expected, inhibit the breast cancer cell apoptosis induced by siVEGF, and since VEGFR1 antibody also had no effects on the survival of these cells, we examined VEGFR1 localization. VEGFR1 was predominantly expressed internally in MDA-MB-231 and MCF-7 breast cancer cells. Specifically, VEGFR1 was found to be colocalized with lamin A/C and was expressed mainly in the nuclear envelope in breast cancer cell lines and primary breast cancer tumors. Breast cancer cells treated with siVEGFR1 showed significantly decreased VEGFR1 expression levels and a lack of VEGFR1 expression in the nuclear envelope.
This study provides, to our knowledge for the first time, evidence of a unique survival system in breast cancer cells by which VEGF can act as an internal autocrine (intracrine) survival factor through its binding to VEGFR1. These results may lead to an improved strategy for tumor therapy based on the inhibition of angiogenesis.
Shalom Avraham and colleagues' study provides evidence of a survival system in breast cancer cells by which VEGF acts as an internal autocrine survival factor through its binding to VEGFR1.
Editors' Summary
One woman in eight will develop breast cancer during her lifetime. Most of these women live for many years after their diagnosis and many are cured of their cancer. However, sometimes the cancer grows inexorably and spreads (metastasizes) around the body despite the efforts of oncologists. Characteristics of the tumor known as prognostic factors can indicate whether this spreading is likely to happen. Large tumors that have metastasized have a poorer prognosis than small tumors that are confined to the breast. The expression of specific proteins within the tumor also provides prognostic information. One protein whose expression is associated with a poor prognosis is vascular endothelial growth factor (VEGF). VEGF stimulates angiogenesis—the growth of new blood vessels. Small tumors get the nutrients needed for their growth from existing blood vessels but large tumors need to organize their own blood supply. They do this, in part, by secreting VEGF. This compound binds to proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels), which then send a signal into the cell instructing it to make new blood vessels. Angiogenesis inhibitors, including molecules that block the activity of VEGF receptors, are being developed for the treatment of cancer.
Why Was This Study Done?
Some breast cancer cell lines (cells isolated from breast cancers and grown in the laboratory) make VEGF and VEGF receptors (VEGFR1, VEGFR2, and neuropilin 1 [NRP1]). But, although some studies have reported an association between VEGFR1 expression in breast tumors and a poor prognosis, other studies have found no expression of VEGFR1 in breast tumors. Consequently, the role of VEGF receptors in breast cancer is unclear. In this study, the researchers analyzed the expression and function of VEGF and its receptors in breast cancer cells to investigate whether and how VEGF helps these cells to survive.
What Did the Researchers Do and Find?
The researchers first examined the expression of VEGF receptors in several human breast cancer cell lines. All of them expressed VEGFR1, some expressed NRP1, but VEGFR2 expression was universally low. They then investigated the function of VEGF and its receptors in two human breast cancer cell lines (MDA-MB-231 and MCF-7). In both cell lines, blocking the expression of VEGF or of VEGFR1 (but not of the other two receptors) reduced cell survival by stimulating a specific process of cell death called apoptosis. Unexpectedly, adding VEGF to the cultures did not reverse the effect of blocking VEGF expression, a result that suggests that VEGF and VEGFR1 do not affect breast cancer cell survival by acting at the cell surface. Accordingly, when the researchers examined where VEGFR1 occurs in the cell, they found it on the membranes around the nucleus of the breast cancer cell lines and not on the cell surface; several primary breast tumors and normal breast tissue had the same localization pattern. Finally, the researchers showed that inhibitors of VEGF action that act at the cell surface did not affect the survival of the breast cancer cell lines.
What Do These Findings Mean?
These findings suggest that VEGF helps breast cancer cells to survive in a unique way: by binding to VEGFR1 inside the cell. In other words, whereas VEGF normally acts as a paracrine growth factor (it is released by one cell and affects another cell), in breast cancer cells it might act as an internal autocrine (intracrine) survival factor, a factor that affects the cells in which it is produced. These findings need confirming in more cell lines and in primary breast cancers but could have important implications for the treatment of breast cancer. Inhibitors of VEGF and VEGFR1 that act inside the cell (small molecule drugs) might block breast cancer growth more effectively than inhibitors that act at the cell surface (for example, proteins that bind to the receptor), because internally acting inhibitors might both kill the tumor directly and have antiangiogenic effects, whereas externally acting inhibitors could only have the second effect.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information for patients and professionals on breast cancer (in English and Spanish) and on angiogenesis (in English and Spanish)
MedlinePlus Encyclopedia information for patients on breast cancer (in English and Spanish)
CancerQuest, information from Emory University on cancer biology and on angiogenesis and angiogenesis inhibitors (in several languages)
Wikipedia pages on VEGF (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC1885450  PMID: 17550303
12.  VEGFR2 and Src Kinase Inhibitors Suppress Andes Virus-Induced Endothelial Cell Permeability ▿  
Journal of Virology  2010;85(5):2296-2303.
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increasing signaling responses directed by the VEGFR2-Src-VE-cadherin pathway, which directs adherens junction (AJ) disassembly. Here we demonstrate that inhibiting pathway-specific VEGFR2 and Src family kinases (SFKs) blocks ANDV-induced endothelial cell permeability. Small interfering RNA (siRNA) knockdown of Src within ANDV-infected endothelial cells resulted in an ∼70% decrease in endothelial cell permeability compared to that for siRNA controls. This finding suggested that existing FDA-approved small-molecule kinase inhibitors might similarly block ANDV-induced permeability. The VEGFR2 kinase inhibitor pazopanib as well as SFK inhibitors dasatinib, PP1, bosutinib, and Src inhibitor 1 dramatically inhibited ANDV-induced endothelial cell permeability. Consistent with their kinase-inhibitory concentrations, dasatinib, PP1, and pazopanib inhibited ANDV-induced permeability at 1, 10, and 100 nanomolar 50% inhibitory concentrations (IC50s), respectively. We further demonstrated that dasatinib and pazopanib blocked VE-cadherin dissociation from the AJs of ANDV-infected endothelial cells by >90%. These findings indicate that VEGFR2 and Src kinases are potential targets for therapeutically reducing ANDV-induced endothelial cell permeability and, as a result, capillary permeability during HPS. Since the functions of VEGFR2 and SFK inhibitors are already well defined and FDA approved for clinical use, these findings rationalize their therapeutic evaluation for efficacy in reducing HPS disease. Endothelial cell barrier functions are disrupted by a number of viruses that cause hemorrhagic, edematous, or neurologic disease, and as a result, our findings suggest that VEGFR2 and SFK inhibitors should be considered for regulating endothelial cell barrier functions altered by additional viral pathogens.
PMCID: PMC3067787  PMID: 21177802
13.  Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. 
Molecular Medicine  2001;7(4):240-246.
BACKGROUND: Based on assessment of mRNA expression, the lung is a major site of expression of the vascular endothelial growth factor (VEGF) gene, largely from type II alveolar epithelial cells. With the knowledge that VEGF can function to induce vascular leak, we hypothesized that to protect the lung from pulmonary edema, the VEGF produced in the lung must be compartmentalized from the pulmonary endothelium, and thus must be compartmentalized to the surface of the respiratory epithelium. MATERIAL AND METHODS: To assess this hypothesis, we quantified the levels of VEGF in human respiratory epithelial lining fluid recovered by bronchoalveolar lavage from normal individuals. RESULTS: Strikingly, human respiratory epithelial lining fluid contains 11 +/- 5 ng/mL as quantified by ELISA, a 500-fold greater concentration than plasma (22 +/- 10 pg/mL, p < 0.0005). Western analysis of BAL fluid proteins showed the major VEGF isoform in respiratory epithelial lining fluid is VEGF165. CONCLUSIONS: With the knowledge that proteins of molecular mass like VEGF (34 to 46 kDa) slowly diffuse across the alveolar epithelium, it is likely that this high level "reservoir" of VEGF protein on the respiratory epithelial surface plays a role in normal lung endothelial biology. However, this compartmentalized VEGF reservoir may also be a "Damocles sword" poised to induce lung endothelial permeability in conditions of acute lung injury when the integrity of the alveolar epithelial barrier is breached.
PMCID: PMC1950032  PMID: 11471568
14.  VEGF189 Expression Is Highly Related to Adaptation of the Plateau Pika (Ochotona curzoniae) Inhabiting High Altitudes 
High Altitude Medicine & Biology  2013;14(4):395-404.
Li, Hongge, Songchang Guo, Yongming Ren, Depeng Wang, Honghao Yu, Wenjing Li, Xinquan Zhao, and Zhijie Chang. VEGF189 expression is highly related to adaptation of the plateau pika (Ochotona curzoniae) inhabiting high altitudes. High Alt Med Biol 14:395–404, 2013.— The plateau pika (Ochotona curzonia) has adapted to high-altitude hypoxia during evolution. Higher microvessel density in specific tissues and a blunted hypoxic pulmonary vasoconstriction response are the critical components of this adaptation. VEGF, vascular endothelial growth factor, has proved to be a key regulator of angiogenesis in response to tissue hypoxia and to play an important role in vascular vasodilation. However, the role of VEGF in adaptation to high-altitude hypoxia in the plateau pika remains unknown. In this study, we cloned cDNAs for VEGF165 and VEGF189 and examined their expression in pikas inhabiting altitudes of 3200 and 4750 m. Phylogenetic analysis reveals that pika VEGF165 and VEGF189 are evolutionarily conserved. Real-time PCR analysis demonstrates that VEGF165 and VEGF189 display tissue and altitude-specific expression patterns. Interestingly, we found that the levels of VEGF189 mRNA are significantly higher than those of VEGF165 in the brain and muscle tissues of the pika, which is different from what was previously observed in sea-level mammals. VEGF189 mRNA levels in brain, muscle, and lung of the pika increased with increased habitat altitude, whereas VEGF165 shows less change. Our study suggests an important role for VEGF189 in adaptation to hypoxia by the plateau pika in the high-altitude environment.
PMCID: PMC3880108  PMID: 24377347
adaptation; Qinghai-Tibetan plateau; hypoxia; plateau pika; VEGF; real-time PCR
15.  A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA 
PLoS Medicine  2008;5(5):e94.
Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells.
Methods and Findings
Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the tumors did not respond to interferon (IFN)α therapy at all. We showed that stable silencing of endogenous vegf mRNA in HCT116 cells enhanced both STAT1 expression and IFNα responses.
These findings suggest that cancer cells have a survival system that is regulated by vegf mRNA and imply that both vegf mRNA and its protein may synergistically promote the malignancy of tumor cells. Therefore, combination of anti-vegf transcript strategies, such as siRNA-based gene silencing, with anti-VEGF antibody treatment may improve anti-cancer therapies that target VEGF.
Shigetada Teshima-Kondo and colleagues find that cancer cells have a survival system that is regulated by vegf mRNA and that vegf mRNA and its protein may synergistically promote the malignancy of tumor cells.
Editors' Summary
Normally, throughout life, cell division (which produces new cells) and cell death are carefully balanced to keep the body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—disorganized masses of cells. When a cancer is small, it uses the body's existing blood supply to get the oxygen and nutrients it needs for its growth and survival. But, when it gets bigger, it has to develop its own blood supply. This process is called angiogenesis. It involves the release by the cancer cells of proteins called growth factors that bind to other proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels). The receptors then send signals into the endothelial cells that tell them to make new blood vessels. One important angiogenic growth factor is “vascular endothelial growth factor” (VEGF). Tumors that make large amounts of VEGF tend to be more abnormal and more aggressive than those that make less VEGF. In addition, high levels of VEGF in the blood are often associated with poor responses to chemotherapy, drug regimens designed to kill cancer cells.
Why Was This Study Done?
Because VEGF is a key regulator of tumor development, several anti-VEGF therapies—drugs that target VEGF and its receptors—have been developed. These therapies strongly suppress the growth of tumor cells in the laboratory and in animals but, when used alone, are no better at increasing the survival times of patients with cancer than standard chemotherapy. Scientists are now looking for an explanation for this disappointing result. Like all proteins, cells make VEGF by “transcribing” its DNA blueprint into an mRNA copy (vegf mRNA), the coding region of which is “translated” into the VEGF protein. Other, “noncoding” regions of vegf mRNA control when and where VEGF is made. Scientists have recently discovered that the noncoding regions of some mRNAs suppress tumor development. In this study, therefore, the researchers investigate whether vegf mRNA has an unrecognized function in tumor cells that could explain the disappointing clinical results of anti-VEGF therapeutics.
What Did the Researchers Do and Find?
The researchers first used a technique called small interfering (si) RNA knockdown to stop VEGF expression in human colon cancer cells growing in dishes. siRNAs are short RNAs that bind to and destroy specific mRNAs in cells, thereby preventing the translation of those mRNAs into proteins. The treatment of human colon cancer cells with vegf-targeting siRNAs made the cells more sensitive to chemotherapy-induced apoptosis (a type of cell death). This sensitivity was only partly reversed by adding VEGF to the cells. By contrast, cancer cells engineered to make more vegf mRNA had increased resistance to chemotherapy-induced apoptosis. Treatment of these cells with an antibody that inhibited VEGF function did not completely block this resistance. Together, these results suggest that both vegf mRNA and VEGF protein have anti-apoptotic effects. The researchers show that the anti-apoptotic activity of vegf mRNA requires a noncoding part of the mRNA called the 5′ UTR, and that whereas human colon cancer cells expressing this 5′ UTR form tumors in mice, cells expressing a mutated 5′ UTR do not. Finally, they report that the expression of several pro-apoptotic genes and of an anti-tumor pathway known as the interferon/STAT1 tumor suppression pathway is down-regulated in tumors that express the vegf 5′ UTR.
What Do These Findings Mean?
These findings suggest that some cancer cells have a survival system that is regulated by vegf mRNA and are the first to show that a 5′UTR of mRNA can promote tumor growth. They indicate that VEGF and its mRNA work together to promote their development and to increase their resistance to chemotherapy drugs. They suggest that combining therapies that prevent the production of vegf mRNA (for example, siRNA-based gene silencing) with therapies that block the function of VEGF might improve survival times for patients whose tumors overexpress VEGF.
Additional Information.
Please access these Web sites via the online version of this summary at
This study is discussed further in a PLoS Medicine Perspective by Hughes and Jones
The US National Cancer Institute provides information about all aspects of cancer, including information on angiogenesis, and on bevacizumab, an anti-VEGF therapeutic (in English and Spanish)
CancerQuest, from Emory University, provides information on all aspects of cancer, including angiogenesis (in several languages)
Cancer Research UK also provides basic information about what causes cancers and how they develop, grow, and spread, including information about angiogenesis
Wikipedia has pages on VEGF and on siRNA (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2386836  PMID: 18494554
16.  Granzyme B Releases Vascular Endothelial Growth Factor from Extracellular Matrix and Induces Vascular Permeability 
The formation of unstable, leaky neovessels underlies the pathogenesis of many chronic inflammatory diseases. Granzyme B (GZMB) is an immune-derived serine protease that accumulates in the extracellular matrix (ECM) during chronic inflammation and is capable of cleaving fibronectin (FN). Vascular endothelial growth factor (VEGF) is a potent vascular permeabilizing agent that is sequestered in the ECM through its interaction with FN. As GZMB levels are elevated in chronic inflammatory diseases that are associated with increased vascular permeability, the role of GZMB in the regulation of VEGF bioavailability and vascular permeability were assessed.
Methods and Results
GZMB was added to either VEGF-bound to FN or VEGF-bound to endothelial cell (EC)-derived ECM. Supernatants containing released VEGF were assessed to determine VEGF activity by treating EC and evaluating VEGF receptor-2 (VEGFR2) phosphorylation. GZMB released VEGF from both FN and from EC-derived matrix, while GZMB inhibition prevented FN cleavage and VEGF release. GZMB-mediated VEGF release resulted in significant phosphorylation of VEGFR2. The role of GZMB-mediated VEGF release in altering vascular permeability was also assessed in vivo using a Miles/Evan’s Blue permeability assay. GZMB induced a significant VEGF-dependent increase in vascular permeability in vivo that was reduced in the presence of an anti-VEGF neutralizing antibody. Inflammatory-mediated vascular leakage was also assessed in GZMB-KO mice using a delayed-type hypersensitivity model. GZMB-KO mice exhibited reduced microvascular leakage compared to C57\B6 controls.
GZMB increases vascular permeability in part through the proteolytic release of ECM-sequestered VEGF leading to VEGFR2 activation and increased vascular permeability in vivo. These findings present a novel role for GZMB as a modulator of vascular response during chronic inflammation.
PMCID: PMC4074428  PMID: 24791744 CAMSID: cams4292
Fibronectin; Granzyme B; Inflammation; VEGF; Vascular permeability
17.  Andes Virus Disrupts the Endothelial Cell Barrier by Induction of Vascular Endothelial Growth Factor and Downregulation of VE-Cadherin▿ †  
Journal of Virology  2010;84(21):11227-11234.
Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS) are severe diseases associated with hantavirus infection. High levels of virus replication occur in microvascular endothelial cells but without a virus-induced cytopathic effect. However, virus infection results in microvascular leakage, which is the hallmark of these diseases. VE-cadherin is a major component of adherens junctions, and its interaction with the vascular endothelial growth factor (VEGF) receptor, VEGF-R2, is important for maintaining the integrity of the endothelial barrier. Here we report that increased secreted VEGF and concomitant decreased VE-cadherin are seen at early times postinfection of human primary lung endothelial cells with an HPS-associated hantavirus, Andes virus. Furthermore, active virus replication results in increased permeability and loss of the integrity of the endothelial cell barrier. VEGF binding to VEGF-R2 is known to result in dissociation of VEGF-R2 from VE-cadherin and in VE-cadherin activation, internalization, and degradation. Consistent with this, we showed that an antibody which blocks VEGF-R2 activation resulted in inhibition of the Andes virus-induced VE-cadherin reduction. These data implicate virus induction of VEGF and reduction in VE-cadherin in the endothelial cell permeability seen in HPS and suggest potential immunotherapeutic targets for the treatment of the disease.
PMCID: PMC2953207  PMID: 20810734
18.  Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. 
British Journal of Cancer  1997;76(9):1221-1227.
Vascular endothelial growth factor (VEGF) is known to be produced by various solid tumours and is thought to be involved in microvascular permeability and/or angiogenesis. To examine the relationship between VEGF expression in ovarian neoplasms and clinicopathological factors or patient survival, expression of VEGF was analysed immunohistochemically in 110 epithelial ovarian tumours. In addition, VEGF levels in the tumour fluid (17 patients), ascites (12 patients) and sera (38 patients) were determined using enzyme immunoassay. Positive immunostaining for VEGF was observed in 97% (68 out of 70) of ovarian carcinomas, which was significantly higher than that of tumours of low malignant potential (LMP) (13 out of 25; 52%) and benign cystadenomas (5 out of 15; 33%) (P < 0.01). In ovarian carcinomas, strong VEGF immunostaining was also observed more frequently in tumours of clear cell type (P < 0.05) in the advanced stage of disease (P < 0.05) and with positive peritoneal cytology (P < 0.01). Patients with strong VEGF staining had poorer survival rates than those with weak or no immunostaining for VEGF (P < 0.01). These findings suggest that strong VEGF expression plays an important role in the tumour progression of ovarian carcinoma. The enzyme immunoassay revealed higher serum VEGF levels in carcinoma patients than those in patients with LMP or benign tumours (P < 0.01). Serum VEGF levels decreased after the successful removal of tumours in ovarian cancer patients and, in one patient, the serum VEGF level was re-elevated during relapse. Therefore, serum VEGF could be used as a marker for monitoring the clinical course of ovarian cancer patients.
PMCID: PMC2228134  PMID: 9365173
19.  VEGF Modulation of Retinal Pigment Epithelium Resistance 
Experimental eye research  2007;85(6):762-771.
Fluid accumulation into the subretinal space and the development of macular edema is a common condition in age-related macular degeneration, diabetic retinopathy, and following ocular surgery, or injury. Vascular endothelial growth factor (VEGF) and other cytokines have been implicated in the disruption of retinal pigment epithelium (RPE) barrier function and a reduction in the regulated removal of subretinal fluid; however, the cellular and molecular events linking these agents to the disruption of barrier function have not been established. In the current study, cultures of ARPE-19 and primary porcine retinal pigment epithelium (RPE) cells were utilized to investigate the effects of the VEGF-induced modifications to the barrier properties of the RPE. The barrier function was determined by transepithelial resistance (TER) measurements and morphology of the RPE monolayers. In both ARPE-19 and primary porcine RPE cells the administration of VEGF produced a significant drop in TER, and this response was only observed following apical administration. Maximum reduction in TER was reached 5 hours post VEGF administration. These responses were concentration-dependent with an EC50 of 502 pg/mL in ARPE-19 cells and 251 pg/mL in primary porcine cells. In both ARPE-19 and primary RPE cells, the response to VEGF was blocked by pretreatment with the relatively selective VEGF-R2 antagonists, SU5416 or ZM323881, or the protein tyrosine kinase inhibitor, genistein. Administration of the relatively selective VEGF-R2 agonist, VEGF-E, also reduced TER in a concentration-dependent manner (EC50 of 474 pg/mL), while VEGF-R1 agonist, placental growth factor (PlGF), did not significantly alter the TER. Immunolocalization studies demonstrated that confluent monolayers exhibited continuous cell-to-cell ZO-1 protein contacts and apical localization of the VEGF-R2 receptors. These data provide evidence that the VEGF-induced breakdown of RPE barrier function is mediated by the activation of apically-oriented VEGF-R2 receptors. Thus, VEGF-mediated increases in RPE permeability are initiated by a rise in intraocular levels of VEGF.
PMCID: PMC2199266  PMID: 17915218
RPE; resistance; VEGF; tight junction; macular edema; polarity; receptor
20.  Pathogenic Hantaviruses Andes Virus and Hantaan Virus Induce Adherens Junction Disassembly by Directing Vascular Endothelial Cadherin Internalization in Human Endothelial Cells▿  
Journal of Virology  2010;84(14):7405-7411.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by the homophilic assembly of vascular endothelial cadherin (VE-cadherin) within adherens junctions, which is regulated by VEGF receptor-2 (VEGFR2) responses. Here, we investigated VEGFR2 phosphorylation and the internalization of VE-cadherin within endothelial cells infected by pathogenic Andes virus (ANDV) and Hantaan virus (HTNV) and nonpathogenic Tula virus (TULV) hantaviruses. We found that VEGF addition to ANDV- and HTNV-infected endothelial cells results in the hyperphosphorylation of VEGFR2, while TULV infection failed to increase VEGFR2 phosphorylation. Concomitant with the VEGFR2 hyperphosphorylation, VE-cadherin was internalized to intracellular vesicles within ANDV- or HTNV-, but not TULV-, infected endothelial cells. Addition of angiopoietin-1 (Ang-1) or sphingosine-1-phosphate (S1P) to ANDV- or HTNV-infected cells blocked VE-cadherin internalization in response to VEGF. These findings are consistent with the ability of Ang-1 and S1P to inhibit hantavirus-induced endothelial cell permeability. Our results suggest that pathogenic hantaviruses disrupt fluid barrier properties of endothelial cell adherens junctions by enhancing VEGFR2-VE-cadherin pathway responses which increase paracellular permeability. These results provide a pathway-specific mechanism for the enhanced permeability of hantavirus-infected endothelial cells and suggest that stabilizing VE-cadherin within adherens junctions is a primary target for regulating endothelial cell permeability during pathogenic hantavirus infection.
PMCID: PMC2898267  PMID: 20463083
21.  Inhaled NO Contributes to Lung Repair in Piglets with Acute Respiratory Distress Syndrome via Increasing Circulating Endothelial Progenitor Cells 
PLoS ONE  2012;7(3):e33859.
Nitric oxide (NO) plays an important role in mobilization of endothelial progenitor cells (EPCs). We hypothesized that inhaled NO (iNO) would induce EPC mobilization and therefore promote lung repair in acute respiratory distress syndrome (ARDS).
Methodology/Principal Findings
Healthy piglets were randomized into four groups (n = 6): Control (Con; mechanical ventilation only); ARDS (established by oleic acid infusion and mechanical ventilation); ARDS plus granulocyte-colony stimulating factor (G-CSF; 10 µg/kg/d subcutaneously); ARDS plus NO inhalation (iNO; 10 ppm). EPCs and mobilizing cytokines were assayed at different time points (baseline, 0, 24, 72 and 168 h) and injury reparation was assessed at 168 h. Compared to the Con group, the levels of EPCs were increased in bone marrow but not in blood in the ARDS group at 24 h. Compared to the ARDS group, inhaled NO induced a rapid elevation in the number of CD34+KDR+, KDR+CD133+ and CD34+KDR+CD133+ EPCs in blood (2163±454 vs. 1094±416, 1302±413 vs. 429±244, 1140±494 vs. 453±273 cells/ml, respectively, P<0.05), and a reduction in the percentage of KDR+CD133+ cells in bone marrow. Lung CD34, CD133, VEGF, VEGF receptor 2, endothelial NO synthase mRNA, and VEGF and VEGF receptor 2 protein expression levels were augmented in the iNO group, but not in the G-CSF group, compared to ARDS. Furthermore, iNO treatment reduced vascular permeability, increased pulmonary vessel density, and alleviated pulmonary edema and inflammation compared to ARDS treatment. Plasma VEGF, stromal cell-derived factor-1 (SDF-1) and bone marrow NO2−/NO3− were significantly higher in the iNO group compared to the ARDS group at 72 h.
These results suggest that iNO induces mobilization of EPCs from bone marrow into circulation, contributes to vascular repair, and thereby alleviates lung damage.
PMCID: PMC3309020  PMID: 22448277
22.  Vascular endothelial growth factor as a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of COPD 
Respiratory Research  2007;8(1):22.
Several studies have indicated that one of the most potent mediators involved in pulmonary vascular remodeling is vascular endothelial growth factor (VEGF). This study was designed to determine whether airway VEGF level reflects pulmonary vascular remodeling in patients with bronchitis-type of COPD.
VEGF levels in induced sputum were examined in 23 control subjects (12 non-smokers and 11 ex-smokers) and 29 patients with bronchitis-type of COPD. All bronchitis-type patients performed exercise testing with right heart catheterization.
The mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) after exercise were markedly increased in all bronchitis-type patients. However, both parameters after exercise with breathing of oxygen was significantly lower than in those with breathing of room air. To attenuate the effect of hypoxia-induced pulmonary vasoconstriction during exercise, we used the change in mPAP or PVR during exercise with breathing of oxygen as a parameter of pulmonary vascular remodeling. Change in mPAP was significantly correlated with VEGF level in induced sputum from patients with chronic bronchitis (r = 0.73, p = 0.0001). Moreover, change in PVR was also correlated with VEGF level in those patients (r = 0.57, p = 0.003).
A close correlation between magnitude of pulmonary hypertension with exercise and VEGF level in bronchitis-type patients could be observed. Therefore, these findings suggest the possibility that VEGF level in induced sputum is a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of COPD.
PMCID: PMC1828053  PMID: 17343763
23.  A Src family kinase inhibitor improves survival in experimental acute liver failure associated with elevated cerebral and circulating VEGF levels 
Liver International  2011;31(8):1222-1230.
Background and aims
Acute liver failure (ALF) is frequently complicated by cerebral edema, systemic inflammation and multi-organ dysfunction. Vascular endothelial growth factor (VEGF) may stimulate liver regeneration but can also be pro-inflammatory, activating endothelial cells and increasing permeability, actions mediated through Src kinase signalling. We therefore examined whether a Src inhibitor could have therapeutic potential in ALF.
Murine ALF was induced with azoxymethane. Liver pathology was graded by a blinded examiner and apoptosis quantified by immunohistochemistry. Cerebral VEGF expression was imaged using VEGF-GFP transgenic mice. Circulating and macrophage-secreted VEGF levels were measured. Experimental animals received a Src inhibitor or vehicle controls.
VEGF was undetectable in normal plasma but reached a mean of 835pg/ml at grade III encephalopathy (p<0.001). Ammonia, lipopolysaccharide and interferon-gamma acted synergistically to enhance VEGF secretion by macrophages. Production of VEGF by cerebral cortical astrocytes increased with disease progression. Late treatment with inhibitors of Src or VEGF did not improve liver histology, encephalopathy or survival. However, early use of a Src kinase inhibitor significantly reduced hepatic injury, delayed encephalopathy and allowed 25% of mice to survive an otherwise lethal insult.
Systemic and cerebral VEGF levels are significantly elevated during experimental ALF and may be exacerbated by hyperammonemia and macrophage activation. Early use of a Src inhibitor reduced hepatocellular injury and enabled survival, indicating such agents may have some promise in the treatment of ALF.
PMCID: PMC3337519  PMID: 21745297
Acute liver failure; ammonia; azoxymethane; bosutinib; encephalopathy; VEGF; Src
24.  Levels of vascular endothelial growth factor-A165b (VEGF-A165b) are elevated in experimental glaucoma 
Molecular Vision  2008;14:1517-1524.
Although ischemia has previously been suggested to contribute to the pathogenesis of glaucoma, neovascularization is not implicated in glaucoma. Because vascular endothelial growth factor-A (VEGF-A) is a key mediator in neovascularization response, we investigated the levels of the major pro-angiogenic (VEGF-A164) and anti-angiogenic VEGF-A subtypes (VEGF-A165b) in the retina during experimental glaucoma.
Glaucoma was induced unilaterally in rats by injecting 1.9 M hypertonic saline solution in the episcleral veins. The contralateral eye served as the control. The intraocular pressure (IOP) of each eye was measured via Tonopen in conscious rats. Eyes were enucleated either on the 5th or the 10th day of elevated IOP. Whole retinal lysates were separated by SDS–PAGE and transferred to PVDF membranes. Levels of VEGF-A164 and VEGF-A165b were analyzed by western blotting using specific antibodies. In a different group of rats, retinal ganglion cells were retrogradely labeled by injecting Fluorogold in the superior colliculus a week before the induction of glaucoma. After the eyes were enucleated on the fifth day of elevated IOP, posterior eye cups were sectioned using a cryostat. Levels and localization of VEGF-A164 and VEGF-A165b were examined in retinal sections by immunohistochemistry.
VEGF-A164 levels remained unchanged between the control and glaucomatous retinas after five days (p=0.341) and 10 days of elevated IOP (p=0.117). The presence of the anti-angiogenic VEGF-A isoform has not been previously reported in the rat. An antibody specific to VEGF-A165b detected the anti-angiogenic protein in the rat retina. VEGF-A165b levels were significantly increased (2.33±0.44 fold, p=0.014) in the glaucomatous retinas compared to those in controls after five days of elevated IOP. VEGF-A165b levels were not different (p=0.864) between the control and glaucomatous retinas following 10 days of elevated IOP. Expression of both VEGF-A164 and VEGF-A165b were observed in the retinal ganglion cells (RGC) and inner nuclear layer (INL).
Five day elevation of IOP leads to an increase in the anti-angiogenic VEGF-A165b levels but not in the pro-angiogenic VEGF-A164 levels in the glaucomatous retina. VEGF-A165b levels return to baseline after 10 days of elevated IOP, and VEGF-A164 levels remain unchanged. We speculate that the short-term elevation of VEGF-A165b levels and/or the unchanged levels of VEGF-A164 contribute to the lack of neovascularization in the glaucomatous retina.
PMCID: PMC2518529  PMID: 18728749
25.  Role of inflammation in previously untreated macular edema with branch retinal vein occlusion 
BMC Ophthalmology  2014;14:67.
The association of inflammatory factors and the aqueous flare value with macular edema in branch retinal vein occlusion (BRVO) patients remains unclear. The relationship between the aqueous flare value and the vitreous fluid levels of vascular endothelial growth factor (VEGF), interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, soluble intercellular adhesion molecule 1 (sICAM-1), and soluble VEGF receptor-2 (sVEGFR-2) was evaluated to investigate the role of inflammation in BRVO associated with macular edema. Aqueous flare values and the vitreous levels of VEGF, IL-6, MCP-1, sICAM-1, and sVEGFR-2 were compared between previously untreated patients with BRVO and patients with macular hole (MH).
Vitreous samples were obtained from 45 patients during vitreoretinal surgery (28 patients with BRVO and 17 with MH), and the levels of VEGF, IL-6, MCP-1, sICAM-1, and sVEGFR-2 were measured by enzyme-linked immunosorbent assay. Retinal ischemia was evaluated by measuring the area of capillary non-perfusion using fluorescein angiography and the Scion Image program. Aqueous flare values were measured with a laser flare meter and macular edema was examined by optical coherence tomography.
The median aqueous flare value was significantly higher in the BRVO group (12.1 photon counts/ms) than in the MH group (4.5 photon counts/ms, P < 0.001). There were significant correlations between the aqueous flare value and the vitreous levels of VEGF, IL-6, MCP-1, and sICAM-1 in the BRVO group (ρ = 0.54, P = 0.005; ρ = 0.56, P = 0.004; ρ = 0.52, P = 0.006; and ρ = 0.47, P = 0.015, respectively). The aqueous flare value was also significantly correlated with the foveal thickness in the BRVO group (ρ = 0.40, P = 0.037).
Inflammation may induce an increase of vascular permeability and disrupt the blood-aqueous barrier via release of inflammatory factors (VEGF, IL-6, MCP-1, and sICAM-1) in BRVO patients with macular edema.
PMCID: PMC4032564  PMID: 24884703

Results 1-25 (1239995)