PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (956945)

Clipboard (0)
None

Related Articles

1.  Targeting MCL-1 sensitizes FLT3-ITD-positive leukemias to cytotoxic therapies 
Blood Cancer Journal  2012;2(3):e60-.
Patients suffering from acute myeloid leukemias (AML) bearing FMS-like tyrosine kinase-3-internal tandem duplications (FLT3-ITD) have poor outcomes following cytarabine- and anthracyclin-based induction therapy. To a major part this is attributed to drug resistance of FLT3-ITD-positive leukemic cells. Against this background, we have devised an antibody array approach to identify proteins, which are differentially expressed by hematopoietic cells in relation to activated FLT3 signaling. Selective upregulation of antiapoptotic myeloid cell leukemia-1 (MCL-1) was found in FLT3-ITD-positive cell lines and primary mononuclear cells from AML patients as compared with FLT3-wild-type controls. Upregulation of MCL-1 was dependent on FLT3 signaling as confirmed by its reversion upon pharmacological inhibition of FLT3 activity by the kinase inhibitor PKC412 as well as siRNA-mediated suppression of FLT3. Heterologously expressed MCL-1 substituted for FLT3 signaling by conferring resistance of hematopoietic cells to antileukemia drugs such as cytarabine and daunorubicin, and to the proapoptotic BH3 mimetic ABT-737. Conversely, suppression of endogenous MCL-1 by siRNA or by flavopiridol treatment sensitized FLT3-ITD-expressing hematopoietic cells to cytotoxic and targeted therapeutics. In conclusion, MCL-1 is an essential effector of FLT3-ITD-mediated drug resistance. Therapeutic targeting of MCL-1 is a promising strategy to overcome drug resistance in FLT3-ITD-positive AML.
doi:10.1038/bcj.2012.5
PMCID: PMC3317524  PMID: 22829255
AML; MCL-1; FLT3-ITD; flavopiridol; resistance; kinase inhibitors
2.  Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia 
Background
Activating mutations [internal tandem duplication (ITD)] or overexpression of the FMS-like tyrosine kinase receptor-3 (FLT3) gene are associated with poor outcome in acute myeloid leukemia (AML) patients, underscoring the need for novel therapeutic approaches. The natural product silvestrol has potent antitumor activity in several malignancies, but its therapeutic impact on distinct molecular high-risk AML subsets remains to be fully investigated. We examined here the preclinical activity of silvestrol in FLT3-ITD and FLT3 wild-type (wt) AML.
Methods
Silvestrol in vitro anti-leukemic activity was examined by colorimetric cell viability assay, colony-forming and flow cytometry assays assessing growth inhibition and apoptosis, respectively. Pharmacological activity of silvestrol on FLT3 mRNA translation, mRNA and protein expression was determined by RNA-immunoprecipitation, qRT-PCR and immunoblot analyses, respectively. Silvestrol in vivo efficacy was investigated using MV4-11 leukemia-engrafted mice.
Results
Silvestrol shows antileukemia activity at nanomolar concentrations both in FLT3-wt overexpressing (THP-1) and FLT3-ITD (MV4-11) expressing AML cell lines (IC50 = 3.8 and 2.7 nM, respectively) and patients’ primary blasts [IC50 = ~12 nM (FLT3-wt) and ~5 nM (FLT3-ITD)]. Silvestrol increased apoptosis (~4fold, P = 0.0001), and inhibited colony-formation (100%, P < 0.0001) in primary blasts. Silvestrol efficiently inhibited FLT3 translation reducing FLT3 protein expression by 80–90% and decreased miR-155 levels (~60%), a frequently co-regulated onco-miR in FLT3-ITD-positive AML. The median survival of silvestrol-treated vs vehicle-treated mice was 63 vs 29 days post-engraftment, respectively (P < 0.0001).
Conclusions
Silvestrol exhibits significant in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of FLT3 and miR-155 expression. These encouraging results warrant a rapid translation of silvestrol for clinical testing in AML.
doi:10.1186/1756-8722-6-21
PMCID: PMC3623627  PMID: 23497456
3.  Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: Synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors, and JAK inhibitors 
Leukemia  2012;26(10):2233-2244.
Acute myeloid leukemia (AML) progenitors are frequently characterized by activating mutations in the receptor tyrosine kinase FLT3. Protein tyrosine kinases are integral components of signaling cascades that play a role in both FLT3-mediated transformation as well as viability pathways that are advantageous to leukemic cell survival. The bone marrow microenvironment can diminish AML sensitivity to tyrosine kinase inhibitors (TKIs). We hypothesized that inhibition of protein kinases in addition to FLT3 may be effective in overriding drug resistance in AML. We used a cell-based model mimicking stromal protection as part of an unbiased high-throughput chemical screen to identify kinase inhibitors with the potential to override microenvironment-mediated drug resistance in mutant FLT3-positive AML. Several related multi-targeted kinase inhibitors, including dasatinib, with the capability of reversing microenvironment-induced resistance to FLT3 inhibition were identified and validated. We validated synergy in vitro and demonstrated effective combination potential in vivo. In particular Janus kinase (JAK) inhibitors were effective in overriding stromal protection and potentiating FLT3 inhibition in primary AML and cell lines. These results hint at a novel concept of using combination therapy to override drug resistance in mutant FLT3-positive AML in the bone marrow niche and suppress or eradicate residual disease.
doi:10.1038/leu.2012.96
PMCID: PMC4054699  PMID: 22469781
acute myeloid leukemia; FLT3 inhibitor; multi-targeted kinase inhibitor; mutant FLT3; PKC412; AC220; stromal-mediated chemoresistance; drug resistance; synergy
4.  Potent Activity of Ponatinib (AP24534) in Models of FLT3-Driven Acute Myeloid Leukemia and Other Hematologic Malignancies 
Molecular cancer therapeutics  2011;10(6):1028-1035.
Ponatinib (AP24534) is a novel multitargeted kinase inhibitor that potently inhibits native and mutant BCR-ABL at clinically achievable drug levels. Ponatinib also has in vitro inhibitory activity against a discrete set of kinases implicated in the pathogenesis of other hematologic malignancies, including FLT3, KIT, fibroblast growth factor receptor 1 (FGFR1), and platelet derived growth factor receptor α (PDGFRα). Here, using leukemic cell lines containing activated forms of each of these receptors, we show that ponatinib potently inhibits receptor phosphorylation and cellular proliferation with IC50 values comparable to those required for inhibition of BCR-ABL (0.3 to 20 nmol/L). The activity of ponatinib against the FLT3-ITD mutant, found in up to 30% of acute myeloid leukemia (AML) patients, was particularly notable. In MV4-11 (FLT3-ITD+/+) but not RS4;11 (FLT3-ITD−/−) AML cells, ponatinib inhibited FLT3 signaling and induced apoptosis at concentrations of less than 10 nmol/L. In an MV4-11 mouse xenograft model, once daily oral dosing of ponatinib led to a dose-dependent inhibition of signaling and tumor regression. Ponatinib inhibited viability of primary leukemic blasts from a FLT3-ITD positive AML patient (IC50 4 nmol/L) but not those isolated from 3 patients with AML expressing native FLT3. Overall, these results support the investigation of ponatinib in patients with FLT3-ITD–driven AML and other hematologic malignancies driven by KIT, FGFR1, or PDGFRα.
doi:10.1158/1535-7163.MCT-10-1044
PMCID: PMC3236248  PMID: 21482694
5.  Selective Akt Inhibitors Synergize with Tyrosine Kinase Inhibitors and Effectively Override Stroma-Associated Cytoprotection of Mutant FLT3-Positive AML Cells 
PLoS ONE  2013;8(2):e56473.
Objectives
Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication. As a strategy to improve clinical efficacy, we searched for novel agents capable of potentiating the stroma-diminished effects of TKI treatment of mutant FLT3-expressing cells.
Methods
We designed a combinatorial high throughput drug screen using well-characterized kinase inhibitor-focused libraries to identify novel kinase inhibitors capable of overriding stromal-mediated resistance to TKIs, such as PKC412 and AC220. Standard liquid culture proliferation assays, cell cycle and apoptosis analysis, and immunoblotting were carried out with cell lines or primary AML to validate putative candidates from the screen and characterize the mechanism(s) underlying observed synergy.
Results and Conclusions
Our study led to the observation of synergy between selective Akt inhibitors and FLT3 inhibitors against mutant FLT3-positive AML in either the absence or presence of stroma. Our findings are consistent with evidence that Akt activation is characteristic of mutant FLT3-transformed cells, as well as observed residual Akt activity following FLT3 inhibitor treatment. In conclusion, our study highlights the potential importance of Akt as a signaling factor in leukemia survival, and supports the use of the co-culture chemical screen to identify agents able to potentiate TKI anti-leukemia activity in a cytoprotective microenvironment.
doi:10.1371/journal.pone.0056473
PMCID: PMC3578845  PMID: 23437141
6.  Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia 
Blood Cancer Journal  2011;1(11):e44-.
FMS-like tyrosine kinase 3 (FLT3) is the most commonly mutated gene found in acute myeloid leukemia (AML) patients and its activating mutations have been proven to be a negative prognostic marker for clinical outcome. Pacritinib (SB1518) is a tyrosine kinase inhibitor (TKI) with equipotent activity against FLT3 (IC50=22 n) and Janus kinase 2 (JAK2, IC50=23 n). Pacritinib inhibits FLT3 phosphorylation and downstream STAT, MAPK and PI3 K signaling in FLT3-internal-tandem duplication (ITD), FLT3-wt cells and primary AML blast cells. Oral administration of pacritinib in murine models of FLT3-ITD-driven AML led to significant inhibition of primary tumor growth and lung metastasis. Upregulation of JAK2 in FLT3-TKI-resistant AML cells was identified as a potential mechanism of resistance to selective FLT3 inhibition. This resistance could be overcome by the combined FLT3 and JAK2 activities of pacritinib in this cellular model. Our findings provide a rationale for the clinical evaluation of pacritinib in AML including patients resistant to FLT3-TKI therapy.
doi:10.1038/bcj.2011.43
PMCID: PMC3256753  PMID: 22829080
Pacritinib; SB1518; FLT3; JAK2; AML
7.  Bortezomib has little ex vivo activity in chronic myeloid leukemia: individual tumor response testing comparative study in acute and chronic myeloid leukemia 
Contemporary Oncology  2012;16(3):210-214.
Aim of the study
Resistance to imatinib is one of the most important issues in treatment of chronic myeloid leukemia (CML) patients. The objective of the study was to analyze the ex vivo drug resistance profile to bortezomib and 22 other antileukemic drugs, including three tyrosine kinase inhibitors (TKIs), in CML in comparison to acute myeloid leukemia (AML).
Material and methods
A total of 82 patients entered the study, including 36 CML and 46 AML adults. Among CML patients, 19 had advanced disease, 16 were resistant to imatinib, and 6 had ABL-kinase domain mutations. The ex vivo drug resistance profile was studied by the MTT assay.
Results
CML cells were more resistant than AML blasts to the following drugs: prednisolone, vincristine, doxorubicin, etoposide, melphalan, cytarabine, fludarabine, thiotepa, 4-HOO-cyclophosphamide, thioguanine, bortezomib, topotecan, and clofarabine. CML cells were 2-fold more sensitive to busulfan than AML cells. CML patients with clinical imatinib resistance had higher ex vivo resistance to vincristine, daunorubicin, etoposide, and busulfan. No significant differences to all tested drugs, including TKIs, were observed between CML patients with non-advanced and advanced disease. CML patients with mutation had higher ex vivo resistance to vincristine, idarubicin, thiotepa, and busulfan.
Conclusions
CML cells are ex vivo more resistant to most drugs than acute myeloid leukemia blasts. Busulfan is more active in CML than AML cells. In comparison to AML cells, bortezomib has little ex vivo activity in CML cells. No differences between CML subgroups in sensitivity to 3 tested TKIs were detected.
doi:10.5114/wo.2012.29286
PMCID: PMC3687416  PMID: 23788881
chronic myeloid leukemia; MTT assay; drug resistance; drug sensitivity
8.  The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML 
Blood Cancer Journal  2012;2(5):e69-.
Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations.
doi:10.1038/bcj.2012.14
PMCID: PMC3366067  PMID: 22829971
HDAC inhibitor; JAK2 inhibitor; FLT3 inhibitor; in vivo combination; AML
9.  Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia 
Blood Cancer Journal  2011;1(7):e28-.
Heat shock protein (HSP) 70 is aberrantly expressed in different malignancies and has emerged as a promising new target for anticancer therapy. Here, we analyzed the in vitro antileukemic effects of pifithrin-μ (PFT-μ), an inhibitor of inducible HSP70, in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cell lines, as well as in primary AML blasts. PFT-μ significantly inhibited cell viability at low micromolar concentrations in all cell lines tested, with IC50 values ranging from 2.5 to 12.7 μ, and was highly active in primary AML blasts with a median IC50 of 8.9 μ (range 5.7–37.2). Importantly, higher IC50 values were seen in normal hematopoietic cells. In AML and ALL, PFT-μ induced apoptosis and cell cycle arrest in a dose-dependent fashion. PFT-μ also led to an increase of the active form of caspase-3 and reduced the intracellular concentrations of AKT and ERK1/2 in NALM-6 cells. Moreover, PFT-μ enhanced cytotoxicity of cytarabine, 17-(allylamino)-17-desmethoxygeldanamycin, suberoylanilide hydroxamic acid, and sorafenib in NALM-6, TOM-1 and KG-1a cells. This is the first study demonstrating significant antileukemic effects of the HSP70 inhibitor PFT-μ, alone and in combination with different antineoplastic drugs in both AML and ALL. Our results suggest a potential therapeutic role for PFT-μ in acute leukemias.
doi:10.1038/bcj.2011.28
PMCID: PMC3255249  PMID: 22829184
acute lymphoblastic leukemia; acute myeloid leukemia; HSP70 inhibitor; pifithrin-μ
10.  Targeting FLT3 for treatment of leukemia 
Seminars in hematology  2008;45(3 Suppl 2):S17-S21.
FLT3 is a receptor tyrosine kinase with important roles in hematopoietic stem/progenitor cell survival and proliferation. It is frequently overexpressed in acute leukemias and is frequently mutated in acute myeloid leukemia (AML). FLT3 internal tandem duplication (ITD) mutations in AML portend poor prognosis in both adult and pediatric patients. A number of small molecule tyrosine kinase inhibitors (TKIs) with activity against FLT3 have been discovered. Many of these are still in preclinical development, but several have entered clinical phase 1 and 2 trials as monotherapy in patients with relapsed AML. These trials have resulted in frequent but short-lived responses of peripheral blasts and less frequent responses of bone marrow blasts. This led to clinical testing of FLT3 TKIs in combination with conventional chemotherapy. Several combination trials are ongoing or planned in both relapsed and newly diagnosed FLT3-mutant AML patients. Anti-FLT3 antibodies may also prove to be an excellent way of targeting FLT3 in AML and acute lymphocytic leukemia (ALL) by inhibiting signaling and through antibody-dependent cell-mediated cytotoxicity.
doi:10.1053/j.seminhematol.2008.07.007
PMCID: PMC2597087  PMID: 18760705
11.  Antileukemic Effects of Novel First- and Second-Generation FLT3 Inhibitors 
Genes & Cancer  2010;1(10):1021-1032.
Constitutively activated mutant FLT3 has emerged as a promising target for therapy for the subpopulation of acute myeloid leukemia (AML) patients who harbor it. The small molecule inhibitor, PKC412, targets mutant FLT3 and is currently in late-stage clinical trials. However, the identification of PKC412-resistant leukemic blast cells in the bone marrow of AML patients has propelled the development of novel and structurally distinct FLT3 inhibitors that have the potential to override drug resistance and more efficiently prevent disease progression or recurrence. Here, we present the novel first-generation “type II” FLT3 inhibitors, AFG206, AFG210, and AHL196, and the second-generation “type II” derivatives and AST487 analogs, AUZ454 and ATH686. All agents potently and selectively target mutant FLT3 protein kinase activity and inhibit the proliferation of cells harboring FLT3 mutants via induction of apoptosis and cell cycle inhibition. Cross-resistance between “type I” inhibitors, PKC412 and AAE871, was demonstrated. While cross-resistance was also observed between “type I” and first-generation “type II” FLT3 inhibitors, the high potency of the second-generation “type II” inhibitors was sufficient to potently kill “type I” inhibitor-resistant mutant FLT3-expressing cells. The increased potency observed for the second-generation “type II” inhibitors was observed to be due to an improved interaction with the ATP pocket of FLT3, specifically associated with introduction of a piperazine moiety and placement of an amino group in position 2 of the pyrimidine ring. Thus, we present 2 structurally novel classes of FLT3 inhibitors characterized by high selectivity and potency toward mutant FLT3 as a molecular target. In addition, presentation of the antileukemic effects of “type II” inhibitors, such as AUZ454 and ATH686, highlights a new class of highly potent FLT3 inhibitors able to override drug resistance that less potent “type I” inhibitors and “type II” first-generation FLT3 inhibitors cannot.
doi:10.1177/1947601910396505
PMCID: PMC3092267  PMID: 21779428
neoplasia; FLT3 inhibitor; AML; leukemia; structure affinity; drug resistance; drug potency
12.  DASATINIB INHIBITS THE GROWTH OF MOLECULARLY HETEROGENEOUS MYELOID LEUKEMIAS 
Purpose
Dasatinib is a dual Src/Abl inhibitor, recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML).
Experimental Design
We studied growth factor-dependent and independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib.
Results
Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at ~10−9 M. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at ~10−6 M. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI50 5×10−9 M. Primary AML blast cells exhibited growth inhibition < 10−6 M. Cell lines which showed growth inhibition at ~10−6 M demonstrated a G1 cell cycle arrest and correlated with accumulation of p21 and p27 protein. Addition of rapamycin or cytotoxic agents enhanced the growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit.
Conclusions
While all of the precise targets for dasatinib are not known, this multi-kinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. Addition of cytotoxic or targeted agents can enhance its effects.
doi:10.1158/1078-0432.CCR-09-2416
PMCID: PMC2988651  PMID: 20145167
13.  Generation and characterization of a highly effective protein substrate for analysis of FLT3 activity 
Background
Gain-of-function mutations of tyrosine kinase FLT3 are frequently found in acute myeloid leukemia (AML). This has made FLT3 an important marker for disease diagnosis and a highly attractive target for therapeutic drug development. This study is intended to generate a sensitive substrate for assays of the FLT3 enzymatic activity.
Methods
We expressed in Escherichia coli cells a glutathione S-transferase (GST) fusion protein designated GST-FLT3S, which contains a peptide sequence derived from an autophosphorylation site of FLT3. The protein was used to analyze tyrosine kinase activity of baculovirus-expressed FLT3 and crude cell extracts of bone marrow cells from AML patients. It was also employed to perform FLT3 kinase assays for FLT3 inhibitor screening.
Results
GST-FLT3S in solution or on beads was strongly phosphorylated by recombinant proteins carrying the catalytic domain of wild type FLT3 and FLT3D835 mutants, with the latter exhibiting much higher activity and efficiency. GST-FLT3S was also able to detect elevated tyrosine kinase activity in bone marrow cell extracts from AML patients. A small-scale inhibitor screening led to identification of several potent inhibitors of wild type and mutant forms of FLT3.
Conclusions
GST-FLT3S is a sensitive protein substrate for FLT3 assays. It may find applications in diagnosis of diseases related to abnormal FLT3 activity and in inhibitor screening for drug development.
doi:10.1186/1756-8722-5-39
PMCID: PMC3419602  PMID: 22800464
Tyrosine kinase; FLT3; Activity assay; Inhibitor screening; Acute myeloid leukemia
14.  FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes 
Blood Cancer Journal  2011;1(3):e11-.
The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD+ myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT+ myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin.
doi:10.1038/bcj.2011.12
PMCID: PMC3255276  PMID: 22829124
acute myeloid leukemia; FLT3 kinase; leukemia-associated antigens; T-cell clones; immunotherapy
15.  Activity of the Multikinase Inhibitor Sorafenib in Combination With Cytarabine in Acute Myeloid Leukemia 
Background
Acute myeloid leukemia (AML) is a genetically heterogeneous cancer that frequently exhibits aberrant kinase signaling. We investigated a treatment strategy combining sorafenib, a multikinase inhibitor with limited single-agent activity in AML, and cytarabine, a key component of AML chemotherapy.
Methods
Using 10 human AML cell lines, we determined the effects of sorafenib (10 μM) on antileukemic activity by measuring cell viability, proliferation, ERK1/2 signaling, and apoptosis. We also investigated the effects of sorafenib treatment on the accumulation of cytarabine and phosphorylated metabolites in vitro. A human equivalent dose of sorafenib in nontumor-bearing NOD-SCID-IL2Rγnull mice was determined by pharmacokinetic studies using high performance liquid chromatography with tandem mass spectrometric detection, and steady-state concentrations were estimated by the fit of a one-compartment pharmacokinetic model to concentration–time data. The antitumor activity of sorafenib alone (60 mg/kg) twice daily, cytarabine alone (6.25 mg/kg administered intraperitoneally), or sorafenib once or twice daily plus cytarabine was evaluated in NOD-SCID-IL2Rγnull mice bearing AML xenografts.
Results
Sorafenib at 10 μM inhibited cell viability, proliferation and ERK1/2 signaling, and induced apoptosis in all cell lines studied. Sorafenib also increased the cellular accumulation of cytarabine and metabolites resulting in additive to synergistic antileukemic activity. A dose of 60 mg/kg in mice produced a human equivalent sorafenib steady-state plasma exposure of 10 μM. The more dose-intensive twice-daily sorafenib plus cytarabine (n = 15) statistically significantly prolonged median survival in an AML xenograft model compared with sorafenib once daily plus cytarabine (n = 12), cytarabine alone (n = 26), or controls (n = 27) (sorafenib twice daily plus cytarabine, median survival = 46 days; sorafenib once daily plus cytarabine, median survival = 40 days; cytarabine alone, median survival = 36 days; control, median survival = 19 days; P < .001 for combination twice daily vs all other treatments listed).
Conclusions
Sorafenib in combination with cytarabine resulted in strong anti-AML activity in vitro and in vivo. These results warrant clinical evaluation of sorafenib with cytarabine-based regimens in molecularly heterogeneous AML.
doi:10.1093/jnci/djr107
PMCID: PMC3110171  PMID: 21487100
16.  Survey of Activated FLT3 Signaling in Leukemia 
PLoS ONE  2011;6(4):e19169.
Activating mutations of FMS-like tyrosine kinase-3 (FLT3) are found in approximately 30% of patients with acute myeloid leukemia (AML). FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3) and B cell acute lymphoblastic leukemia (normal and amplification of FLT3) cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC), we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr) that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia.
doi:10.1371/journal.pone.0019169
PMCID: PMC3084268  PMID: 21552520
17.  Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression 
Protein-tyrosine phosphatases (PTPs) are important regulators of cellular signaling and changes in PTP activity can contribute to cell transformation. Little is known about the role of PTPs in Acute Myeloid Leukemia (AML). The aim of this study was therefore to establish a PTP expression profile in AML cells and to explore the possible role of FLT3 ITD (Fms-like tyrosine kinase 3 with internal tandem duplication), an important oncoprotein in AML for PTP gene expression. PTP mRNA expression was analyzed in AML cells from patients and in cell lines using a RT-qPCR platform for detection of transcripts of 92 PTP genes. PTP mRNA expression was also analyzed based on a public microarray data set for AML patients. Highly expressed PTPs in AML belong to all PTP subfamilies. Very abundantly expressed PTP genes include PTPRC, PTPN2, PTPN6, PTPN22, DUSP1, DUSP6, DUSP10, PTP4A1, PTP4A2, PTEN, and ACP1. PTP expression was further correlated with the presence of FLT3 ITD, focusing on a set of highly expressed dual-specificity phosphatases (DUSPs). Elevated expression of DUSP6 in patients harboring FLT3 ITD was detected in this analysis. The mechanism and functional role of FLT3 ITD-mediated upregulation of DUSP6 was then explored using pharmacological inhibitors of FLT3 ITD signal transduction and si/shRNA technology in human and murine cell lines. High DUSP6 expression was causally associated with the presence of FLT3 ITD and dependent on FLT3 ITD kinase activity and ERK signaling. DUSP6 depletion moderately increased ERK1/2 activity but attenuated FLT3 ITD-dependent cell proliferation of 32D cells. In conclusion, DUSP6 may play a contributing role to FLT3 ITD-mediated cell transformation.
doi:10.1186/1478-811X-10-19
PMCID: PMC3464674  PMID: 22784513
Acute myeloid leukemia; Protein-tyrosine phosphatases; Dual-specificity phosphatases (DUSP); mRNA expression; Fms-like tyrosine kinase (FLT3) with internal tandem duplication (ITD); DUSP6; ERK signaling
18.  Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells 
Leukemia  2012;27(1):66-74.
Drugs that target the chief mediator of nuclear export, chromosome region maintenance 1 protein (CRM1) have potential as therapeutics for leukemia, but existing CRM1 inhibitors show variable potencies and a broad range of cytotoxic effects. Here, we report the structural analysis and antileukemic activity of a new generation of small-molecule inhibitors of CRM1. Designated selective inhibitors of nuclear export (SINE), these compounds were developed using molecular modeling to screen a small virtual library of compounds against the nuclear export signal (NES) groove of CRM1. The 2.2-Å crystal structure of the CRM1-Ran-RanBP1 complex bound to KPT-251, a representative molecule of this class of inhibitors, shows that the drug occupies part of the groove in CRM1 that is usually occupied by the NES, but penetrates much deeper into the groove and blocks CRM1-directed protein export. SINE inhibitors exhibit potent antileukemic activity, inducing apoptosis at nanomolar concentrations in a panel of 14 human acute myeloid leukemia (AML) cell lines representing different molecular subtypes of the disease. When administered orally to immunodeficient mice engrafted with human AML cells, KPT-251 had potent antileukemic activity with negligible toxicity to normal hematopoietic cells. Thus, KPT-SINE CRM1 antagonists represent a novel class of drugs that warrant further testing in AML patients.
doi:10.1038/leu.2012.219
PMCID: PMC3542631  PMID: 22847027
CRM1; nuclear export inhibitors; AML
19.  A potential therapeutic target for FLT3-ITD AML: PIM1 Kinase 
Leukemia Research  2011;36(2):224-231.
Patients with acute myeloid leukemia (AML) and a FLT3 internal tandem duplication (ITD) mutation have a poor prognosis, and FLT3 inhibitors are now under clinical investigation. PIM1, a serine/threonine kinase, is up-regulated in FLT3-ITD AML and may be involved in FLT3-mediated leukemogenesis. We employed a PIM1 inhibitor, AR00459339 (Array Biopharma Inc.), to investigate the effect of PIM1 inhibition in FLT3-mutant AML. Like FLT3 inhibitors, AR00459339 was preferentially cytotoxic to FLT3-ITD cells, as demonstrated in the MV4-11, Molm-14, and TF/ITD cell lines, as well as 12 FLT3-ITD primary samples. Unlike FLT3 inhibitors, AR00459339 did not suppress phosphorylation of FLT3, but did promote the de-phosphorylation of downstream FLT3 targets, STAT5, AKT, and BAD. Combining AR00459339 with a FLT3 inhibitor resulted in additive to mildly synergistic cytotoxic effects. AR00459339 was cytotoxic to FLT3-ITD samples from patients with secondary resistance to FLT3 inhibitors, suggesting a novel benefit to combining these agents. We conclude that PIM1 appears to be closely associated with FLT3 signaling, and that inhibition of PIM1 may hold therapeutic promise, either as monotherapy, or by overcoming resistance to FLT3 inhibitors.
doi:10.1016/j.leukres.2011.07.011
PMCID: PMC3380375  PMID: 21802138
20.  BH3-only protein Bim more critical than Puma in tyrosine kinase inhibitor–induced apoptosis of human leukemic cells and transduced hematopoietic progenitors carrying oncogenic FLT3 
Blood  2008;113(10):2302-2311.
Constitutively activating internal tandem duplications (ITD) of FLT3 (FMS-like tyrosine kinase 3) are the most common mutations in acute myeloid leukemia (AML) and correlate with poor prognosis. Receptor tyrosine kinase inhibitors targeting FLT3 have developed as attractive treatment options. Because relapses occur after initial responses, identification of FLT3-ITD–mediated signaling events are important to facilitate novel therapeutic interventions. Here, we have determined the growth-inhibitory and proapototic mechanisms of 2 small molecule inhibitors of FLT3, AG1295 or PKC412, in hematopoietic progenitor cells, human leukemic cell lines, and primary AML cells expressing FLT3-ITD. Inactivation of the PI3-kinase pathway, but not of Ras–mitogen-activated protein (MAP) kinase signaling, was essential to elicit cytotoxic responses. Both compounds induced up-regulation of proapoptotic BH3-only proteins Bim and Puma, and subsequent cell death. However, only silencing of Bim, or its direct transcriptional activator FOXO3a, abrogated apoptosis efficiently. Similar findings were made in bone marrow cells from gene-targeted mice lacking Bim and/or Puma infected with FLT3-ITD and treated with inhibitor, where loss of Puma only provided transient protection from apoptosis, but loss of Bim preserved clonal survival upon FLT3-ITD inhibition.
doi:10.1182/blood-2008-07-167023
PMCID: PMC3272395  PMID: 19064725
21.  MECHANISMS OF SYNERGISTIC ANTILEUKEMIC INTERACTIONS BETWEEN VALPROIC ACID AND CYTARABINE IN PEDIATRIC ACUTE MYELOID LEUKEMIA 
Purpose
To determine the possibility of synergistic anti-leukemic activity and the underlying molecular mechanisms associated with cytarabine combined with valproic acid (VPA) [a histone deacetylase inhibitor (HDACI) and an FDA-licensed drug for treating both children and adults with epilepsy] in pediatric acute myeloid leukemia (AML).
Experimental Design
The type and extent of anti-leukemic interactions between cytarabine and VPA in clinically relevant pediatric AML cell lines and diagnostic blasts from children with AML were determined by MTT assays and standard isobologram analyses. The effects of cytarabine and VPA on apoptosis and cell cycle distributions were determined by flow cytometry analysis and caspase enzymatic assays. The effects of the two agents on DNA damage and Bcl-2 family proteins were determined by Western blotting.
Results
We demonstrated synergistic antileukemic activities between cytarabine and VPA in 4 pediatric AML cell lines and 9 diagnostic AML blast samples. t(8;21) AML blasts were significantly more sensitive to VPA and showed far greater sensitivities to combined cytarabine and VPA than non-t(8;21) AML cases. Cytarabine and VPA cooperatively induced DNA double strand breaks, reflected in induction of γH2AX and apoptosis, accompanied by activation of caspases 9 and 3. Further, VPA induced Bim expression and shRNA knockdown of Bim resulted in significantly decreased apoptosis induced by cytarabine, and by cytarabine plus VPA.
Conclusions
Our results establish global synergistic antileukemic activity of combined VPA and cytarabine in pediatric AML and provide compelling evidence to support the use of VPA in the treatment of children with this deadly disease.
doi:10.1158/1078-0432.CCR-10-1707
PMCID: PMC3018695  PMID: 20889917
22.  Engagement of SIRPα Inhibits Growth and Induces Programmed Cell Death in Acute Myeloid Leukemia Cells 
PLoS ONE  2013;8(1):e52143.
Background
Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML) cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα) on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia.
Design and Methods
We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs.
Results
By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0–M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs.
Conclusions
Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.
doi:10.1371/journal.pone.0052143
PMCID: PMC3540026  PMID: 23320069
23.  The Protein Tyrosine Phosphatase, Shp2, Positively Contributes to FLT3-ITD-Induced Hematopoietic Progenitor Hyperproliferation and Malignant Disease In Vivo 
Leukemia  2012;27(2):398-408.
Internal tandem duplications in the fms-like tyrosine kinase receptor (FLT3-ITDs) confer a poor prognosis in acute myeloid leukemia. We hypothesized that increased recruitment of the protein tyrosine phosphatase, Shp2, to FLT3-ITDs contributes to FLT3 ligand (FL)-independent hyperproliferation and STAT5 activation. Co-immunoprecipitation demonstrated constitutive association of Shp2 with the FLT3-ITD, N51-FLT3, as well as with STAT5. Knock-down of Shp2 in Baf3/N51-FLT3 cells significantly reduced proliferation while having little effect on WT-FLT3-expressing cells. Consistently, mutation of N51-FLT3 tyrosine 599 to phenylalanine or genetic disruption of Shp2 in N51-FLT3-expressing bone marrow low density mononuclear cells reduced proliferation and STAT5 activation. In transplants, genetic disruption of Shp2 in vivo yielded increased latency to and reduced severity of FLT3-ITD-induced malignancy. Mechanistically, Shp2 co-localizes with nuclear phospho-STAT5, is present at functional interferon-γ activation sites (GAS) within the BCL2L1 promoter, and positively activates the human BCL2L1 promoter, suggesting that Shp2 works with STAT5 to promote pro-leukemogenic gene expression. Further, using a small molecule Shp2 inhibitor, the proliferation of N51-FLT3-expressing bone marrow progenitors and primary AML samples was reduced in a dose-dependent manner. These findings demonstrate that Shp2 positively contributes to FLT3-ITD-induced leukemia and suggest that Shp2 inhibition may provide a novel therapeutic approach to acute myeloid leukemia.
doi:10.1038/leu.2012.308
PMCID: PMC3916934  PMID: 23103841
Acute Myeloid Leukemia; FLT3-ITD; Shp2; STAT5
24.  Functional Characterization of FLT3 Receptor Signaling Deregulation in Acute Myeloid Leukemia by Single Cell Network Profiling (SCNP) 
PLoS ONE  2010;5(10):e13543.
Background
Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.
Methodology/Principal Findings
Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.
Conclusions/Significance
These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.
doi:10.1371/journal.pone.0013543
PMCID: PMC2965086  PMID: 21048955
25.  Activating FLT3 Mutants Show Distinct Gain-of-Function Phenotypes In Vitro and a Characteristic Signaling Pathway Profile Associated with Prognosis in Acute Myeloid Leukemia 
PLoS ONE  2014;9(3):e89560.
About 30% of patients with acute myeloid leukemia (AML) harbour mutations of the receptor tyrosine kinase FLT3, mostly internal tandem duplications (ITD) and point mutations of the second tyrosine kinase domain (TKD). It was the aim of this study to comprehensively analyze clinical and functional properties of various FLT3 mutants.
In 672 normal karyotype AML patients FLT3-ITD, but not FLT3-TKD mutations were associated with a worse relapse free and overall survival in multivariate analysis. In paired diagnosis-relapse samples FLT3-ITD showed higher stability (70%) compared to FLT3-TKD (30%). In vitro, FLT3-ITD induced a strong activating phenotype in Ba/F3 cells. In contrast, FLT3-TKD mutations and other point mutations – including two novel mutations – showed a weaker but clear gain-of-function phenotype with gradual increase in proliferation and protection from apoptosis. The pro-proliferative capacity of the investigated FLT3 mutants was associated with cell surface expression and tyrosine 591 phosphorylation of the FLT3 receptor. Western blot experiments revealed STAT5 activation only in FLT3-ITD positive cell lines, in contrast to FLT3-non-ITD mutants, which displayed an enhanced signal of AKT and MAPK activation. Gene expression analysis revealed distinct difference between FLT3-ITD and FLT3-TKD for STAT5 target gene expression as well as deregulation of SOCS2, ENPP2, PRUNE2 and ART3.
FLT3-ITD and FLT3 point mutations show a gain-of-function phenotype with distinct signalling properties in vitro. Although poor prognosis in AML is only associated with FLT3-ITD, all activating FLT3 mutations can contribute to leukemogenesis and are thus potential targets for therapeutic interventions.
doi:10.1371/journal.pone.0089560
PMCID: PMC3946485  PMID: 24608088

Results 1-25 (956945)