PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1061813)

Clipboard (0)
None

Related Articles

1.  The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein 
BMC Cancer  2012;12:229.
Background
Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines.
Methods
NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined.
Results
We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the ability of this oncoprotein to signal.
Conclusions
This is the first study demonstrating that the expression of immunophilin family co-chaperones is promoted by an oncogenic tyrosine kinase. Moreover, this is the first report establishing an important role for Cyp40 in lymphoma.
doi:10.1186/1471-2407-12-229
PMCID: PMC3407532  PMID: 22681779
2.  Prognostic significance and therapeutic potential of the activation of anaplastic lymphoma kinase/protein kinase B/mammalian target of rapamycin signaling pathway in anaplastic large cell lymphoma 
BMC Cancer  2013;13:471.
Backgroud
Activation of the protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway has been demonstrated to be involved in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated tumorigenesis in anaplastic large cell lymphoma (ALCL) and correlated with unfavorable outcome in certain types of other cancers. However, the prognostic value of AKT/mTOR activation in ALCL remains to be fully elucidated. In the present study, we aim to address this question from a clinical perspective by comparing the expressions of the AKT/mTOR signaling molecules in ALCL patients and exploring the therapeutic significance of targeting the AKT/mTOR pathway in ALCL.
Methods
A cohort of 103 patients with ALCL was enrolled in the study. Expression of ALK fusion proteins and the AKT/mTOR signaling phosphoproteins was studied by immunohistochemical (IHC) staining. The pathogenic role of ALK fusion proteins and the therapeutic significance of targeting the ATK/mTOR signaling pathway were further investigated in vitro study with an ALK + ALCL cell line and the NPM-ALK transformed BaF3 cells.
Results
ALK expression was detected in 60% of ALCLs, of which 79% exhibited the presence of NPM-ALK, whereas the remaining 21% expressed variant-ALK fusions. Phosphorylation of AKT, mTOR, 4E-binding protein-1 (4E-BP1), and 70 kDa ribosomal protein S6 kinase polypeptide 1 (p70S6K1) was detected in 76%, 80%, 91%, and 93% of ALCL patients, respectively. Both phospho-AKT (p-AKT) and p-mTOR were correlated to ALK expression, and p-mTOR was closely correlated to p-AKT. Both p-4E-BP1 and p-p70S6K1 were correlated to p-mTOR, but were not correlated to the expression of ALK and p-AKT. Clinically, ALK + ALCL occurred more commonly in younger patients, and ALK + ALCL patients had a much better prognosis than ALK-ALCL cases. However, expression of p-AKT, p-mTOR, p-4E-BP1, or p-p70S6K1 did not have an impact on the clinical outcome. Overexpression of NPM-ALK in a nonmalignant murine pro-B lymphoid cell line, BaF3, induced the cells to become cytokine-independent and resistant to glucocorticoids (GCs). Targeting AKT/mTOR inhibited growth and triggered the apoptotic cell death of ALK + ALCL cells and NPM-ALK transformed BaF3 cells, and also reversed GC resistance induced by overexpression of NPM-ALK.
Conclusions
Overexpression of ALK due to chromosomal translocations is seen in the majority of ALCL patients and endows them with a much better prognosis. The AKT/mTOR signaling pathway is highly activated in ALK + ALCL patients and targeting the AKT/mTOR signaling pathway might confer a great therapeutic potential in ALCL.
doi:10.1186/1471-2407-13-471
PMCID: PMC3852000  PMID: 24112608
Anaplastic large cell lymphoma (ALCL); Anaplastic lymphoma kinase (ALK); AKT; mTOR; 4E-BP1; p-70S6K1; Prognosis
3.  Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and Bcl2A1 as critical target genes  
Journal of Clinical Investigation  2006;116(12):3171-3182.
Anaplastic large cell lymphomas (ALCLs) represent a subset of lymphomas in which the anaplastic lymphoma kinase (ALK) gene is frequently fused to the nucleophosmin (NPM) gene. We previously demonstrated that the constitutive phosphorylation of ALK chimeric proteins is sufficient to induce cellular transformation in vitro and in vivo and that ALK activity is strictly required for the survival of ALK-positive ALCL cells. To elucidate the signaling pathways required for ALK-mediated transformation and tumor maintenance, we analyzed the transcriptomes of multiple ALK-positive ALCL cell lines, abrogating their ALK-mediated signaling by inducible ALK RNA interference (RNAi) or with potent and cell-permeable ALK inhibitors. Transcripts derived from the gene expression profiling (GEP) analysis uncovered a reproducible signature, which included a novel group of ALK-regulated genes. Functional RNAi screening on a set of these ALK transcriptional targets revealed that the transcription factor C/EBPβ and the antiapoptotic protein BCL2A1 are absolutely necessary to induce cell transformation and/or to sustain the growth and survival of ALK-positive ALCL cells. Thus, we proved that an experimentally controlled and functionally validated GEP analysis represents a powerful tool to identify novel pathogenetic networks and validate biologically suitable target genes for therapeutic interventions.
doi:10.1172/JCI29401
PMCID: PMC1636692  PMID: 17111047
4.  Inhibition of N-linked glycosylation impairs ALK phosphorylation and disrupts pro-survival signaling in neuroblastoma cell lines 
BMC Cancer  2011;11:525.
Background
The Anaplastic Lymphoma Kinase (ALK) is an orphan receptor tyrosine kinase, which undergoes post-translational N-linked glycosylation. The catalytic domain of ALK was originally identified in the t(2;5) translocation that produces the unglycosylated oncogenic protein NPM-ALK, which occurs in Anaplastic Large Cell Lymphoma (ALCL). Recently, both germline and somatic activating missense mutations of ALK have been identified in neuroblastoma (NB), a pediatric cancer arising from neural crest cells. Moreover, we previously reported that ALK expression is significantly upregulated in advanced/metastatic NB. We hypothesized that ALK function may depend on N-linked glycosylation and that disruption of this post-translational modification would impair ALK activation, regardless the presence of either gene mutations or overexpression.
Methods
We employed tunicamycin to inhibit N-linked glycosylation. The following ALK-positive NB cell lines were used: SH-SY5Y and KELLY (ALK mutation F1174L), UKF-NB3 (ALK mutation R1275Q) and NB1 (ALK amplification). As a control, we used the NB cell lines LA1-5S and NB5 (no ALK expression), and the ALCL cell line SU-DHL1 (NPM-ALK).
Results
Tunicamycin treatment of ALK-positive NB cells resulted in a hypoglycosylated ALK band and in decreased amounts of mature full size receptor. Concomitantly, we observed a marked reduction of mature ALK phosphorylation. On the contrary, tunicamycin had no effects on NPM-ALK phosphorylation in SU-DHL1 cells. Moreover, phosphorylation levels of ALK downstream effectors (AKT, ERK1/2, STAT3) were clearly impaired only in ALK mutated/amplified NB cell lines, whereas no significant reduction was observed in both ALK-negative and NPM-ALK-positive cell lines. Furthermore, inhibition of N-linked glycosylation considerably impaired cell viability only of ALK mutated/amplified NB cells. Finally, the cleavage of the Poly-ADP-ribose-polymerase (PARP) suggested that apoptotic pathways may be involved in cell death.
Conclusions
In this study we showed that inhibition of N-linked glycosylation affects ALK phosphorylation and disrupts downstream pro-survival signaling, indicating that inhibition of this post-translational modification may be a promising therapeutic approach. However, as tunicamycin is not a likely candidate for clinical use other approaches to alter N-linked glycosylation need to be explored. Future studies will assess whether the efficacy in inhibiting ALK activity might be enhanced by the combination of ALK specific small molecule and N-linked glycosylation inhibitors.
doi:10.1186/1471-2407-11-525
PMCID: PMC3267831  PMID: 22192458
5.  Aberrant expression of IL-22 receptor 1 (IL-22R1) and autocrine IL-22 stimulation contribute to tumorigenicity in ALK-positive anaplastic large cell lymphoma 
One of the characteristic features of anaplastic lymphoma kinase (ALK)-positive, anaplastic large cell lymphoma (ALK+ALCL) is the constitutive activation of STAT3, a defect believed to be important for the pathogenesis of these tumors. In this report, we describe the existence of an autocrine stimulatory loop involving interleukin-22 (IL-22) that contributes to STAT3 activation and tumorigenicity of ALK+ALCL. The IL-22 receptor, a heterodimer composed of IL-22R1 and IL-10R2, was expressed in all ALK+ALCL cell lines and tumors examined. The expression of IL-22R1 in ALK+ALCL is aberrant, since this protein is absent in benign lymphocytes. While ALK+ALCL cells produce endogenous IL-22, addition of recombinant IL-22 to ALK+ALCL cell lines significantly increased STAT3 activation, cell proliferation and colony formation in soft agar. Opposite biological effects were observed in cells treated with recombinant IL-22BP (a naturally-occurring IL-22 decoy) or IL-22 neutralizing antibody. NPM-ALK, the characteristic fusion gene oncoprotein expressed in ALK+ALCL, directly contributes to the aberrant expression of IL-22R1, since transfection of NPM-ALK in Jurkat cells induced IL-22R1 expression and IL-22-mediated STAT3 activation. To conclude, for the first time, we demonstrate the importance of the IL-22 autocrine pathway in a lymphoid malignancy, and reveal yet another novel function of NPM-ALK.
doi:10.1038/leu.2008.129
PMCID: PMC3429118  PMID: 18509351
anaplastic large cell lymphoma; IL-22; tumorigenicity; STAT3; NPM-ALK
6.  Aberrant Anaplastic Lymphoma Kinase Activity Induces a p53 and Rb-Dependent Senescence-Like Arrest in the Absence of Detectable p53 Stabilization 
PLoS ONE  2011;6(3):e17854.
Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in a variety of tumor types, most notably in Anaplastic Large Cell Lymphoma (ALCL) where a chromosomal translocation generates the oncogenic fusion protein, Nucleophosmin-ALK (NPM-ALK). Whilst much is known regarding the mechanism of transformation by NPM-ALK, the existence of cellular defence pathways to prevent this pathological process has not been investigated. Employing the highly tractable primary murine embryonic fibroblast (MEF) system we show that cellular transformation is not an inevitable consequence of NPM-ALK activity but is combated by p53 and Rb. Activation of p53 and/or Rb by NPM-ALK triggers a potent proliferative block with features reminiscent of senescence. While loss of p53 alone is sufficient to circumvent NPM-ALK-induced senescence and permit cellular transformation, sole loss of Rb permits continued proliferation but not transformation due to p53-imposed restraints. Furthermore, NPM-ALK attenuates p53 activity in an Rb and MDM2 dependent manner but this activity is not sufficient to bypass senescence. These data indicate that senescence may constitute an effective barrier to ALK-induced malignancies that ultimately must be overcome for tumor development.
doi:10.1371/journal.pone.0017854
PMCID: PMC3056788  PMID: 21423761
7.  NPM-ALK and the JunB transcription factor regulate the expression of cytotoxic molecules in ALK-positive, anaplastic large cell lymphoma 
Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is an aggressive non-Hodgkin lymphoma of T/null immunophenotype that is most prevalent in children and young adults. The normal cellular counterpart of this malignancy is presumed to be the cytotoxic T lymphocyte (CTL), and this presumption is partly based on the observation that these tumour cells often express cytotoxic granules containing Granzyme B (GzB) and Perforin. Chromosomal translocations involving the gene encoding for the ALK tyrosine kinase are also characteristic of ALK+ ALCL, and the resulting fusion proteins (e.g. NPM-ALK) initiate signalling events important in ALK+ ALCL pathogenesis. These events include the elevated expression of JunB; an AP-1 family transcription factor that promotes ALK+ ALCL proliferation. In this report we demonstrate that JunB is a direct transcriptional activator of GzB and that GzB transcription is also promoted by NPM-ALK. We found that Perforin expression was not regulated by JunB, but was promoted by NPM-ALK in some cell lines and inhibited by it in others. In conclusion, our study makes the novel observation that signalling through NPM-ALK and JunB affect the expression of cytotoxic molecules in ALK+ ALCL. Moreover, these findings demonstrate the expression of GzB and Perforin in this lymphoma is not solely due its presumed CTL origin, but that oncogenic signalling is actively influencing the expression of these proteins.
PMCID: PMC3037198  PMID: 21326808
ALK+ ALCL; JunB; NPM-ALK; granzyme B; perforin
8.  Determining the contribution of NPM1 heterozygosity to NPM-ALK-induced lymphomagenesis 
Heterozygous expression of Nucleophosmin (NPM1) predisposes to hematological malignancies in the mouse and cooperates with Myc in lymphomagenesis. NPM1 is therefore regarded as a haploinsufficient tumor suppressor. Heterozygous loss of NPM1 occurs as a result of the t(2;5) which generates the oncogenic fusion tyrosine kinase, NPM-Anaplastic Lymphoma Kinase (ALK), a molecule underlying the pathogenesis of Anaplastic Large Cell Lymphoma (ALCL). Given the aforementioned role of NPM1 as a tumor suppressor we hypothesized that NPM1 heterozygosity would cooperate with NPM-ALK in lymphomagenesis. In the event, we observed no difference in tumor latency, incidence or phenotype in NPM-ALK-transgenic mice heterozygous for NPM1 relative to transgenic mice expressing both NPM1 alleles. We propose that whilst the t(2;5) simultaneously reduces NPM1 allelic dosage and creates the NPM-ALK fusion protein, the two events do not cooperate in the pathogenesis of ALCL in our mouse model. These data indicate that a tumor-suppressive role for NPM1 may be dependant on cellular and/or genetic context.
ALCL = Anaplastic Large Cell Lymphoma, ALK = Anaplastic Lymphoma Kinase, NPM1 = Nucleophosmin, MPD = myeloproliferative disorder, ML = myeloid leukemia
doi:10.1038/labinvest.2011.96
PMCID: PMC3166849  PMID: 21709672
ALCL; lymphoma; mouse model; NPM-ALK; NPM1
9.  NPM-ALK signals through glycogen synthase kinase 3β to promote oncogenesis 
Oncogene  2011;31(32):3733-3740.
Anaplastic large cell lymphoma (ALCL) is the most common type of pediatric peripheral T-cell lymphoma. In 70–80% of cases, the chromosomal aberration t(2;5)(p23;q35) results in the juxtaposition of anaplastic lymphoma kinase (ALK) with nucleophosmin (NPM) and the subsequent expression of the NPM-ALK fusion protein. NPM-ALK is a chimeric tyrosine kinase, which induces numerous signaling pathways that drive proliferation and abrogate apoptosis. However, the mechanisms that lead to activation of downstream growth regulatory molecules have not been completely elucidated. Using a mass spectrometry-based phosphoproteomic screen, we identified GSK3β as a signaling mediator of NPM-ALK. Using a selective inhibitor of ALK, we demonstrated that the tyrosine kinase activity of ALK regulates the serine-9 phosphorylation of GSK3β. Expression of NPM-ALK in 293T cells led to an increase of pS9-GSK3β (glycogen synthase kinase 3 beta) compared with kinase-defective K210R mutant NPM-ALK, but did not affect total GSK3β levels. Phosphorylation of pS9-GSK3β by NPM-ALK was mediated by the PI3K/AKT signaling pathway. ALK inhibition resulted in degradation of GSK3β substrates Mcl-1 and CDC25A, which was recovered upon chemical inhibition of the proteasome (MG132). Furthermore, the degradation of Mcl-1 was recoverable with inhibition of GSK3β. ALK inhibition also resulted in decreased cell viability, which was rescued by GSK3β inhibition. Furthermore, stable knockdown of GSK3β conferred resistance to the growth inhibitory effects of ALK inhibition using viability and colony formation assays. pS9-GSK3β and CDC25A were selectively expressed in neoplastic cells of ALK + ALCL tissue biopsies, and showed a significant correlation (P < 0.001). Conversely, ALK-ALCL tissue biopsies did not show significant correlation of pS9-GSK3β and CDC25A expression (P < 0.2). Our results demonstrate that NPM-ALK regulates the phosphorylation of S9-GSK3β by PI3K/AKT. The subsequent inhibition of GSK3β activity results in accumulation of CDC25A and Mcl-1, which confers the advantage of growth and protection from apoptosis. These findings provide support for the role of GSK3β as a mediator of NPM-ALK oncogenesis.
doi:10.1038/onc.2011.542
PMCID: PMC4244868  PMID: 22179823
NPM-ALK; GSK3; ALCL; oncogenesis
10.  The Anaplastic Lymphoma Kinase controls cell shape and growth of Anaplastic Large Cell Lymphoma through Cdc42 activation 
Cancer research  2008;68(21):8899-8907.
Anaplastic Large Cell Lymphoma (ALCL) is a Non-Hodgkin Lymphoma (NHL) that originates from T cells and frequently expresses oncogenic fusion proteins derived from chromosomal translocations or inversions of the Anaplastic Lymphoma Kinase (ALK) gene. Proliferation and survival of ALCL cells are determined by the ALK activity. Here we show that the kinase activity of the Nucleophosmin (NPM)-ALK fusion regulated the shape of ALCL cells and F-actin filaments assembly in a pattern similar to T-Cell Receptor (TCR) stimulated cells. NPM-ALK formed a complex with the Guanine Exchange Factor (GEF) VAV1, enhancing its activation through phosphorylation. VAV1 increased Cdc42 activity and, in turn, Cdc42 regulated the shape and the migration of ALCL cells. In vitro knock-down of VAV1 or Cdc42 by sh-RNA, as well as pharmacological inhibition of Cdc42 activity by secramine, resulted in a cell-cycle arrest and apoptosis of ALCL cells. Importantly, the concomitant inhibition of Cdc42 and NPM-ALK kinase acted synergistically to induce apoptosis of ALCL cells. Finally, Cdc42 was necessary for the growth as well as for the maintenance of already established lymphomas in vivo. Thus, our data open perspectives for new therapeutic strategies by revealing a mechanism of regulation of ALCL cells growth through Cdc42.
doi:10.1158/0008-5472.CAN-08-2568
PMCID: PMC2596920  PMID: 18974134
Lymphoma; Anaplastic; ALK; Cdc42; VAV1
11.  High expression of Mcl-1 in ALK positive and negative anaplastic large cell lymphoma 
Journal of Clinical Pathology  2005;58(5):520-524.
Aim: To gain more insight into the genes involved in the aetiology and pathogenesis of anaplastic large cell lymphoma (ALCL).
Methods: Serial analysis of gene expression (SAGE) was undertaken on the CD4+ALK+ (anaplastic lymphoma kinase positive) ALCL derived cell line Karpas299 and as comparison on CD4+ T cells. Quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry were performed on five ALCL derived cell lines and 32 tissue samples to confirm the SAGE data.
Results: High expression of Mcl-1 was seen in the Karpas299 cell line, whereas the two other antiapoptotic Bcl-2 family members, Bcl-2 and Bcl-XL, were not detected in the SAGE library. Quantitative RT-PCR confirmed the high expression of Mcl-1 mRNA and low expression of Bcl-2 and Bcl-XL in Karpas299 and in four other ALCL cell lines. To expand on these initial observations, primary tissue samples were analysed for Mcl-1, Bcl-XL, and Bcl-2 by immunohistochemistry. All 23 ALK+ and nine ALK− ALCL cases were positive for Mcl-1. Bcl-2 and Bcl-XL were expressed infrequently in ALK+ ALCL cases, but were present in a higher proportion of ALK− ALCL cases.
Conclusion: The consistent high expression of Mcl-1 in ALK+ and ALK− ALCL suggests that Mcl-1 is the main antiapoptotic protein in this disease. The high frequency of Mcl-1, Bcl-2, and Bcl-XL positive ALCL cases in the ALK− group compared with the ALK+ group indicates that ALK induced STAT3 activation is not the main regulatory pathway in ALCL.
doi:10.1136/jcp.2004.022335
PMCID: PMC1770666  PMID: 15858125
anaplastic large cell lymphoma; ALK; Bcl-2; Bcl-X L; Mcl-1
12.  Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma 
Blood  2004;105(2):827-829.
Anaplastic large cell lymphoma (ALCL) is a highly proliferative neoplasm that frequently carries the t(2;5)(p23;q35) and aberrantly expresses nucleophosmin–anaplastic lymphoma kinase (NPM-ALK). Previously, NPM-ALK had been shown to activate the phosphatidylinositol 3 kinase (PI3K)/Akt pathway. As the cyclin-dependent kinase (CDK) inhibitor p27Kip1 (p27) is usually not expressed in ALCL, we hypothesized that activated Akt (pAkt) phosphorylates p27 resulting in increased p27 proteolysis and cell cycle progression. Here we demonstrate that inhibition of pAkt activity in ALCL decreases p27 phosphorylation and degradation, resulting in increased p27 levels and cell cycle arrest. Using immunohistochemistry, pAkt was detected in 24 (57%) of 42 ALCL tumors, including 8 (44%) of 18 ALK-positive tumors and 16 (67%) of 24 ALK-negative tumors, and was inversely correlated with p27 levels. The mean percentage of p27-positive tumor cells was 5% in the pAkt-positive group compared with 26% in the pAkt-negative group (P = .0076). These findings implicate that Akt activation promotes cell cycle progression through inactivation of p27 in ALCL.
doi:10.1182/blood-2004-06-2125
PMCID: PMC1382060  PMID: 15374880
13.  The ALK inhibitor ASP3026 eradicates NPM-ALK+ T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model 
Oncotarget  2014;5(14):5750-5763.
NPM-ALK+ T-cell anaplastic large-cell lymphoma (ALCL) is an aggressive type of cancer. Standard treatment of NPM-ALK+ ALCL is CHOP polychemotherapy. Although patients initially respond favorably to CHOP, resistance, relapse, and death frequently occur. Recently, selective targeting of ALK has emerged as an alternative therapeutic strategy. ASP3026 is a second-generation ALK inhibitor that can overcome crizotinib resistance in non-small cell lung cancer, and is currently being evaluated in clinical trials of patients with ALK+ solid tumors. However, NPM-ALK+ ALCL patients are not included in these trials. We studied the effects of ASP3026 on NPM-ALK+ ALCL cell lines in vitro and on systemic lymphoma growth in vivo. ASP3026 decreased the viability, proliferation, and colony formation, as well as induced apoptotic cell death of NPM-ALK+ ALCL cells. In addition, ASP3026 significantly reduced the proliferation of 293T cells transfected with NPM-ALK mutants that are resistant to crizotinib and downregulated tyrosine phosphorylation of these mutants. Moreover, ASP3026 abrogated systemic NPM-ALK+ ALCL growth in mice. Importantly, the survival of ASP3026-treated mice was superior to that of control and CHOP-treated mice. Our data suggest that ASP3026 is an effective treatment for NPM-ALK+ ALCL, and support the enrollment of patients with this lymphoma in the ongoing clinical trials.
PMCID: PMC4170597  PMID: 25026277
NPM-ALK; ASP3026; T-cell lymphoma; crizotinib; CHOP
14.  Nucleophosmin-Anaplastic Lymphoma Kinase of Large-Cell Anaplastic Lymphoma Is a Constitutively Active Tyrosine Kinase That Utilizes Phospholipase C-γ To Mediate Its Mitogenicity 
Molecular and Cellular Biology  1998;18(12):6951-6961.
Large-cell anaplastic lymphoma is a subtype of non-Hodgkin’s lymphoma characterized by the expression of CD30. More than half of these lymphomas have a chromosomal translocation, t(2;5), that leads to the expression of a hybrid protein comprised of the nucleolar phosphoprotein nucleophosmin (NPM) and the anaplastic lymphoma kinase (ALK). Here we show that transfection of the constitutively active tyrosine kinase NPM-ALK into Ba/F3 and Rat-1 cells leads to a transformed phenotype. Oncogenic tyrosine kinases transform cells by activating the mitogenic signal transduction pathways, e.g., by binding and activating SH2-containing signaling molecules. We found that NPM-ALK binds most specifically to the SH2 domains of phospholipase C-γ (PLC-γ) in vitro. Furthermore, we showed complex formation of NPM-ALK and PLC-γ in vivo by coimmunoprecipitation experiments in large-cell anaplastic lymphoma cells. This complex formation leads to the tyrosine phosphorylation and activation of PLC-γ, which can be corroborated by enhanced production of inositol phosphates (IPs) in NPM-ALK-expressing cells. By phosphopeptide competition experiments, we were able to identify the tyrosine residue on NPM-ALK responsible for interaction with PLC-γ as Y664. Using site-directed mutagenesis, we constructed a comprehensive panel of tyrosine-to-phenylalanine NPM-ALK mutants, including NPM-ALK(Y664F). NPM-ALK(Y664F), when transfected into Ba/F3 cells, no longer forms complexes with PLC-γ or leads to PLC-γ phosphorylation and activation, as confirmed by low IP levels in these cells. Most interestingly, Ba/F3 and Rat-1 cells expressing NPM-ALK(Y664F) also show a biological phenotype in that they are not stably transformed. Overexpression of PLC-γ can partially rescue the proliferative response of Ba/F3 cells to the NPM-ALK(Y664F) mutant. Thus, PLC-γ is an important downstream target of NPM-ALK that contributes to its mitogenic activity and is likely to be important in the molecular pathogenesis of large-cell anaplastic lymphomas.
PMCID: PMC109278  PMID: 9819383
15.  Expression of granzyme B sensitizes ALK+ ALCL tumour cells to apoptosis-inducing drugs 
Molecular Cancer  2014;13(1):199.
Background
The serine protease Granzyme B (GzB) is primarily expressed by cytotoxic T lymphocytes and natural killer cells, and functions in allowing these cells to induce apoptosis in virally-infected or transformed cells. Cancers of both lymphoid and non-lymphoid origin also express GzB, and in some cases this expression has been linked to pathogenesis or sensitizing tumour cells to cell death. For example, GzB expression in urothelial carcinoma was implicated in promoting tumour cell invasion, whereas its expression in nasal-type NK/T lymphomas was found to correlate with increased apoptosis. GzB expression is also a hallmark of the non-Hodgkin lymphoma, anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL). Given the fact that ALK+ ALCL exhibits high levels of apoptosis and is typically responsive to conventional chemotherapy, we examined whether GzB expression might play a role in sensitizing ALK+ ALCL tumour cells to apoptosis.
Methods
ALK+ ALCL cell lines stably expressing GzB or non-targeting (control) shRNA were generated and apoptosis was examined by anti-PARP western blotting and terminal deoxynucleotidyl transferase dUTP nick end labelling. Both spontaneous apoptosis and apoptosis in response to treatment with staurosporine or doxorubicin were investigated. In order to assess whether additional granzymes might be important in promoting cell death in ALK+ ALCL, we examined whether other human granzymes were expressed in ALK+ ALCL cell lines using reverse-transcriptase PCR and western blotting.
Results
Expression of several GzB shRNAs in multiple ALK+ ALCL cell lines resulted in a significant decrease in GzB levels and activity. While spontaneous apoptosis was similar in ALK+ ALCL cell lines expressing either GzB or control shRNA, GzB shRNA-expressing cells were less sensitive to staurosporine or doxorubicin-induced apoptosis as evidenced by reduced PARP cleavage and decreased DNA fragmentation. Furthermore, we found that GzB is the only granzyme that is expressed at significant levels in ALK+ ALCL cell lines.
Conclusions
Our findings are the first to demonstrate that GzB expression sensitizes ALK+ ALCL cell lines to drug-induced apoptosis. This suggests that GzB expression may be a factor contributing to the favourable response of this lymphoma to treatment.
doi:10.1186/1476-4598-13-199
PMCID: PMC4158053  PMID: 25168906
Granzyme B; Lymphoma; ALK+ ALCL; Apoptosis
16.  Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells 
Oncotarget  2014;5(12):4452-4466.
The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification.
Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC-1 parental cells in nude mice generated various tumor types, such as NB, osteo/chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro.
PMCID: PMC4147337  PMID: 24947326
ALK; neuroblastoma; Myc; tumorigenesis; differentiation
17.  NPM-ALK oncogenic tyrosine kinase controls T cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells 
Cancer research  2009;69(22):8611-8619.
Transformed cells in lymphomas usually maintain the phenotype of the postulated normal lymphocyte from which they arise. By contrast, Anaplastic Large Cell Lymphoma (ALCL) is a T cell lymphoma with aberrant phenotype because of the defective expression of the T-cell receptor (TCR) and other T-cell specific molecules for still undetermined mechanisms. The majority of ALCL carries the translocation t(2;5) that encodes for the oncogenic tyrosine kinase NPM-ALK, fundamental for survival, proliferation and migration of transformed T cells. Here we show that loss of T cell specific molecules in ALCL cases is broader than previously reported and involves most TCR-related signalling molecules, including CD3ε, ZAP70, LAT and SLP76. We further demonstrate that NPM-ALK, but not the kinase dead NPM-ALKK210R, down-regulated the expression of these molecules by a STAT3-mediated gene transcription regulation and/or epigenetic silencing since this down-regulation was reverted by treating ALCL cells with 5-aza-2′-deoxycytidine or by knocking-down STAT3 through sh-RNA. Finally, NPM-ALK increased the methylation of ZAP-70 intron1-exon2 boundary region, and both NPM-ALK and STAT3 regulated the expression levels of DNA methyltransferase 1 (DNMT1) in transformed T cells. Thus, our data reveal that oncogene-deregulated tyrosine kinase activity controls the expression of molecules that determine T cell identity and signalling.
doi:10.1158/0008-5472.CAN-09-2655
PMCID: PMC2784121  PMID: 19887607
Anaplastic Lymphoma Kinase; Anaplastic Large Cell Lymphoma; TCR; epigenetic silencing
18.  The pathobiology of the oncogenic tyrosine kinase NPM-ALK: a brief update 
Extensive research has been carried out in the past two decades to study the pathobiology of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), which is an oncogenic fusion protein found exclusively in a specific type of T-cell lymphoid malignancy, namely ALK-positive anaplastic large cell lymphoma. Results from these studies have provided highly useful insights into the mechanisms by which a constitutively tyrosine kinase, such as NPM-ALK, promotes tumorigenesis. Several previous publications have comprehensively summarized the advances in this field. In this review, we provide readers with a brief update on specific areas of NPM-ALK pathobiology. In the first part, the NPM-ALK/signal transducer and activator of transcription 3 (STAT3) signaling axis is discussed, with an emphasis on the existence of multiple biochemical defects that have been shown to amplify the oncogenic effects of this signaling axis. Specifically, findings regarding JAK3, SHP1 and the stimulatory effects of several cytokines including interleukin (IL)-9, IL-21 and IL-22 are summarized. New concepts stemming from recent observations regarding the functional interactions among the NPM-ALK/STAT3 axis, β catenin and glycogen synthase kinase 3β will be postulated. Lastly, new mechanisms by which the NPM-ALK/STAT3 axis promotes tumorigenesis, such as its modulations of Twist1, hypoxia-induced factor 1α, CD274, will be described. In the second part, we summarize recent data generated by mass spectrometry studies of NPM-ALK, and use MSH2 and heat shock proteins as examples to illustrate the use of mass spectrometry data in stimulating new research in this field. In the third part, the evolving field of microRNA in the context of NPM-ALK biology is discussed.
doi:10.1177/2040620712471553
PMCID: PMC3629756  PMID: 23610619
NPM-ALK; STAT3; anaplastic large cell lymphoma; oncogenic tyrosine kinase; signalling
19.  Clinical and laboratory characteristics of systemic anaplastic large cell lymphoma in Chinese patients 
Background
Systemic anaplastic large cell lymphoma (S-ALCL) is a rare disease with a highly variable prognosis and no standard chemotherapy regimen. Anaplastic lymphoma kinase (ALK) has been reported as an important prognostic factor correlated with S-ALCL in many but not all studies. In our study, we retrospectively analyzed 92 patients with S-ALCL from the Peking University Lymphoma Center for clinical and molecular prognostic factors to make clear the role of ALK and other prognostic factors in Han Chinese S-ALCL.
Results
The majority of Chinese S-ALCL patients were young male patients (median age 26, male/female ratio 1.7) and the median age was younger than previous reports regardless of ALK expression status. The only statistically significant different clinical characteristic in S-ALCL between ALK positive (ALK+) and ALK negative (ALK-) was age, with a younger median age of 22 for ALK+ compared with 30 for ALK-. However, when pediatric patients (≤18) were excluded, there was no age difference between ALK+ and ALK-. The groups did not differ in the proportion of males, those with clinical stage III/IV (49 vs 51%) or those with extranodal disease (53 vs 59%). Of 73 evaluable patients, the 3-year and 5-year survival rates were 60% and 47%, respectively. Univariate analysis showed that three factors: advanced stage III/IV, lack of expression of ALK, and high Ki-67 expression, were associated with treatment failure in patients with S-ALCL. However, ALK expression correlated with improved survival only in patients younger than 14 years, while not in adult patients. In multivariate analysis, only clinical stage was an independent prognostic factor for survival. Expressions of Wilms tumor 1 (WT1) and B-cell lymphoma 2 protein (BCL-2) correlated with the expression of ALK, but they did not have prognostic significance. High Ki-67 expression was also a poor prognostic factor.
Conclusions
Our results show that ALK expression alone is not sufficient to determine the outcome of ALCL and other prognostic factors must be considered. Clinical stage is an independent prognostic factor. Ki-67 expression is a promising prognostic factor.
doi:10.1186/1756-8722-5-38
PMCID: PMC3418559  PMID: 22769020
Systemic anaplastic large cell lymphoma; Prognosis; Anaplastic lymphoma kinase; Ki-67; BCL-2; WT1
20.  Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development 
Time-resolved transcriptome analysis of early pou5f1 mutant zebrafish embryos identified groups of developmental regulators, including SoxB1 genes, that depend on Pou5f1 activity, and a large cluster of differentiation genes which are prematurely expressed.Pou5f1 represses differentiation genes indirectly via activation of germlayer-specific transcriptional repressor genes, including her3, which may mediate in part Pou5f1-dependent repression of neural genes.A dynamic mathematical model is established for Pou5f1 and SoxB1 activity-dependent temporal behaviour of downstream transcriptional regulatory networks. The model predicts that Pou5f1-dependent increase in SoxB1 activity significantly contributes to developmental timing in the early gastrula.Comparison to mouse Pou5f1/Oct4 reveals evolutionary conserved targets. We show that Pou5f1 developmental function is also conserved by demonstrating rescue of Pou5f1 mutant zebrafish embryos by mouse POU5F1/OCT4.
The transcription factor Pou5f1/Oct4 controls pluripotency of mouse embryonic inner cell mass cells (Nichols et al, 1998), and of mouse and human ES cell lines (Boiani and Scholer, 2005). Although Pou5f1/Oct4-dependent pluripotency transcriptional circuits and many transcriptional targets have been characterized, little is known about the mechanisms by which Pou5f1/Oct4 controls early developmental events. A detailed understanding of Pou5f1/Oct4 functions during mammalian blastocyst and gastrula development as well as studies of the temporal changes in the Pou5f1/Oct4-regulated networks are precluded by the early lineage defects in pou5f1/oct4 mutant mice. To investigate Pou5f1-dependent transcriptional circuits in developmental control, we used the zebrafish (Danio rerio) as a genetic and experimental model representing an earlier state of vertebrate evolution. Zebrafish have one pou5f1/pou2 gene (Takeda et al, 1994) orthologous to the mammalian gene (Niwa et al, 2008; Frankenberg et al, 2009). Both fish and mammalian orthologs are expressed broadly in tissues giving rise to the embryo proper during blastula and early gastrula stages, as well as in the neural plate (Belting et al, 2001; Reim and Brand, 2002; Downs, 2008).
Zebrafish pou5f1 loss-of-function mutant embryos, MZspg (abbreviated ‘MZ'), are completely devoid of maternal and zygotic Pou5f1 activity (Lunde et al, 2004; Reim et al, 2004). MZ embryos have gastrulation abnormalities (Lachnit et al, 2008), dorsoventral patterning defects (Reim and Brand, 2006), and do not develop endoderm (Lunde et al, 2004; Reim et al, 2004). In contrast to Pou5f1/Oct4 mutant mice, which are blocked in development due to loss of inner cell mass, MZ mutant embryos are neither blocked in development nor display a general delay. Therefore, zebrafish present a good model system to identify specific transcriptional targets of Pou5f1 during development.
Our study aims to understand the structure, regulatory logic, and developmental temporal changes in the Pou5f1-dependent transcriptional network in the context of an intact embryo. Therefore, we investigated transcriptome changes in MZ compared with WT zebrafish by microarray analysis at 10 distinct time-points during development, from ovaries to late gastrulation. We identified changes in Pou5f1 target gene expression both with respect to their expression level and temporal behavior. We used correlation analysis to identify clusters of target genes enriched for genes with developmentally regulated expression profiles. This correlation analysis revealed a cluster of genes, which were not activated or were significantly delayed in MZ. Interestingly, there was also a large gene cluster with premature onset of expression in MZ.
Several targets activated by Pou5f1 encode known repressors of differentiation (RODs), of which we analyzed her3 in detail. Pou5f1 also activates several SoxB1 group transcription factors, which are known to act together with Pou5f1 in mammalian systems. Among the large group of genes prematurely activated in MZ, many genes encode developmental regulators of differentiation normally acting during organogenesis (promoters of differentiation—PODs). Our analysis of potential direct transcriptional interactions by suppression of translation of intermediate zygotic Pou5f1 or SoxB1 targets, enabled us to distinguish Sox-dependent and independent subgroups of the Pou5f1 transcriptional network. Interestingly, tissue-specific expression of Pou5f1 targets correlated with their regulation by Sox2, with Sox-dependent targets being mostly localized to ectoderm and neuroectoderm, whereas Sox-independent targets localized to mesendoderm of the developing zebrafish embryo. Further, SoxB1 independent Pou5f1 targets (for example foxD3) differ from SoxB1-dependent targets (e.g her3) in temporal dynamics of expression. Most Sox-independent direct Pou5f1 targets in WT reach maximal expression levels soon after midblastula transition (MBT) at 3–4 h postfertilization (hpf). In contrast, genes depending both on Sox2 and Pou5f1 tend to have a biphasic temporal expression curve or are activated with >2 h delay after MBT to reach maximum levels at 6–7 hpf only.
To better understand the impact of our findings on Pou5f1/SoxB1-dependent versus Pou5f1-only regulation on developmental mechanisms, we built a small dynamic network model that links the temporal control of target genes to regulatory principles exerted by Pou5f1 and SoxB1 proteins (Figure 6A). The model is based on ordinary differential equations, and parameters were determined by a fit to the WT and MZ gene expression data. The optimized model highlights two qualitatively different temporal expression modes of Pou5f1 downstream targets: monophasic for targets depending only on Pou5f1 (foxd3), and biphasic for Pou5f1- and SoxB1-dependent targets (sox2 and her3; Figure 6B). To test whether the model is also able to correctly predict a different genetic condition, we simulated the M mutant, which is lacking maternal Pou5f1, but gradually rescued by the paternal pou5f1 contribution after MBT (Figure 6B, blue, dashed curve). The model predicts an overall shift in the developmental program. Most importantly, the sox2 and her3 expression is rescued with a delay of about 2 h. The model predictions were checked experimentally by quantitative RT–PCR (Figure 6B, blue dots). Most predictions are in good agreement with the experimental data, for example the delayed rescue of the sox2 and her3 temporal expression profile. With respect to the ‘POD' nr2f1, the model correctly predicts the efficient downregulation by zygotic targets of Pou5f1 (Figure 6B).
We identified an evolutionary conserved core set of Pou5f1 targets, by comparing our gene list with the lists of mouse Pou5f1/Oct4 targets (Loh et al, 2006; Sharov et al, 2008). The evolutionary conservation suggests equivalent Pou5f1 functions during the pregastrulation and gastrulation period of vertebrate embryogenesis. Therefore, we tested whether mouse Pou5f1/Oct4 was able to rescue MZ embryos. Injection of mRNA encoding mouse Pou5f1/Oct4 into MZ embryos (Figure 8A) was able to restore normal zebrafish development to an extent comparable with zebrafish pou5f1/pou2 mRNA (Figure 8B and C). The significant overlap between zebrafish and mammalian Pou5f1 targets together with the ability of mouse Pou5f1/Oct4 to functionally replace the zebrafish Pou5f1/Pou2 (Figure 8A–C), suggests that the mammalian network may have evolved from a basal situation similar to what is observed in teleosts. We propose models that emphasize the evolution of Pou5f1-dependent transcriptional networks during development of the zebrafish (Figure 8D) and mammals (Figure 8E). Our representation highlights the evolutionary ancient germlayer-specific subnetworks downstream of Pou5f1, which are presumably used for controlling the timing of differentiation during gastrulation in all vertebrates (Figure 8D and E, black arrows). As the Pou5f1 downstream regulatory nodes revealed in our zebrafish model are likely conserved across vertebrates, we envision that their knowledge will contribute to the effort of directing differentiation of pluripotent stem cells to defined cell fates.
The transcription factor POU5f1/OCT4 controls pluripotency in mammalian ES cells, but little is known about its functions in the early embryo. We used time-resolved transcriptome analysis of zebrafish pou5f1 MZspg mutant embryos to identify genes regulated by Pou5f1. Comparison to mammalian systems defines evolutionary conserved Pou5f1 targets. Time-series data reveal many Pou5f1 targets with delayed or advanced onset of expression. We identify two Pou5f1-dependent mechanisms controlling developmental timing. First, several Pou5f1 targets are transcriptional repressors, mediating repression of differentiation genes in distinct embryonic compartments. We analyze her3 gene regulation as example for a repressor in the neural anlagen. Second, the dynamics of SoxB1 group gene expression and Pou5f1-dependent regulation of her3 and foxD3 uncovers differential requirements for SoxB1 activity to control temporal dynamics of activation, and spatial distribution of targets in the embryo. We establish a mathematical model of the early Pou5f1 and SoxB1 gene network to demonstrate regulatory characteristics important for developmental timing. The temporospatial structure of the zebrafish Pou5f1 target networks may explain aspects of the evolution of the mammalian stem cell networks.
doi:10.1038/msb.2010.9
PMCID: PMC2858445  PMID: 20212526
developmental timing; mathematical modeling; Oct4; transcriptional networks
21.  An integrated analysis of the SOX2 microRNA response program in human pluripotent and nullipotent stem cell lines 
BMC Genomics  2014;15(1):711.
Background
SOX2 is a core component of the transcriptional network responsible for maintaining embryonal carcinoma cells (ECCs) in a pluripotent, undifferentiated state of self-renewal. As such, SOX2 is an oncogenic transcription factor and crucial cancer stem cell (CSC) biomarker in embryonal carcinoma and, as more recently found, in the stem-like cancer cell component of many other malignancies. SOX2 is furthermore a crucial factor in the maintenance of adult stem cell phenotypes and has additional roles in cell fate determination. The SOX2-linked microRNA (miRNA) transcriptome and regulome has not yet been fully defined in human pluripotent cells or CSCs. To improve our understanding of the SOX2-linked miRNA regulatory network as a contribution to the phenotype of these cell types, we used high-throughput differential miRNA and gene expression analysis combined with existing genome-wide SOX2 chromatin immunoprecipitation (ChIP) data to map the SOX2 miRNA transcriptome in two human embryonal carcinoma cell (hECC) lines.
Results
Whole-microRNAome and genome analysis of SOX2-silenced hECCs revealed many miRNAs regulated by SOX2, including several with highly characterised functions in both cancer and embryonic stem cell (ESC) biology. We subsequently performed genome-wide differential expression analysis and applied a Monte Carlo simulation algorithm and target prediction to identify a SOX2-linked miRNA regulome, which was strongly enriched with epithelial-to-mesenchymal transition (EMT) markers. Additionally, several deregulated miRNAs important to EMT processes had SOX2 binding sites in their promoter regions.
Conclusion
In ESC-like CSCs, SOX2 regulates a large miRNA network that regulates and interlinks the expression of crucial genes involved in EMT.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-711) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-711
PMCID: PMC4162954  PMID: 25156079
SOX2; microRNA; Embryonic stem cell; Embryonal carcinoma; Pluripotency; EMT
22.  Beyond NPM-ALK driven lymphomagenesis: alternative drivers in Anaplastic Large Cell Lymphoma 
Current opinion in hematology  2013;20(4):374-381.
PURPOSE OF THE REVIEW
Anaplastic Large Cell Lymphomas (ALCLs) are rare entities whose tumorigenic events have only been found in well-defined subsets. The categorization of additional molecular fingerprints is needed to advance our knowledge and to deliver successful therapies.
RECENT FINDINGS
The discovery of Anaplastic Lymphoma Kinase (ALK) fusions has provided the basis for the characterization of distinct subsets among ALCL patients. Although the oncogenic addiction of ALK signaling is proven, the tumorigenic contribution of co-activating lesions is still missing. As ALK− and ALK+ share common signatures, it is plausible that analogous mechanisms of transformation may be operating in both subsets, as confirmed by the dis-regulated activation of c-MYC, and the loss of Blimp-1 and p53/p63 axis. Nonetheless, recurrent genetic alterations for ALK− ALCL or refractory leukemic ALK+ ALCL are lacking. Moreover, although conventional chemotherapies (anthracycline-based) are most successful, i.e. in ALK+ ALCL patients, the implementation of ALK inhibitors or of anti-CD30 based treatments provides innovatites solutions, particularly in pediatric ALK+ ALCL and in chemorefractory/relapsed patients.
SUMMARY
The complete portrayal of the landscape of genetic alterations in ALCL will dictate the development of innovative chemotherapeutic and targeted therapies that will fit most with the molecular and clinical profiling of individual patients.
doi:10.1097/MOH.0b013e3283623c07
PMCID: PMC4121055  PMID: 23673339
Anaplastic Lymphoma Kinase; signaling pathways; kinases’ inhibitors; lymphoid differentiation; mouse models
23.  ALK expression in extranodal anaplastic large cell lymphoma favours systemic disease with (primary) nodal involvement and a good prognosis and occurs before dissemination 
Journal of Clinical Pathology  2000;53(6):445-450.
Aims—In anaplastic large cell lymphoma (ALCL), the site of origin has been described as an important prognostic factor. Recently, a fusion protein containing anaplastic lymphoma kinase (ALK) was described in systemic nodal ALCL, and shown to be associated with a good prognosis. The aims of this study were to investigate whether the presence of ALK protein differs between ALCL of different sites of origin; to determine whether ALK expression occurs before dissemination to other sites; and, finally, to investigate whether the site of origin remains a prognostic parameter in ALK negative ALCL.
Methods—ALK expression, as detected by immunohistochemistry using the monoclonal antibodies ALK1 and ALKc, was studied in 85 ALCLs from different sites of origin. In 22 patients, ALK expression was studied in multiple biopsies from different sites (including 13 skin, 16 lymph node, and nine other). Overall survival time was analysed using the Kaplan Meier method.
Results—ALK expression was found in 20 of 51 systemic ALCLs with (primary) nodal involvement. No ALK expression was found in 15 primary cutaneous, 14 gastrointestinal, and five nasal ALCLs. Multiple and subsequent biopsies of patients showed ALK expression to be identical to that seen in the primary diagnostic biopsy. Kaplan Meier survival curves showed that in ALK negative ALCLs originating from different sites, primary cutaneous cases are associated with an excellent overall survival, whereas the other cases show a comparable five years survival of less than 40%.
Conclusions—If present, ALK expression favours systemic ALCL with (primary) nodal involvement, and can be used in differentiating between extranodal involvement of systemic (nodal) ALCL and primary extranodal ALCL. ALK is expressed consistently in multiple biopsies of a given patient, indicating that the chromosomal abnormality leading to aberrant ALK expression occurs before dissemination to other sites. Finally, in ALK negative non-cutaneous ALCLs, different sites of origin show comparable poor survival.
Key Words: anaplastic large cell lymphoma • extranodal • anaplastic lymphoma kinase • survival
doi:10.1136/jcp.53.6.445
PMCID: PMC1731216  PMID: 10911802
24.  Molecular and Functional Characterizations of the Association and Interactions between Nucleophosmin-Anaplastic Lymphoma Kinase and Type I Insulin-Like Growth Factor Receptor1,2 
Neoplasia (New York, N.Y.)  2013;15(6):669-683.
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is aberrantly expressed in a subset of T cell lymphoma that commonly affects children and young adults. NPM-ALK possesses significant oncogenic potential that was previously documented using in vitro and in vivo experimental models. The exact mechanisms by which NPM-ALK induces its effects are poorly understood. We have recently demonstrated that NPM-ALK is physically associated with type I insulin-like growth factor receptor (IGF-IR). A positive feedback loop appears to exist between NPM-ALK and IGF-IR through which these two kinases interact to potentiate their effects. We have also found that a single mutation of the Tyr644 or Tyr664 residue of the C terminus of NPM-ALK to phenylalanine decreases significantly, but does not completely abolish, the association between NPM-ALK and IGF-IR. The purpose of this study was to determine whether the dual mutation of Tyr644 and Tyr664 abrogates the association and interactions between NPM-ALK and IGF-IR. We also examined the impact of this dual mutation on the oncogenic potential of NPM-ALK. Our results show that NPM-ALKY644,664F completely lacks association with IGF-IR. Importantly, we found that the dual mutation of Tyr644 and Tyr664 diminishes the oncogenic effects of NPM-ALK, including its ability to induce anchorage-independent colony formation and to sustain cellular transformation, proliferation, and migration. Furthermore, the association between NPM-ALK and IGF-IR through Tyr644 and Tyr664 appears to contribute to maintaining the stability of NPM-ALK protein. Our results provide novel insights into the mechanisms by which NPM-ALK induces its oncogenic effects through interactions with IGF-IR in this aggressive lymphoma.
PMCID: PMC3664999  PMID: 23730215
25.  Discovery of a Potent Inhibitor of Anaplastic Lymphoma Kinase with in Vivo Antitumor Activity 
ACS Medicinal Chemistry Letters  2010;1(9):493-498.
A series of novel 7-amino-1,3,4,5-tetrahydrobenzo[b]azepin-2-one derivatives within the diaminopyrimidine class of kinase inhibitors were identified that target anaplastic lymphoma kinase (ALK). These inhibitors are potent against ALK in an isolated enzyme assay and inhibit autophosphorylation of the oncogenic fusion protein NPM-ALK in anaplastic large cell lymphoma (ALCL) cell lines. The lead inhibitor 15, which incorporates a bicyclo[2.2.1]hept-5-ene ring system in place of an aryl moiety, activates the pro-apoptotic caspases (3 and 7) and displays selective cytotoxicity against ALK-positive ALCL cells. Furthermore, 15 provides more than 40-fold selectivity against the structurally related insulin receptor, is orally bioavailable in multiple species, and displays in vivo antitumor efficacy when dosed orally in ALK-positive ALCL tumor xenografts in Scid mice.
doi:10.1021/ml100158s
PMCID: PMC4007912  PMID: 24900237
Anaplastic lymphoma kinase inhibitor; ALK; anaplastic large cell lymphoma; ALCL

Results 1-25 (1061813)