PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1263747)

Clipboard (0)
None

Related Articles

1.  Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression 
BMC Genomics  2004;5:16.
Background
Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions.
Results
We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI.
Conclusion
Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions.
doi:10.1186/1471-2164-5-16
PMCID: PMC375527  PMID: 15053842
promoter; tissue-specific gene expression; position weight matrix; regulatory motif
2.  DBD2BS: connecting a DNA-binding protein with its binding sites 
Nucleic Acids Research  2012;40(Web Server issue):W173-W179.
By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein–DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD–DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein–DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies.
Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw.
doi:10.1093/nar/gks564
PMCID: PMC3394304  PMID: 22693214
3.  Optimized Position Weight Matrices in Prediction of Novel Putative Binding Sites for Transcription Factors in the Drosophila melanogaster Genome 
PLoS ONE  2013;8(8):e68712.
Position weight matrices (PWMs) have become a tool of choice for the identification of transcription factor binding sites in DNA sequences. DNA-binding proteins often show degeneracy in their binding requirement and thus the overall binding specificity of many proteins is unknown and remains an active area of research. Although existing PWMs are more reliable predictors than consensus string matching, they generally result in a high number of false positive hits. Our previous study introduced a promising approach to PWM refinement in which known motifs are used to computationally mine putative binding sites directly from aligned promoter regions using composition of similar sites. In the present study, we extended this technique originally tested on single examples of transcription factors (TFs) and showed its capability to optimize PWM performance to predict new binding sites in the fruit fly genome. We propose refined PWMs in mono- and dinucleotide versions similarly computed for a large variety of transcription factors of Drosophila melanogaster. Along with the addition of many auxiliary sites the optimization includes variation of the PWM motif length, the binding sites location on the promoters and the PWM score threshold. To assess the predictive performance of the refined PWMs we compared them to conventional TRANSFAC and JASPAR sources. The results have been verified using performed tests and literature review. Overall, the refined PWMs containing putative sites derived from real promoter content processed using optimized parameters had better general accuracy than conventional PWMs.
doi:10.1371/journal.pone.0068712
PMCID: PMC3735551  PMID: 23936309
4.  PiDNA: predicting protein–DNA interactions with structural models 
Nucleic Acids Research  2013;41(Web Server issue):W523-W530.
Predicting binding sites of a transcription factor in the genome is an important, but challenging, issue in studying gene regulation. In the past decade, a large number of protein–DNA co-crystallized structures available in the Protein Data Bank have facilitated the understanding of interacting mechanisms between transcription factors and their binding sites. Recent studies have shown that both physics-based and knowledge-based potential functions can be applied to protein–DNA complex structures to deliver position weight matrices (PWMs) that are consistent with the experimental data. To further use the available structural models, the proposed Web server, PiDNA, aims at first constructing reliable PWMs by applying an atomic-level knowledge-based scoring function on numerous in silico mutated complex structures, and then using the PWM constructed by the structure models with small energy changes to predict the interaction between proteins and DNA sequences. With PiDNA, the users can easily predict the relative preference of all the DNA sequences with limited mutations from the native sequence co-crystallized in the model in a single run. More predictions on sequences with unlimited mutations can be realized by additional requests or file uploading. Three types of information can be downloaded after prediction: (i) the ranked list of mutated sequences, (ii) the PWM constructed by the favourable mutated structures, and (iii) any mutated protein–DNA complex structure models specified by the user. This study first shows that the constructed PWMs are similar to the annotated PWMs collected from databases or literature. Second, the prediction accuracy of PiDNA in detecting relatively high-specificity sites is evaluated by comparing the ranked lists against in vitro experiments from protein-binding microarrays. Finally, PiDNA is shown to be able to select the experimentally validated binding sites from 10 000 random sites with high accuracy. With PiDNA, the users can design biological experiments based on the predicted sequence specificity and/or request mutated structure models for further protein design. As well, it is expected that PiDNA can be incorporated with chromatin immunoprecipitation data to refine large-scale inference of in vivo protein–DNA interactions. PiDNA is available at: http://dna.bime.ntu.edu.tw/pidna.
doi:10.1093/nar/gkt388
PMCID: PMC3692134  PMID: 23703214
5.  Creating PWMs of transcription factors using 3D structure-based computation of protein-DNA free binding energies 
BMC Bioinformatics  2010;11:225.
Background
Knowledge of transcription factor-DNA binding patterns is crucial for understanding gene transcription. Numerous DNA-binding proteins are annotated as transcription factors in the literature, however, for many of them the corresponding DNA-binding motifs remain uncharacterized.
Results
The position weight matrices (PWMs) of transcription factors from different structural classes have been determined using a knowledge-based statistical potential. The scoring function calibrated against crystallographic data on protein-DNA contacts recovered PWMs of various members of widely studied transcription factor families such as p53 and NF-κB. Where it was possible, extensive comparison to experimental binding affinity data and other physical models was made. Although the p50p50, p50RelB, and p50p65 dimers belong to the same family, particular differences in their PWMs were detected, thereby suggesting possibly different in vivo binding modes. The PWMs of p63 and p73 were computed on the basis of homology modeling and their performance was studied using upstream sequences of 85 p53/p73-regulated human genes. Interestingly, about half of the p63 and p73 hits reported by the Match algorithm in the altogether 126 promoters lay more than 2 kb upstream of the corresponding transcription start sites, which deviates from the common assumption that most regulatory sites are located more proximal to the TSS. The fact that in most of the cases the binding sites of p63 and p73 did not overlap with the p53 sites suggests that p63 and p73 could influence the p53 transcriptional activity cooperatively. The newly computed p50p50 PWM recovered 5 more experimental binding sites than the corresponding TRANSFAC matrix, while both PWMs showed comparable receiver operator characteristics.
Conclusions
A novel algorithm was developed to calculate position weight matrices from protein-DNA complex structures. The proposed algorithm was extensively validated against experimental data. The method was further combined with Homology Modeling to obtain PWMs of factors for which crystallographic complexes with DNA are not yet available. The performance of PWMs obtained in this work in comparison to traditionally constructed matrices demonstrates that the structure-based approach presents a promising alternative to experimental determination of transcription factor binding properties.
doi:10.1186/1471-2105-11-225
PMCID: PMC2879287  PMID: 20438625
6.  De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins 
Nucleic Acids Research  2013;42(1):97-108.
Proteins with sequence-specific DNA binding function are important for a wide range of biological activities. De novo prediction of their DNA-binding specificities from sequence alone would be a great aid in inferring cellular networks. Here we introduce a method for predicting DNA-binding specificities for Cys2His2 zinc fingers (C2H2-ZFs), the largest family of DNA-binding proteins in metazoans. We develop a general approach, based on empirical calculations of pairwise amino acid–nucleotide interaction energies, for predicting position weight matrices (PWMs) representing DNA-binding specificities for C2H2-ZF proteins. We predict DNA-binding specificities on a per-finger basis and merge predictions for C2H2-ZF domains that are arrayed within sequences. We test our approach on a diverse set of natural C2H2-ZF proteins with known binding specificities and demonstrate that for >85% of the proteins, their predicted PWMs are accurate in 50% of their nucleotide positions. For proteins with several zinc finger isoforms, we show via case studies that this level of accuracy enables us to match isoforms with their known DNA-binding specificities. A web server for predicting a PWM given a protein containing C2H2-ZF domains is available online at http://zf.princeton.edu and can be used to aid in protein engineering applications and in genome-wide searches for transcription factor targets.
doi:10.1093/nar/gkt890
PMCID: PMC3874201  PMID: 24097433
7.  Predicting Target DNA Sequences of DNA-Binding Proteins Based on Unbound Structures 
PLoS ONE  2012;7(2):e30446.
DNA-binding proteins such as transcription factors use DNA-binding domains (DBDs) to bind to specific sequences in the genome to initiate many important biological functions. Accurate prediction of such target sequences, often represented by position weight matrices (PWMs), is an important step to understand many biological processes. Recent studies have shown that knowledge-based potential functions can be applied on protein-DNA co-crystallized structures to generate PWMs that are considerably consistent with experimental data. However, this success has not been extended to DNA-binding proteins lacking co-crystallized structures. This study aims at investigating the possibility of predicting the DNA sequences bound by DNA-binding proteins from the proteins' unbound structures (structures of the unbound state). Given an unbound query protein and a template complex, the proposed method first employs structure alignment to generate synthetic protein-DNA complexes for the query protein. Once a complex is available, an atomic-level knowledge-based potential function is employed to predict PWMs characterizing the sequences to which the query protein can bind. The evaluation of the proposed method is based on seven DNA-binding proteins, which have structures of both DNA-bound and unbound forms for prediction as well as annotated PWMs for validation. Since this work is the first attempt to predict target sequences of DNA-binding proteins from their unbound structures, three types of structural variations that presumably influence the prediction accuracy were examined and discussed. Based on the analyses conducted in this study, the conformational change of proteins upon binding DNA was shown to be the key factor. This study sheds light on the challenge of predicting the target DNA sequences of a protein lacking co-crystallized structures, which encourages more efforts on the structure alignment-based approaches in addition to docking- and homology modeling-based approaches for generating synthetic complexes.
doi:10.1371/journal.pone.0030446
PMCID: PMC3270014  PMID: 22312425
8.  Variable structure motifs for transcription factor binding sites 
BMC Genomics  2010;11:30.
Background
Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets.
Results
We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance.
Conclusions
We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable structure that are suitable for follow-up structural studies. To our knowledge, we are the first to apply variable length motif models to eukaryotic ChIP-seq data sets and consequently the first to show their value in this domain. The results include a novel motif for the ubiquitous transcription factor Sp1.
doi:10.1186/1471-2164-11-30
PMCID: PMC2824720  PMID: 20074339
9.  Tree-Based Position Weight Matrix Approach to Model Transcription Factor Binding Site Profiles 
PLoS ONE  2011;6(9):e24210.
Most of the position weight matrix (PWM) based bioinformatics methods developed to predict transcription factor binding sites (TFBS) assume each nucleotide in the sequence motif contributes independently to the interaction between protein and DNA sequence, usually producing high false positive predictions. The increasing availability of TF enrichment profiles from recent ChIP-Seq methodology facilitates the investigation of dependent structure and accurate prediction of TFBSs. We develop a novel Tree-based PWM (TPWM) approach to accurately model the interaction between TF and its binding site. The whole tree-structured PWM could be considered as a mixture of different conditional-PWMs. We propose a discriminative approach, called TPD (TPWM based Discriminative Approach), to construct the TPWM from the ChIP-Seq data with a pre-existing PWM. To achieve the maximum discriminative power between the positive and negative datasets, the cutoff value is determined based on the Matthew Correlation Coefficient (MCC). The resulting TPWMs are evaluated with respect to accuracy on extensive synthetic datasets. We then apply our TPWM discriminative approach on several real ChIP-Seq datasets to refine the current TFBS models stored in the TRANSFAC database. Experiments on both the simulated and real ChIP-Seq data show that the proposed method starting from existing PWM has consistently better performance than existing tools in detecting the TFBSs. The improved accuracy is the result of modelling the complete dependent structure of the motifs and better prediction of true positive rate. The findings could lead to better understanding of the mechanisms of TF-DNA interactions.
doi:10.1371/journal.pone.0024210
PMCID: PMC3166302  PMID: 21912677
10.  A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites 
PLoS ONE  2014;9(6):e99015.
The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond PWMs.
doi:10.1371/journal.pone.0099015
PMCID: PMC4057186  PMID: 24926895
11.  Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites 
Nucleic Acids Research  2005;33(7):2290-2301.
Position-weight matrices (PWMs) are broadly used to locate transcription factor binding sites in DNA sequences. The majority of existing PWMs provide a low level of both sensitivity and specificity. We present a new computational algorithm, a modification of the Staden–Bucher approach, that improves the PWM. We applied the proposed technique on the PWM of the GC-box, binding site for Sp1. The comparison of old and new PWMs shows that the latter increase both sensitivity and specificity. The statistical parameters of GC-box distribution in promoter regions and in the human genome, as well as in each chromosome, are presented. The majority of commonly used PWMs are the 4-row mononucleotide matrices, although 16-row dinucleotide matrices are known to be more informative. The algorithm efficiently determines the 16-row matrices and preliminary results show that such matrices provide better results than 4-row matrices.
doi:10.1093/nar/gki519
PMCID: PMC1084321  PMID: 15849315
12.  Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix 
PLoS ONE  2010;5(3):e9722.
Background
Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are string patterns that exhibit some variability, commonly modelled as “position weight matrices” (PWMs). Though convenient, the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps.
Methodology/Principal Findings
I describe a straightforward generalization of the PWM model, that considers frequencies of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide correlations. I describe how to use a “dinucleotide weight matrix” (DWM) to predict binding sites, dealing in particular with the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by extending the commonly defined “core motifs” by about 10bp on either side. Though this flanking sequence shows no strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the “signature” in DNA sequence of protein-binding affinity extends beyond the core protein-DNA contact region.
Conclusion/Significance
While computationally more demanding and slower than PWM-based approaches, this dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future improvements.
doi:10.1371/journal.pone.0009722
PMCID: PMC2842295  PMID: 20339533
13.  The Next Generation of Transcription Factor Binding Site Prediction 
PLoS Computational Biology  2013;9(9):e1003214.
Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA-protein interactions, while providing a single unified framework suitable for the next generation of TFBS prediction.
Author Summary
Transcription factors are critical proteins for sequence-specific control of transcriptional regulation. Finding where these proteins bind to DNA is of key importance for global efforts to decipher the complex mechanisms of gene regulation. Greater understanding of the regulation of transcription promises to improve human genetic analysis by specifying critical gene components that have eluded investigators. Classically, computational prediction of transcription factor binding sites (TFBS) is based on models giving weights to each nucleotide at each position. We introduce a novel statistical model for the prediction of TFBS tolerant of a broader range of TFBS configurations than can be conveniently accommodated by existing methods. The new models are designed to address the confounding properties of nucleotide composition, inter-positional sequence dependence and variable lengths (e.g. variable spacing between half-sites) observed in the more comprehensive experimental data now emerging. The new models generate scores consistent with DNA-protein affinities measured experimentally and can be represented graphically, retaining desirable attributes of past methods. It demonstrates the capacity of the new approach to accurately assess DNA-protein interactions. With the rich experimental data generated from chromatin immunoprecipitation experiments, a greater diversity of TFBS properties has emerged that can now be accommodated within a single predictive approach.
doi:10.1371/journal.pcbi.1003214
PMCID: PMC3764009  PMID: 24039567
14.  Metamotifs - a generative model for building families of nucleotide position weight matrices 
BMC Bioinformatics  2010;11:348.
Background
Development of high-throughput methods for measuring DNA interactions of transcription factors together with computational advances in short motif inference algorithms is expanding our understanding of transcription factor binding site motifs. The consequential growth of sequence motif data sets makes it important to systematically group and categorise regulatory motifs. It has been shown that there are familial tendencies in DNA sequence motifs that are predictive of the family of factors that binds them. Further development of methods that detect and describe familial motif trends has the potential to help in measuring the similarity of novel computational motif predictions to previously known data and sensitively detecting regulatory motifs similar to previously known ones from novel sequence.
Results
We propose a probabilistic model for position weight matrix (PWM) sequence motif families. The model, which we call the 'metamotif' describes recurring familial patterns in a set of motifs. The metamotif framework models variation within a family of sequence motifs. It allows for simultaneous estimation of a series of independent metamotifs from input position weight matrix (PWM) motif data and does not assume that all input motif columns contribute to a familial pattern. We describe an algorithm for inferring metamotifs from weight matrix data. We then demonstrate the use of the model in two practical tasks: in the Bayesian NestedMICA model inference algorithm as a PWM prior to enhance motif inference sensitivity, and in a motif classification task where motifs are labelled according to their interacting DNA binding domain.
Conclusions
We show that metamotifs can be used as PWM priors in the NestedMICA motif inference algorithm to dramatically increase the sensitivity to infer motifs. Metamotifs were also successfully applied to a motif classification problem where sequence motif features were used to predict the family of protein DNA binding domains that would interact with it. The metamotif based classifier is shown to compare favourably to previous related methods. The metamotif has great potential for further use in machine learning tasks related to especially de novo computational sequence motif inference. The metamotif methods presented have been incorporated into the NestedMICA suite.
doi:10.1186/1471-2105-11-348
PMCID: PMC2906491  PMID: 20579334
15.  Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites 
BMC Genomics  2012;13:416.
Background
The identifying of binding sites for transcription factors is a key component of gene regulatory network analysis. This is often done using position-weight matrices (PWMs). Because of the importance of in silico mapping of tentative binding sites, we previously developed an approach for PWM optimization that substantially improves the accuracy of such mapping.
Results
The present work implements the optimization algorithm applied to the existing PWM for GATA-3 transcription factor and builds a new di-nucleotide PWM. The existing available PWM is based on experimental data adopted from Jaspar. The optimized PWM substantially improves the sensitivity and specificity of the TF mapping compared to the conventional applications. The refined PWM also facilitates in silico identification of novel binding sites that are supported by experimental data. We also describe uncommon positioning of binding motifs for several T-cell lineage specific factors in human promoters.
Conclusion
Our proposed di-nucleotide PWM approach outperforms the conventional mono-nucleotide PWM approach with respect to GATA-3. Therefore our new di-nucleotide PWM provides new insight into plausible transcriptional regulatory interactions in human promoters.
doi:10.1186/1471-2164-13-416
PMCID: PMC3481455  PMID: 22913572
Transcription factor; Binding sites; GATA-3; Human promoter; Position weight matrix; Optimization
16.  Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions 
BMC Bioinformatics  2007;8:481.
Background
Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the core binding-sites is considered.
Results
To improve this situation, we have quantified the performance of several Position Weight Matrix (PWM) algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune, and antiviral responses (NF-κB, ISGF3, IRF1, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method, entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies.
To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison, it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and optimized PWMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA.
Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA and optimized PWM models were applied together, this substantially reduced false positives at least at higher stringencies.
Conclusion
Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led to a list of genes which appear to be regulated by the above TFs.
doi:10.1186/1471-2105-8-481
PMCID: PMC2265442  PMID: 18093302
17.  Modeling the specificity of protein-DNA interactions 
Quantitative biology  2013;1(2):115-130.
The specificity of protein-DNA interactions is most commonly modeled using position weight matrices (PWMs). First introduced in 1982, they have been adapted to many new types of data and many different approaches have been developed to determine the parameters of the PWM. New high-throughput technologies provide a large amount of data rapidly and offer an unprecedented opportunity to determine accurately the specificities of many transcription factors (TFs). But taking full advantage of the new data requires advanced algorithms that take into account the biophysical processes involved in generating the data. The new large datasets can also aid in determining when the PWM model is inadequate and must be extended to provide accurate predictions of binding sites. This article provides a general mathematical description of a PWM and how it is used to score potential binding sites, a brief history of the approaches that have been developed and the types of data that are used with an emphasis on algorithms that we have developed for analyzing high-throughput datasets from several new technologies. It also describes extensions that can be added when the simple PWM model is inadequate and further enhancements that may be necessary. It briefly describes some applications of PWMs in the discovery and modeling of in vivo regulatory networks.
doi:10.1007/s40484-013-0012-4
PMCID: PMC4101922  PMID: 25045190
18.  Transcription Factor Binding Sites Prediction Based on Modified Nucleosomes 
PLoS ONE  2014;9(2):e89226.
In computational methods, position weight matrices (PWMs) are commonly applied for transcription factor binding site (TFBS) prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP) predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, “modified nucleosomes neighboring” and “modified nucleosomes occupancy”, to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method for TFBS prediction.
doi:10.1371/journal.pone.0089226
PMCID: PMC3931712  PMID: 24586611
19.  Jaccard index based similarity measure to compare transcription factor binding site models 
Background
Positional weight matrix (PWM) remains the most popular for quantification of transcription factor (TF) binding. PWM supplied with a score threshold defines a set of putative transcription factor binding sites (TFBS), thus providing a TFBS model.
TF binding DNA fragments obtained by different experimental methods usually give similar but not identical PWMs. This is also common for different TFs from the same structural family. Thus it is often necessary to measure the similarity between PWMs. The popular tools compare PWMs directly using matrix elements. Yet, for log-odds PWMs, negative elements do not contribute to the scores of highly scoring TFBS and thus may be different without affecting the sets of the best recognized binding sites. Moreover, the two TFBS sets recognized by a given pair of PWMs can be more or less different depending on the score thresholds.
Results
We propose a practical approach for comparing two TFBS models, each consisting of a PWM and the respective scoring threshold. The proposed measure is a variant of the Jaccard index between two TFBS sets. The measure defines a metric space for TFBS models of all finite lengths. The algorithm can compare TFBS models constructed using substantially different approaches, like PWMs with raw positional counts and log-odds. We present the efficient software implementation: MACRO-APE (MAtrix CompaRisOn by Approximate P-value Estimation).
Conclusions
MACRO-APE can be effectively used to compute the Jaccard index based similarity for two TFBS models. A two-pass scanning algorithm is presented to scan a given collection of PWMs for PWMs similar to a given query.
Availability and implementation
MACRO-APE is implemented in ruby 1.9; software including source code and a manual is freely available at http://autosome.ru/macroape/ and in supplementary materials.
doi:10.1186/1748-7188-8-23
PMCID: PMC3851813  PMID: 24074225
Transcription factor binding site; TFBS; Transcription factor binding site model; Binding motif; Jaccard similarity; Position weight matrix; PWM; P-value; Position specific frequency matrix; PSFM; Macroape
20.  The multiple-specificity landscape of modular peptide recognition domains 
Using large scale experimental datasets, the authors show how modular protein interaction domains such as PDZ, SH3 or WW domains, frequently display unexpected multiple binding specificity. The observed multiple specificity leads to new structural insights and accurately predicts new protein interactions.
Modular protein domains interacting with short linear peptides, such as PDZ, SH3 or WW domains, display a rich binding specificity with significant interplay (or correlation) between ligand residues.The binding specificity of these domains is more accurately described with a multiple specificity model.The multiple specificity reveals new structural insights and predicts new protein interactions.
Modular protein domains have a central role in the complex network of signaling pathways that governs cellular processes. Many of them, called peptide recognition domains, bind short linear regions in their target proteins, such as the well-known SH3 or PDZ domains. These domain–peptide interactions are the predominant form of protein interaction in signaling pathways.
Because of the relative simplicity of the interaction, their binding specificity is generally represented using a simple model, analogous to transcription factor binding: the domain binds a short stretch of amino acids and at each position some amino acids are preferred over other ones. Thus, for each position, a probability can be assigned to each amino acid and these probabilities are often grouped into a matrix called position weight matrix (PWM) or position-specific scoring matrix. Such a matrix can then be represented in a highly intuitive manner as a so-called sequence logo (see Figure 1).
A main shortcoming of this specificity model is that, although intuitive and interpretable, it inherently assumes that all residues in the peptide contribute independently to binding. On the basis of statistical analyses of large data sets of peptides binding to PDZ, SH3 and WW domains, we show that for most domains, this is not the case. Indeed, there is complex and highly significant interplay between the ligand residues. To overcome this issue, we develop a computational model that can both take into account such correlations and also preserve the advantages of PWMs, namely its straightforward interpretability.
Briefly, our method detects whether the domain is capable of binding its targets not only with a single specificity but also with multiple specificities. If so, it will determine all the relevant specificities (see Figure 1). This is accomplished by using a machine learning algorithm based on mixture models, and the results can be effectively visualized as multiple sequence logos. In other words, based on experimentally derived data sets of binding peptides, we determine for every domain, in addition to the known specificity, one or more new specificities. As such, we capture more real information, and our model performs better than previous models of binding specificity.
A crucial question is what these new specificities correspond to: are they simply mathematical artifacts coming out of some algorithm or do they represent something we can understand on a biophysical or structural level? Overall, the new specificities provide us with substantial new intuitive insight about the structural basis of binding for these domains. We can roughly identify two cases.
First, we have neighboring (or very close in sequence) amino acids in the ligand that show significant correlations. These usually correspond to amino acids whose side chains point in the same directions and often occupy the same physical space, and therefore can directly influence each other.
In other cases, we observe that multiple specificities found for a single domain are very different from each other. They correspond to different ways that the domain accommodates its binders. Often, conformational changes are required to switch from one binding mode to another. In almost all cases, only one canonical binding mode was previously known, and our analysis enables us to predict several interesting non-canonical ones. Specifically, we discuss one example in detail in Figure 5. In a PDZ domain of DLG1, we identify a novel binding specificity that differs from the canonical one by the presence of an additional tryptophan at the C terminus of the ligand. From a structural point of view, this would require a flexible loop to move out of the way to accommodate this rather large side chain. We find evidence of this predicted new binding mode based on both existing crystal structures and structural modeling.
Finally, our model of binding specificity leads to predictions of many new and previously unknown protein interactions. We validate a number of these using the membrane yeast two-hybrid approach.
In summary, we show here that multiple specificity is a general and underappreciated phenomenon for modular peptide recognition domains and that it leads to substantial new insight into the basis of protein interactions.
Modular protein interaction domains form the building blocks of eukaryotic signaling pathways. Many of them, known as peptide recognition domains, mediate protein interactions by recognizing short, linear amino acid stretches on the surface of their cognate partners with high specificity. Residues in these stretches are usually assumed to contribute independently to binding, which has led to a simplified understanding of protein interactions. Conversely, we observe in large binding peptide data sets that different residue positions display highly significant correlations for many domains in three distinct families (PDZ, SH3 and WW). These correlation patterns reveal a widespread occurrence of multiple binding specificities and give novel structural insights into protein interactions. For example, we predict a new binding mode of PDZ domains and structurally rationalize it for DLG1 PDZ1. We show that multiple specificity more accurately predicts protein interactions and experimentally validate some of the predictions for the human proteins DLG1 and SCRIB. Overall, our results reveal a rich specificity landscape in peptide recognition domains, suggesting new ways of encoding specificity in protein interaction networks.
doi:10.1038/msb.2011.18
PMCID: PMC3097085  PMID: 21525870
binding specificity; peptide recognition domains; PDZ; phage display; residue correlations
21.  Flanking sequence context-dependent transcription factor binding in early Drosophila development 
BMC Bioinformatics  2013;14:298.
Background
Gene expression in the Drosophila embryo is controlled by functional interactions between a large network of protein transcription factors (TFs) and specific sequences in DNA cis-regulatory modules (CRMs). The binding site sequences for any TF can be experimentally determined and represented in a position weight matrix (PWM). PWMs can then be used to predict the location of TF binding sites in other regions of the genome, although there are limitations to this approach as currently implemented.
Results
In this proof-of-principle study, we analyze 127 CRMs and focus on four TFs that control transcription of target genes along the anterio-posterior axis of the embryo early in development. For all four of these TFs, there is some degree of conserved flanking sequence that extends beyond the predicted binding regions. A potential role for these conserved flanking sequences may be to enhance the specificity of TF binding, as the abundance of these sequences is greatly diminished when we examine only predicted high-affinity binding sites.
Conclusions
Expanding PWMs to include sequence context-dependence will increase the information content in PWMs and facilitate a more efficient functional identification and dissection of CRMs.
doi:10.1186/1471-2105-14-298
PMCID: PMC3851692  PMID: 24093548
Transcription factor; Binding site; Position weight matrix; Enhancer; Cis-regulatory module; Drosophila
22.  Measuring similarities between transcription factor binding sites 
BMC Bioinformatics  2005;6:237.
Background
Collections of transcription factor binding profiles (Transfac, Jaspar) are essential to identify regulatory elements in DNA sequences. Subsets of highly similar profiles complicate large scale analysis of transcription factor binding sites.
Results
We propose to identify and group similar profiles using two independent similarity measures: χ2 distances between position frequency matrices (PFMs) and correlation coefficients between position weight matrices (PWMs) scores.
Conclusion
We show that these measures complement each other and allow to associate Jaspar and Transfac matrices. Clusters of highly similar matrices are identified and can be used to optimise the search for regulatory elements. Moreover, the application of the measures is illustrated by assigning E-box matrices of a SELEX experiment and of experimentally characterised binding sites of circadian clock genes to the Myc-Max cluster.
doi:10.1186/1471-2105-6-237
PMCID: PMC1261160  PMID: 16191190
23.  A Structural-Based Strategy for Recognition of Transcription Factor Binding Sites 
PLoS ONE  2013;8(1):e52460.
Scanning through genomes for potential transcription factor binding sites (TFBSs) is becoming increasingly important in this post-genomic era. The position weight matrix (PWM) is the standard representation of TFBSs utilized when scanning through sequences for potential binding sites. However, many transcription factor (TF) motifs are short and highly degenerate, and methods utilizing PWMs to scan for sites are plagued by false positives. Furthermore, many important TFs do not have well-characterized PWMs, making identification of potential binding sites even more difficult. One approach to the identification of sites for these TFs has been to use the 3D structure of the TF to predict the DNA structure around the TF and then to generate a PWM from the predicted 3D complex structure. However, this approach is dependent on the similarity of the predicted structure to the native structure. We introduce here a novel approach to identify TFBSs utilizing structure information that can be applied to TFs without characterized PWMs, as long as a 3D complex structure (TF/DNA) exists. This approach utilizes an energy function that is uniquely trained on each structure. Our approach leads to increased prediction accuracy and robustness compared with those using a more general energy function. The software is freely available upon request.
doi:10.1371/journal.pone.0052460
PMCID: PMC3540023  PMID: 23320072
24.  MYBS: a comprehensive web server for mining transcription factor binding sites in yeast 
Nucleic Acids Research  2007;35(Web Server issue):W221-W226.
Correct interactions between transcription factors (TFs) and their binding sites (TFBSs) are of central importance to gene regulation. Recently developed chromatin-immunoprecipitation DNA chip (ChIP-chip) techniques and the phylogenetic footprinting method provide ways to identify TFBSs with high precision. In this study, we constructed a user-friendly interactive platform for dynamic binding site mapping using ChIP-chip data and phylogenetic footprinting as two filters. MYBS (Mining Yeast Binding Sites) is a comprehensive web server that integrates an array of both experimentally verified and predicted position weight matrixes (PWMs) from eleven databases, including 481 binding motif consensus sequences and 71 PWMs that correspond to 183 TFs. MYBS users can search within this platform for motif occurrences (possible binding sites) in the promoters of genes of interest via simple motif or gene queries in conjunction with the above two filters. In addition, MYBS enables users to visualize in parallel the potential regulators for a given set of genes, a feature useful for finding potential regulatory associations between TFs. MYBS also allows users to identify target gene sets of each TF pair, which could be used as a starting point for further explorations of TF combinatorial regulation. MYBS is available at http://cg1.iis.sinica.edu.tw/~mybs/.
doi:10.1093/nar/gkm379
PMCID: PMC1933147  PMID: 17537814
25.  Structure-based prediction of C2H2 zinc-finger binding specificity: sensitivity to docking geometry 
Nucleic Acids Research  2007;35(4):1085-1097.
Predicting the binding specificity of transcription factors is a critical step in the characterization and computational identification and of cis-regulatory elements in genomic sequences. Here we use protein–DNA structures to predict binding specificity and consider the possibility of predicting position weight matrices (PWM) for an entire protein family based on the structures of just a few family members. A particular focus is the sensitivity of prediction accuracy to the docking geometry of the structure used. We investigate this issue with the goal of determining how similar two docking geometries must be for binding specificity predictions to be accurate. Docking similarity is quantified using our recently described interface alignment score (IAS). Using a molecular-mechanics force field, we predict high-affinity nucleotide sequences that bind to the second zinc-finger (ZF) domain from the Zif268 protein, using different C2H2 ZF domains as structural templates. We identify a strong relationship between IAS values and prediction accuracy, and define a range of IAS values for which accurate structure-based predictions of binding specificity is to be expected. The implication of our results for large-scale, structure-based prediction of PWMs is discussed.
doi:10.1093/nar/gkl1155
PMCID: PMC1851644  PMID: 17264128

Results 1-25 (1263747)